
Prototype reimplementation of LATEX2ε’s block
environments using templates

LATEX Project∗

v0.9m 2026-01-26

Abstract

Contents
1 Introduction 3

2 Template types and templates for blocks and lists 3
2.1 Template types . 3

2.1.1 The template type ‘blockenv’ . 3
2.1.2 The template type ‘block’ . 4
2.1.3 The template type ‘para’ . 4
2.1.4 The template type ‘list’ . 4
2.1.5 The template type ‘captionedtext’ 5
2.1.6 The template type ‘item’ . 5
2.1.7 The template type ‘thmstyle’ . 5

2.2 Templates . 6
2.2.1 The blockenv template ‘std’ . 6
2.2.2 The block template ‘std’ . 8
2.2.3 The para template ‘std’ . 9
2.2.4 The list template ‘std’ . 10
2.2.5 The item template ‘std’ . 10
2.2.6 The captionedtext template ‘thmlike’ 11
2.2.7 The captionedtext template ‘proof’ 11
2.2.8 The thmstyle template ‘std’ . 12

∗Initial reimplementation of lists done by Bruno Le Floch, generalized second version with tagging
support by Frank Mittelbach.

1

3 Declaring standard display block environments and their instances 13
3.1 The display and displayflattened environments 14

3.1.1 Their blockenv instances . 14
3.1.2 Their block instances . 15

3.2 The center, flushleft, and flushright environments 15
3.2.1 Their blockenv instances . 16
3.2.2 Their block instances . 17
3.2.3 Their para instances . 17

3.3 The quote and quotation environments 17
3.3.1 Their blockenv instances . 17
3.3.2 Their block instances . 18

3.4 The verse environment . 18
3.4.1 Their blockenv instances . 18

3.5 The verbatim, verbatim* and alltt environments 19
3.5.1 Their blockenv instances . 19
3.5.2 Their block instances . 21

3.6 The trivlist environment . 21
3.7 The standard lists: itemize, enumerate, and description 21

3.7.1 Their blockenv instances . 22
3.7.2 Their block instances . 23
3.7.3 Their list instances . 23
3.7.4 Their item instances . 24

3.8 The legacy list and trivlist environments 24
3.8.1 Its blockenv instance . 25
3.8.2 Its list instance . 25

3.9 Theorem-like environments declared through \newtheorem 26
3.9.1 The blockenv instances they use 26
3.9.2 The captionedtext instances they use 27
3.9.3 The thmstyle instances they use 27
3.9.4 The block instances they use . 28

3.10 The proof environment (from amsthm) 29
3.10.1 Block instances for the proofs . 30

4 Declaring para instances 30

5 Advice on adjusting the layout of standard block environments 32

6 Tagging support 32
6.1 Paragraph tags . 32

6.1.1 Tagging recipes . 34

7 Tracing and debugging 35

8 New and redefined kernel command 36

Index 38

2

1 Introduction
The list implementation in LATEX2ε serves a dual purpose: it implements real lists such
as itemize or enumerate, but it is also used as the basis for vertical blocks, i.e., to specify
the vertical spacing and paragraph handling after such block, e.g., in environments like
center, quote, verbatim, or in the theorem environments. They are all implemented as
“ trivial” lists with a single (hidden) item.

While this was convenient to get a consistent layout using a single implementation
it is not adequate if it comes to interpreting the structure of a document, because envi­
ronments based on trivlist should not advertise themselves as being a “ list” — after
all, from a semantic point of view they aren’t lists.

The approach taking here is therefore to offer separate template types: block (hor­
izontally or vertically oriented data that needs some handling at the start and the end),
para (that deals with different paragraph layouts), list (that handles list related pa­
rameters, and item (for item layouts and handling).

To address the independent aspects we have the template type blockenv that ties
them together as necessary when we build document level environments.

For example, a quote environment would make use of a (display) block and some
para instance while a standard enumerate would make use of a display block, a list,
and an item and a para instance. An inline list (like enumerate* from the enumitem
package) would be using the same list instance but a different (horizontally oriented)
block instance build from a different template.

Instead of a list instance to handle the inner structure of the environment one can
use an instance of the type captionedtext to produce a display environment with an
associated heading/caption, such as a theorem-like environment or a proof environment.
Further possibilities (not yet implemented) are templates for producing boxed text or
formal quotes like those produced by the csquotes package.

2 Template types and templates for blocks and lists
2.1 Template types
2.1.1 The template type ‘blockenv’

Arg: 1 key/value list to alter the default parameters of the template instances used by
the particular blockenv environment

Arg: 2 Boolean to suppress a number in case this environment normally produces a
numbered caption

Arg: 3 Caption/heading text in case this environment supports a caption (most don’t),
otherwise \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption (most
don’t), otherwise \NoValue

Semantics:

This template type is used to implement document-level environments. It defines a
block instance to handle the layout at the “ edge” of the environment data, possibly
some paragraph setup through a para instance, potentially an “ inner” instance for more

3

complicated environments (such as lists), and possibly some additional setup code for
certain environments.

Arguments 2–4 are passed to the instance handling the inner structure, e.g., list
or captionedtext which may or may not make use of it.

It also defines how the blockenv behaves with respect to nesting, e.g., does it change
when nested and if so how many levels of nesting are supported, etc.

Finally, the template type defines how it appears in a tagged PDF document, what
tag names are used, how they are role-mapped and whether it adds additional attributes,
etc.

2.1.2 The template type ‘block’

Arg: 1 key/value list to alter the default block parameters

Semantics:

Handle the layout aspects of a block of data. In case of a “ display” block (i.e., vertically
oriented) the spacing and page breaking as well as the handling if the block starts a
paragraph or ends one, that is, if text is immediately following the block without being
separated by an empty line, then this text is considered to be in the same paragraph as
the block.

In case of a horizontally oriented block it covers any special handling at the start
and end of the block, e.g, extra spacing, prohibiting or encouraging line breaks, and so
forth.

2.1.3 The template type ‘para’

Arg: 1 key/value list to alter the default item parameters

Semantics:

Sets up paragraph-specific parameters for H&J, e.g., to implement justification variations,
the behavior of \\ etc. The instances are used in higher-level templates, e.g., in a block.

2.1.4 The template type ‘list’

Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this list environment also produces a
numbered heading/caption

Arg: 3 Caption/heading text in case this environment supports a caption (lists normally
don’t), otherwise \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

4

Semantics:

Handle the aspects related to list design, e.g., the use and formatting of counters, etc.
Standard LATEX2ε lists have no heading/caption, so arguments 2–4 are ignored in

the standard list template. But special lists, such as a list of ingredients for a cookbook,
might so there might be other templates that make use of them in the future.

Note that this template type does not cover block-related aspects, i.e., a list instance
could be used both for a display list or for an inline list.

2.1.5 The template type ‘captionedtext’

Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this environment also produces a numbered
heading/caption

Arg: 3 Caption/heading text for this text block; if not given then \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

Semantics:

Produces a text block with an associated caption/heading, e.g., a theorem-like environ­
ment. There may not be a user-supplied caption text—the caption may consist of a fixed
text only like “Lemma”.

Handles the aspects related to the caption design and typically supports keys for
adjusting the layout of the body text, e.g., its font, etc.

Note that this template type does not cover block-related aspects, e.g., the dimen­
sions of the display block are handled there.

2.1.6 The template type ‘item’

Arg: 1 key/value list to alter the default item parameters

Semantics:

A sub-type used as part of list to easily cover alternative layout for list items.

2.1.7 The template type ‘thmstyle’

Arg: 1 key/value list to alter the default item parameters

Arg: 2 Boolean to suppress a number in case this environment also produces a numbered
heading/caption

Arg: 3 Caption/heading text for this text block; if not given then \NoValue

Arg: 4 Sub-caption/heading text in case this environment supports a caption, otherwise
\NoValue

5

Semantics:

A sub-type used as part of captionedtext when producing theorem-like environments.
It does the bulk of the work and sets up most of the formatting. It has been separated
out because many theorem-like environments use the same theorem layout and only differ
in the fixed caption text they generate.

Not all templates of type captionedtext use thmstyle as an inner instance, e.g.,
proofs are implemented with a template that does everything necessary directly.

2.2 Templates
2.2.1 The blockenv template ‘std’

Attributes:

name (tokenlist) Name of the environment used in tracing and error messages.

tag-name (tokenlist) Name of the tag used for the block inside the PDF. If not explicitly
given the name is defined by the tagging-recipe. Note that in case of tagging-
recipe=basic no tag for the block is produced, so any key settings are ignored.

 Default: ⟨empty⟩

tag-attr-class (tokenlist) An explicit tag class attribute. Default: ⟨empty⟩

tagging-recipe (tokenlist) Defines the way tagging is done. Currently the values
basic, standard, and list are supported. Default: standard

transparent-level (boolean) Is this blockenv transparent for any blocks nested inside?
 Default: false

legacy-code (tokenlist) Legacy setup code. This is executed after legacy defaults (from
\@listi, \@listii, etc.) are used but before the block instance is called.

 Default: ⟨empty⟩

block-instance (tokenlist) Part of the name of the block instance that is called. The
full name has a -⟨level⟩ appended. Default: std-display

para-instance (tokenlist) Paragraph settings to use within the environment. If ⟨empty⟩
then the current (outer) values are retained. However, the inner-instance tem­
plate might reset/overwrite some of the para values, e.g., list makes used of
\listparindent to explicitly set the paragraph indentation for compatibility.

 Default: ⟨empty⟩

inner-level-counter (tokenlist) Name of an existing (!) counter that is incremented
and used to determine final name of the inner-instance or empty if always the
same inner instance should be used.

max-inner-levels (tokenlist) Maximum number of nested environments of this kind.
Only relevant if there is a inner-level-counter specified. Default: 4

inner-instance-type (tokenlist) Template type of the inner instance. Currently sup­
ported types are list and captionedtext. Default: ⟨empty⟩

6

inner-instance (tokenlist) Name of the inner instance (if any). If there is an inner-
level-counter then the instance name gets -⟨counter value⟩ appended.

 Default: ⟨empty⟩

tagging-suppress-paras (boolean) describe Default: false

final-code (tokenlist) Final setup code Default: \ignorespaces

Semantics & Comments: The blockenv type handles the overall setup for the
document-level environments.

This blockenv template supports the legacy list setting that are found in many
document classes in the macros \@listi, \@listii, up to \@listvi. It also uses the
counter \@listdepth to track nesting of block, again mainly to support legacy setups
(internally it gives it a more appropriate name but it remains accessible through the
LATEX2ε name).

The internal block nesting level is stored (for historical reasons) in the \@listdepth
counter and incremented by each block by one. The starting value at top-level (outside
any block) is zero. A block environment with transparent-level=true also increments
the level before it evaluates and sets its parameters but then decrements it again, just
before it starts processing its body.

The template first checks that the block is not too deeply nested.
After the level was increased then corresponding \@list... macro to update the

legacy defaults is called.
It then sets up the tagging via the tagging-recipe setting and executes any code

in legacy-code.
Afterwards it calls the appropriate block instance based on block-instance and

current level, e.g., std-display-1.
Then it sets up paragraph parameters if a para-instance was specified (otherwise

they stay as they are).
If a inner-instance was specified this is called next, or more precisely: if no inner-

level-counter was specified the instance inner-instance is called.
Otherwise, the inner-level-counter is incremented and the instance with the name

inner-instance-inner-level-counter is called.
Finally, the final-code is executed (by default \ignorespaces).

The maximum number of blockenvs that can be nested into each other is restricted
by the LATEX counter maxblocklevels with a default value of 6. If this value is increased
then it is necessary to provide additional instances, e.g., std-display-7, etc. Decreasing
is, of course, always possible, then some of the instances defined are not used and instead
the user gets an error that there is too much nesting going on.

If the key transparent-level is set to true then such an environment alters
the nesting level only temporarily (while processing the blockenv template) and you
can therefore nest those environments as often as you like (a typical example would
be flushleft anywhere in the nesting hierarchy) as long as the level isn’t already at
maxblocklevels).

7

2.2.2 The block template ‘std’

Attributes:

begin-vspace (skip) Vertical space before the block. Default: \topsep

begin-extra-vspace (skip) Extra vertical space before the block if the block forms its
own paragraph. Default: \partopsep

begin-unchained-vspace (skip) Vertical space before the block to use if this is a nested
block, both blocks have items or captions, and these should not be chained; see
description below. Default: .5\topsep

para-vspace (skip) The default for ordinary blocks is to use the \parskip from the
outer galley. In lists and some other special blocks this is then changed.

 Default: \parskip

end-vspace (skip) Vertical space after the block. Default: value from begin-vspace

end-extra-vspace (skip) Extra vertical space after the block if the block forms its own
paragraph. Default: value from begin-extra-vspace

item-vspace (skip) The space in front of an item if the block is a list; if not, the setting
has no effect. Default: \itemsep

begin-penalty (integer) Penalty for breaking before the block.
 Default: \@beginparpenalty

end-penalty (integer) Penalty for breaking after the block. Default: \@endparpenalty

item-penalty (integer) Penalty for breaking before an item in the list (except the first).
 Default: \@itempenalty

left-margin (length) Space on the left of the block. Default: \leftmargin

right-margin (length) Space on the right of the block. Default: \rightmargin

para-indent (length) Paragraph indention for paragraphs within the block. Default: 0pt

Semantics & Comments: Sets up the main block parameters, e.g. its spacing before
and after and the indentation on either side.

It also sets up some parameter defaults for the inner level, e.g., item-penalty,
item-vspace and para-indent, which may get overwritten by inner instances that are
called.

The vertical spacing before the block covers four different use cases: If there is a
caption or an item waiting to be placed, and this item allows for “ chaining”, and the new
block also wants to place an item then no space is added (spacing was already added by
the outer block). Instead, the items are chained and placed that the start of the block,
i.e., producing a layout like the two nested itemize environments here:

• – A second-level item
– Another …

More text for the first-level item

• Another first-level item

8

In that case there is also no vertical space after the block. If the items should not be
chained (as specified by the setup of the outer block), then one gets a result like this one
(using itemize environments inside description with different treatment of individual
description \items):

An normal label • A second-level item
• Another …

More text for the first-level item

An unchained label
• A second-level item
• Another …

More text for the first-level item

A normal label Another first-level item

If “ unchaining” happens, as in the second item, then vertical spacing with the value of
begin-unchained-vspace is used and at the end you get end-vertical-space.

Otherwise, if there is no item or caption waiting to be placed you get a vertical space
of begin-vspace before the block and if the block is its own paragraph you additionally
get begin-extra-vspace added to this.

Note that LATEX2ε always chained the list items, so the ability to prohibit this is
new functionality.

2.2.3 The para template ‘std’

Attributes:

para-indent (length) Default: \parindent

begin-hspace (skip) Horizontal skip added just in front of the indentation box if non-
zero Default: 0pt

left-hspace (skip) Default: 0pt

right-hspace (skip) Default: 0pt

end-hspace (skip) Default: \@flushglue

fixed-word-spaces (boolean) Default: false

final-hyphen-demerits (integer) Default: 5000

newline-cmd (function(0)) This defines the meaning of \\ Default: \@normalcr

para-attr-class (tokenlist) Default: justify

Semantics & Comments: The begin-hspace (normally 0pt) is the counterpart of
end-hspace (which is normally 0pt plus 1fil). It can be useful in special paragraph
shapes. The skip is only inserted into the paragraph if it is non-zero. If it is made non-zero
then paragraphs are always at least one line including a construct like \noindent\par!

TODO: to be further documented

9

2.2.4 The list template ‘std’

Attributes:

counter (tokenlist) Counter name to be used in a numbered list or empty, if the list is
unnumbered. Default: ⟨empty⟩

item-label (tokenlist) Label “ string” for a fixed label or as generated from the current
counter value. Default: ⟨empty⟩

start (integer) Start value for the counter if the list is numbered, otherwise irrelevant.
 Default: 1

resume (boolean) Should a numbered list be resumed from the last instance?.
 Default: false

item-instance (instance) Instance of type item to be used to format the label string.
 Default: basic

item-vspace (skip) The space in front of an item in the list. If not specified the value
specified in the block template instance is used.

item-penalty (integer) Penalty for breaking before an item (except the first). If not
specified the value specified in the block template instance is used.

item-indent (length) Horizontal displacement of the item. Default: 0pt

label-width (length) Width reserved for the formatted item label.
 Default: \labelwidth

label-sep (length) Horizontal separation between label and following text.
 Default: \labelsep

legacy-support (boolean) Is formatting the label via \makelabel supported?
 Default: false

Semantics & Comments: Sets up handling of list material, e.g., numbering (if any),
layout of items and list elements, and tagging, if requested.

2.2.5 The item template ‘std’

Attributes:

counter-label (function1) unused. Default: \arabic{#1}

counter-ref (function1) unused. Default: value from counter-label

label-ref (function1) unused. Default: #1

label-autoref (function1) unused. Default: item #1

label-format (function1) Formatting of the label, questionable the way it is used.
 Default: #1

label-strut (boolean) Add a \strut to the label? Default: false

10

label-align (choice) Supported values left,center, right, and parleft. Only partly
implemented. Default: right

label-placement (choice) Placement of the label in relation to a directly following la­
bel (of a following inner list). Supported values are chained, unchained, and
standalone. Default: chained

label-boxed (boolean) Should the label be boxed? Default: true

next-line (boolean) Default: false

text-font (tokenlist) unused.

compatibility (boolean) Default: true

Semantics & Comments: This template is only rudimentary implemented at the mo­
ment. It probably needs other keys and the existing ones need a proper implementation!fix

2.2.6 The captionedtext template ‘thmlike’

Attributes:

counter (tokenlist) Counter name to be used if the caption is numbered, otherwise
empty. Default: ⟨empty⟩

title (tokenlist) Fixed part of the caption, e.g., a theorem-like environment may want
to specify “ Lemma” here. Default: ⟨empty⟩

style (instance) Instance of type thmstyle that actually implements the theorem-like
environment. Default: plain

Semantics & Comments: The template combines the fixed title and a number (if
present) with the caption text as specified on the document element, if one is given, e.g.,
“ Theorem 1. (Fermat)”. See also the proof template, which handles this differently.

The bulk of the work is then outsourced to an instance of type thmstyle. As many
such theorem-like environments share the same layout and only differ in the first caption
string they use, there is this split for convenience.

2.2.7 The captionedtext template ‘proof’

Attributes:

title (tokenlist) Heading for the environment unless overwritten on document level.
 Default: Proof

punct (tokenlist) Punctuation following the heading. Default: .

caption-placement (choice) Supported values chained,unchained, and standalone
 Default: unchained

before-hspace (skip) Horizontal displacement of the heading. Default: 0pt

11

after-hspace (skip) Space following the heading, only relevant if text follows on the
same line. Default: 5pt

caption-decls (tokenlist) Declarations that are applied to the whole caption, e.g., some
font settings. Default: ⟨empty⟩

title-format (function1) Formatting applied to the title value. Default: #1

punct-format (function1) Formatting applied to the punct value. Default: #1

body-decls (tokenlist) Declarations that are applied to body of the environment, e.g.,
font settings. Default: ⟨empty⟩

Semantics & Comments: The “ unnumbered?” argument (#2) is ignored, as proofs
aren’t numbered. The template makes use of the caption argument (#3) but in contrast
to theorem-like environments this template replaces the title key value with the content
of this argument (if not \NoValue).

Typically there is only one layout for proofs so that there is no need to split the
formatting over two templates as done for theorem-like environment. That’s the reason
why the template has several layout customization parameters.

2.2.8 The thmstyle template ‘std’

Attributes:

numbered (boolean) Is this kind of environment numbered? Default: true

space (tokenlist) Space to be applied between elements of the heading Default: \␣

punct (tokenlist) Punctuation following the heading. Default: .

caption-placement (choice) Supported values chained,unchained, and standalone
 Default: unchained

before-hspace (skip) Horizontal displacement of the heading. Default: 0pt

after-hspace (skip) Space following the heading, only relevant if text follows on the
same line. Default: 5pt

order (commalist) Order of elements in the environment caption/heading. Supported
values are title, number, punct, space, and note.

 Default: title,space,number,space,note

caption-decls (tokenlist) Declarations that are applied to the whole caption, e.g., some
font settings. Default: ⟨empty⟩

title-format (function1) Formatting applied to the title value. Default: #1

number-format (function1) Formatting applied to the number value. Default: #1

punct-format (tokenlist) Formatting applied to the punct value. Default: #1

note-format (function1) Formatting applied to the note value. Default: (#1)

body-decls (tokenlist) Declarations that are applied to body of the environment, e.g.,
font settings. Default: ⟨empty⟩

12

Semantics & Comments: Numbering of the environment is suppressed uncondition­
ally if the numbered is set to false. Otherwise the environment is numbered except
when #2 is \BooleanTrue, i.e., if the star form of the environment was used.

The caption of the environment can consist of a title, a number, a punctuation,
some spaces and a note. Their order is defined by the key order. If a component is
specified but has no value, e.g., no note or the numbering suppressed on an individual
environment, then the component and any preceding spaces are ignored.

Spaces between elements are uniform (as one can only specify space in the order key,
but it is possible to use this several times in a row and adjust the space key accordingly.

Alternatively, one can omit using space in the order key and instead put all neces­
sary spacing into the individual ...-format keys. This approach is used, for example,
if a theorem style is set up with \newtheoremstyle and its ninth argument contains a
declaration such as

 \thmname{#1}\thmnumber{ #2}\thmnote{ (#3)}

This is then translated to

 order = {title,number,punct,note} ,
 title-format = {#1} ,
 number-format = { #2} ,
 note-format = { (#3)} ,

when \newtheoremstyle sets up a new instance. The downside of this approach is that
\swapnumbers would not work with such styles (because it would be necessary to transfer
the space inside value for the number-format key to the value of title-format).

If you look closely you also see that in the order key a punct was added in the list
even though it was not present originally. This is they way \newtheoremstyle worked
and so we mimic that.

3 Declaring standard display block environments and
their instances

Historically the LATEX kernel has defined a number of block environments directly, e.g.,
center or lists like itemize, but left others to be set up by document classes. For now
we declare all of them here, but in the future, some (or even all) might get moved to new
class files.
Most of the standard block environments have no need for a caption, so to sim­\SimpleBlockEnv
plify the setup we have added the command \SimpleBlockEnv that hides the ar­
guments 2–4 required by a blockenv instance and gives them suitable values, i.e.,
\BooleanFalse\NoValue\Novalue. This way, a document level definition for the center
environment will look like this:

\NewDocumentEnvironment{center} { !O{} }
 { \SimpleBlockEnv{center}{#1} } { \BlockEnvEnd }

instead of the more verbose

\NewDocumentEnvironment{center} { !O{} }
 { \UseInstance{blockenv}{center}{#1} \BooleanFalse \NoValue \NoValue }
 { \BlockEnvEnd }

13

We use !O{} for the optional argument so that it is only recognized if it immediately
follows \begin{center} without any spaces to avoid that a [at the start of the body
text is misinterpreted as the opening bracket of the optional argument. This is only done
for environments where this could be a problem.

This will then call the center instance of type blockenv that handles the rest.
For the environments that make use of the other arguments, we offer \BlockEnv as syntac­\BlockEnv

\BlockEnvEnd tic sugar so that most environment declarations look similar. And we use \BlockEnvEnd
in both cases to finish off.
 1 ⟨∗class-code⟩

In the following sections we provide for all block environments the top-level definition
and all instances that are used by it. Instances of type block are often reused across the
environments, in which case we just provide cross-references. Note that this is a design
decision, different classes my want to have adjusted settings for individual environments,
in which case they would provide special block instances instead of reusing, say, the
std-display-⟨level⟩ instances.

3.1 The display and displayflattened environments
displayblock (env.)

displayblockflattened (env.)
 There are two basic block environments (displayblock and displayblockflattened)
which are similar to LATEX2ε’s trivlist except that they aren’t degenerated lists and
thus have no hidden \item inside.
 2 \NewDocumentEnvironment{displayblock}{ !O{} }
 3 { \SimpleBlockEnv{displayblock} {#1} } { \BlockEnvEnd }

 4 \NewDocumentEnvironment{displayblockflattened}{ !O{} }
 5 { \SimpleBlockEnv{displayblockflattened} {#1} } { \BlockEnvEnd }

3.1.1 Their blockenv instances

blockenv displayblock (inst.) This is like LATEX2ε’s trivlist, i.e., it produces a vertical block with default setting,
but doesn’t put a list inside but uses a <Div> structure.
We list all keys, those with default values, commented out.
 6 \DeclareInstance{blockenv}{displayblock}{std}
 7 {
 8 name = displayblock
 9 % ,tagging-recipe = standard
 10 % ,tag-name =
 11 % ,tag-attr-class =
 12 ,transparent-level = true
 13 % ,legacy-code =
 14 % ,block-instance = std-display
 15 % ,para-instance =
 16 % ,tagging-suppress-paras = false
 17 % ,inner-instance =
 18 % ,inner-instance-type = % not relevant as there is no inner instance
 19 % ,inner-level-counter = % not relevant as there is no inner instance
 20 % ,max-inner-levels = 4 % not relevant as there is no inner instance
 21 % ,final-code = \ignorespaces
 22 }

The block uses the instance std-display which is shown below.

14

blockenv displayblockflattened (inst.) This flattens inner paragraphs without any surrounding tag structure by using the basic
tagging recipe.
 23 \DeclareInstance{blockenv}{displayblockflattened}{std}
 24 {
 25 name = displayblockflattened
 26 ,tagging-recipe = basic
 27 ,tagging-suppress-paras = true
 28 ,transparent-level = true
 29 }

3.1.2 Their block instances

We provide 6 nesting levels (as in LATEX2ε). If you want to provide more you need to
change the maxblocklevels counter, offer further std-display-⟨level⟩ instances but
also define further (legacy) \list⟨romannumeral⟩ commands for the defaults. If not,
then the settings from the previous level are reused automatically—which may or may
not be good enough).
 30 \setcounter{maxblocklevels}{6}

block std-display-1 (inst.)
block std-display-2 (inst.)
block std-display-3 (inst.)
block std-display-4 (inst.)
block std-display-5 (inst.)
block std-display-6 (inst.)

 We show all keys here for reference, with those using their default values commented
out:
 31 \DeclareInstance{block}{std-display-1}{std}
 32 {
 33 % ,begin-vspace = \topsep
 34 % ,begin-extra-vspace = \partopsep
 35 % ,para-vspace = \parskip
 36 % ,end-vspace = \KeyValue{begin-vspace}
 37 % ,end-extra-vspace = \KeyValue{begin-extra-vspace}
 38 % ,item-vspace = \itemsep
 39 % ,begin-penalty = \UseName{@beginparpenalty}
 40 % ,end-penalty = \UseName{@endparpenalty}
 41 ,left-margin = 0pt
 42 % ,right-margin = \rightmargin
 43 % ,para-indent = 0pt
 44 }

 45 \DeclareInstanceCopy{block}{std-display-2}{std-display-1}
 46 \DeclareInstanceCopy{block}{std-display-3}{std-display-1}
 47 \DeclareInstanceCopy{block}{std-display-4}{std-display-1}
 48 \DeclareInstanceCopy{block}{std-display-5}{std-display-1}
 49 \DeclareInstanceCopy{block}{std-display-6}{std-display-1}

3.2 The center, flushleft, and flushright environments
All three environments use the std-display instance as block instance. They only differ
in the choice of para instance.

center (env.)
flushleft (env.)
flushright (env.)

 For now we redeclare various document environments as late as possible in order to make
tagging work, even if classes have changed the definitions. Of course, this means that
such changes get lost.
 50 \AddToHook{begindocument/before}[./legacy-core]{

 51 \RenewDocumentEnvironment{center} { !O{} }
 52 { \SimpleBlockEnv{center}{#1} } { \BlockEnvEnd }

15

 53 \RenewDocumentEnvironment{flushright} { !O{} }
 54 { \SimpleBlockEnv{flushright}{#1} } { \BlockEnvEnd }

 55 \RenewDocumentEnvironment{flushleft} { !O{} }
 56 { \SimpleBlockEnv{flushleft}{#1} } { \BlockEnvEnd }
 57 }

3.2.1 Their blockenv instances

blockenv center (inst.) The center environment is defined through the blockenv instance center which makes
use of the block instance std-display-⟨level⟩ and the para instance center. The
block nesting level is not incremented. With respect to tagging, text separated by \par
commands (or empty lines) inside the environment is not tagged as separate paragraphs,
i.e., the whole environment is considered to be part of an outer paragraph.
 58 \DeclareInstance{blockenv}{center}{std}
 59 {
 60 name = center
 61 ,tag-name =
 62 ,tag-attr-class =
 63 ,tagging-recipe = basic
 64 ,tagging-suppress-paras = true
 65 ,inner-level-counter =
 66 ,transparent-level = true
 67 ,legacy-code =
 68 ,block-instance = std-display
 69 ,para-instance = center
 70 ,inner-instance =
 71 }

blockenv flushleft (inst.) Same as center except that we use the para instance raggedright.
 72 %\DeclareInstance{blockenv}{flushleft}{std}
 73 %{
 74 % name = flushleft
 75 % ,tag-name =
 76 % ,tag-attr-class =
 77 % ,tagging-recipe = basic
 78 % ,tagging-suppress-paras = true
 79 % ,inner-level-counter =
 80 % ,transparent-level = true
 81 % ,legacy-code =
 82 % ,block-instance = std-display
 83 % ,para-instance = raggedright
 84 % ,inner-instance =
 85 %}

Or more concise in the source and perhaps even faster in processing if only few keys are
changed:
 86 \DeclareInstanceCopy{blockenv}{flushleft}{center}
 87 \EditInstance{blockenv}{flushleft}{
 88 name = flushleft
 89 ,para-instance = raggedright }

blockenv flushright (inst.) Same game for flushright.
 90 \DeclareInstanceCopy{blockenv}{flushright}{center}

16

 91 \EditInstance{blockenv}{flushright}{
 92 name = flushright
 93 ,para-instance = raggedleft }

3.2.2 Their block instances

They all use the block instances std which have already been set up in section 3.1.2.

3.2.3 Their para instances

Formatting of paragraphs is handled through the para-instance key which either refers
to a instance of type para or is empty, in which case the handling of paragraphs is
inherited. The predefined instances are discussed in section 4.

3.3 The quote and quotation environments
LATEX2ε has two environments for quoting: quote and quotation. By default they
differ only in indentation of inner paragraphs. This is handled by using separate block
instances. The paragraph setup is inherited. The block nesting level is incremented.

The tag names are both role-mapped to <BlockQuote>.

quote (env.)
quotation (env.)

 We can’t use \RenewDocumentEnvironment for quote and other environments that
are class defined, because some classes aren’t implementing them at all. So we use
\DeclareDocumentEnvironment instead. This problem will vanish if all such definitions
move in new versions of the classes instead.
 94 \AddToHook{begindocument/before}[./legacy-quotes]{
 95 \DeclareDocumentEnvironment{quote}{ !O{} }
 96 { \SimpleBlockEnv{quote} {#1} } { \BlockEnvEnd }

 97 \DeclareDocumentEnvironment{quotation}{ !O{} }
 98 { \SimpleBlockEnv{quotation} {#1} } { \BlockEnvEnd }
 99 }

3.3.1 Their blockenv instances

blockenv quotation (inst.) For the quotation environment:
100 \DeclareInstance{blockenv}{quotation}{std}
101 {
102 name = quotation
103 ,tag-name = \UseStructureName{block/quotation}
104 ,tag-attr-class =
105 ,tagging-recipe = standard
106 ,inner-level-counter =
107 ,transparent-level = false
108 ,legacy-code =
109 ,block-instance = quotation
110 ,inner-instance =
111 }

blockenv quote (inst.) For the quote environment:
112 \DeclareInstance{blockenv}{quote}{std}
113 {
114 name = quote

17

115 ,tag-name = \UseStructureName{block/quote}
116 ,tag-attr-class =
117 ,tagging-recipe = standard
118 ,inner-level-counter =
119 ,transparent-level = false
120 ,legacy-code =
121 ,block-instance = quote
122 ,inner-instance =
123 }

3.3.2 Their block instances

block quote-1 (inst.)
block quote-2 (inst.)
block quote-3 (inst.)
block quote-4 (inst.)
block quote-5 (inst.)
block quote-6 (inst.)

 Default layout is to indent equally from both sides.
124 \DeclareInstance{block}{quote-1}{std}
125 { right-margin = \KeyValue{left-margin} }

126 \DeclareInstanceCopy{block}{quote-2}{quote-1}
127 \DeclareInstanceCopy{block}{quote-3}{quote-1}
128 \DeclareInstanceCopy{block}{quote-4}{quote-1}
129 \DeclareInstanceCopy{block}{quote-5}{quote-1}
130 \DeclareInstanceCopy{block}{quote-6}{quote-1}

block quotation-1 (inst.)
block quotation-2 (inst.)
block quotation-3 (inst.)
block quotation-4 (inst.)
block quotation-5 (inst.)
block quotation-6 (inst.)

 Quotation additionally changes the para-indent.
131 \DeclareInstance{block}{quotation-1}{std}
132 { para-indent = 1.5em , right-margin = \KeyValue{left-margin} }

133 \DeclareInstanceCopy{block}{quotation-2}{quotation-1}
134 \DeclareInstanceCopy{block}{quotation-3}{quotation-1}
135 \DeclareInstanceCopy{block}{quotation-4}{quotation-1}
136 \DeclareInstanceCopy{block}{quotation-5}{quotation-1}
137 \DeclareInstanceCopy{block}{quotation-6}{quotation-1}

3.4 The verse environment
The verse environment of LATEX is intended for poetry. Not sure what that should mean
with respect to tagging.

verse (env.) Implementation is like quote etc.
138 \AddToHook{begindocument/before}[./legacy]{
139 \DeclareDocumentEnvironment{verse}{!O{}}
140 { \SimpleBlockEnv{verse} {#1} } { \BlockEnvEnd }
141 }

3.4.1 Their blockenv instances

blockenv verse (inst.)
142 \DeclareInstance{blockenv}{verse}{std}
143 {
144 name = verse
145 ,tag-name = \UseStructureName{block/verse}
146 ,tag-attr-class =
147 ,tagging-recipe = standard
148 ,inner-level-counter =
149 ,transparent-level = false

18

150 ,legacy-code =
151 ,block-instance = quote % reuse?
152 ,para-instance = verse
153 ,inner-instance =
154 }

The special indentation on continuation lines (the way LATEX handled poetry is done in
the para instance verse, defined later on.

3.5 The verbatim, verbatim* and alltt environments
verbatim (env.)

verbatim* (env.)
 Here are the definitions for the verbatim environments They look somewhat different than
others (but this isn’t the final definition). At the moment we use 2 optional arguments,
the second is only there so that there is yet another scan even if one optional argument
got detected. That then scans away the newline so that afterwards we can reinsert one
via \obeyedline. A better solution will be to use a c specifier for grabbing the body,
but that is for another day not Christmas Eve.fix
155 \AddToHook{begindocument/before}[./legacy-verbatims]{
156 \RenewDocumentEnvironment{verbatim}{ ={legacy-code} !o !o }
157 { \SimpleBlockEnv{verbatim} {#1} \obeyedline } { \BlockEnvEnd }

158 \RenewDocumentEnvironment{verbatim*}{ ={legacy-code} !o !o }
159 { \SimpleBlockEnv{verbatim*} {#1} \obeyedline } { \BlockEnvEnd }

alltt (env.)
alltt* (env.)

 The alltt package implements a variation on verbatim handling where backslash and
braces retain their normal meanings. We also reimplement it using the template approach
The alltt* variant didn’t exist in the package, but it is trivial to set it up as well.The parsing here

should be adjusted
as well, eventually.

160 \NewDocumentEnvironment{alltt}{ ={legacy-code} !o }
161 { \SimpleBlockEnv{alltt} {#1} } { \BlockEnvEnd }
162 \NewDocumentEnvironment{alltt*}{ ={legacy-code} !o }
163 { \SimpleBlockEnv{alltt*} {#1} } { \BlockEnvEnd }
164 }

3.5.1 Their blockenv instances

blockenv verbatim (inst.) The verbatim environment is defined through blockenv instance verbatim that makes
use of the block instance verbatim-⟨level⟩ and the para instance justify. The block
nesting level is not incremented. Verbatim processing requires various catcode changes,
etc. and as a consequence a special parsing routine that grabs the whole environment
while these catcodes are in force. This setup is done in the final-code key and its last
action is to initiate the special parsing.
165 \DeclareInstance{blockenv}{verbatim}{std}
166 {
167 name = verbatim
168 ,tag-name = \UseStructureName{block/verbatim}
169 ,tag-attr-class =
170 ,tagging-recipe = standard
171 ,tagging-suppress-paras = true
172 ,inner-level-counter =
173 ,transparent-level = true
174 ,legacy-code =
175 ,block-instance = verbatim
176 ,inner-instance =

19

177 ,para-instance = justify

Here is where verbatim and verbatim* technically differ: in the former we set up spaces
to become nonbreakable spaces (if necessary followed by a \pdffakespace in the pdfTEX
engine) and in verbatim* we set it up to generate visible space chars.
178 ,final-code = \legacyverbatimsetup{invisible}

Then we start the special scanning process to look for \end{verbatim} with special
catcodes and grab everything in between. For verbatim* we use \@sxverbatim to look
for \end{verbatim*} instead.1
179 \@xverbatim
180 }

The role-mapping is <verbatim> to <Code> and <codeline> to <Sub> (which is role
mapped to in pdf 1.7). Sub inside Code is allowed according the errata of ISO
32005. The paragraphs inside verbatim are flattened. Line numbers should be inside the
<codeline> structure and be tagged either as <Lbl> or <Artifact><Lbl>.

blockenv verbatim* (inst.) The implementation of verbatim* is similar using the blockenv instance verbatim*. Its
final-code sets up visible spaces and a slightly different parsing that grabs everything
up to \end{verbatim*}. Otherwise the setup is identical.
181 \DeclareInstance{blockenv}{verbatim*}{std}
182 {
183 name = verbatim
184 ,tag-name = \UseStructureName{block/verbatim}
185 ,tag-attr-class =
186 ,tagging-recipe = standard
187 ,tagging-suppress-paras = true
188 ,inner-level-counter =
189 ,transparent-level = true
190 ,legacy-code =
191 ,block-instance = verbatim
192 ,inner-instance =
193 ,para-instance = justify
194 ,final-code = \legacyverbatimsetup{visible}
195 \@sxverbatim
196 }

blockenv alltt (inst.) The implementation of the alltt environment from the alltt is more or less identical as
well. We just need a slightly different final code to keep backslash and braces functional.
197 \DeclareInstance{blockenv}{alltt}{std}
198 {
199 name = alltt
200 ,tag-name = \UseStructureName{block/verbatim} % private tag instead?
201 ,tag-attr-class =
202 ,tagging-recipe = standard
203 ,tagging-suppress-paras = true
204 ,inner-level-counter =
205 ,transparent-level = true
206 ,legacy-code =
207 ,block-instance = verbatim
208 ,inner-instance =
209 ,para-instance = justify

1Perhaps there should be some other command names for this?

20

Now set up the special environment settings with most characters verbatim. We don’t
even have to scan ahead for the \end{alltt} because backslash and braces still have
their normal meaning.
210 ,final-code = \legacyallttsetup {invisible}
211 }

blockenv alltt* (inst.) The alltt* variant didn’t exist in the alltt package, but it is trivial to set it up as well.
212 \DeclareInstance{blockenv}{alltt*}{std}
213 {
214 name = alltt*
215 ,tag-name = \UseStructureName{block/verbatim} % private tag instead?
216 ,tag-attr-class =
217 ,tagging-recipe = standard
218 ,tagging-suppress-paras = true
219 ,inner-level-counter =
220 ,transparent-level = true
221 ,legacy-code =
222 ,block-instance = verbatim
223 ,inner-instance =
224 ,para-instance = justify
225 ,final-code = \legacyallttsetup {visible}
226 }

3.5.2 Their block instances

block verbatim-1 (inst.)
block verbatim-2 (inst.)
block verbatim-3 (inst.)
block verbatim-4 (inst.)
block verbatim-5 (inst.)
block verbatim-6 (inst.)

 Verbatim instances have there own levels so that one can specify specific indentations
or vertical separations between lines.
227 \DeclareInstance{block}{verbatim-1}{std}
228 {
229 ,left-margin = 0pt
230 ,para-vspace = 0pt
231 }

232 \DeclareInstanceCopy{block}{verbatim-2}{verbatim-1}
233 \DeclareInstanceCopy{block}{verbatim-3}{verbatim-1}
234 \DeclareInstanceCopy{block}{verbatim-4}{verbatim-1}
235 \DeclareInstanceCopy{block}{verbatim-5}{verbatim-1}
236 \DeclareInstanceCopy{block}{verbatim-6}{verbatim-1}

3.6 The trivlist environment
In LATEX2ε trivlist was used to define various display environments that aren’t really
lists at all. To support such legacy definitions (even though they should be updated to
achieve proper tagging) we continue to support and implement it as a list environment
with a few hardwired settings mimicking the original behavior.maybe we should sim­

ply implement it as
a displayblock in­
stance (at least when
doing tagging) - decide

3.7 The standard lists: itemize, enumerate, and description
itemize (env.)

enumerate (env.)
description (env.)

 For the standard lists everything is managed by the blockenv instances.
237 \AddToHook{begindocument/before}[./legacy-lists]{
238 \RenewDocumentEnvironment{itemize}{!O{}}
239 { \SimpleBlockEnv{itemize} {#1} } { \BlockEnvEnd }

21

240 \RenewDocumentEnvironment{enumerate}{!O{}}
241 { \SimpleBlockEnv{enumerate} {#1} } { \BlockEnvEnd }

242 \DeclareDocumentEnvironment{description}{!O{}}
243 { \SimpleBlockEnv{description} {#1} } { \BlockEnvEnd }
244 }

3.7.1 Their blockenv instances

blockenv itemize (inst.) The itemize environment is defined through the blockenv instance itemize which
makes use of the block instance list-⟨level⟩, and an inner instance itemize-⟨inner-
level⟩ of type list. The paragraph setup is inherited.2 The ⟨inner-level⟩ is deter­
mined through \@itemdepth. The block nesting level and the inner list nesting level are
incremented.
245 \DeclareInstance{blockenv}{itemize}{std}
246 {
247 name = itemize
248 ,tag-name = \UseStructureName{block/itemize}
249 ,tag-attr-class = itemize
250 ,tagging-recipe = list
251 ,inner-level-counter = \@itemdepth
252 ,transparent-level = false
253 ,max-inner-levels = 4
254 ,legacy-code =
255 ,block-instance = std-list
256 ,inner-instance-type = list
257 ,inner-instance = itemize
258 ,para-instance =
259 }

blockenv enumerate (inst.) The enumerate environment is similar to itemize but uses the blockenv instance
enumerate, the block instance list-⟨level⟩, and the inner instance enumerate-⟨inner-
level⟩. The ⟨inner-level⟩ is determined through \@enumdepth.
260 \DeclareInstance{blockenv}{enumerate}{std}
261 {
262 name = enumerate
263 ,tag-name = \UseStructureName{block/enumerate}
264 ,tag-attr-class = enumerate
265 ,tagging-recipe = list
266 ,transparent-level = false
267 ,max-inner-levels = 4
268 ,legacy-code =
269 ,block-instance = std-list
270 ,inner-level-counter = \@enumdepth
271 ,inner-instance-type = list
272 ,inner-instance = enumerate
273 }

2In the LATEX2ε implementation justified paragraphs where forced, even if the whole document was
set in ragged text. If this slightly strange behavior is desired then one has to set the para-instance key
to justify.

22

blockenv description (inst.) The description environment uses the blockenv instance description, the block in­
stance list-⟨level⟩, and the inner instance description (no dependency on the nesting
level), i.e., the environment has the same appearance on all nesting levels.
274 \DeclareInstance{blockenv}{description}{std}
275 {
276 name = description
277 ,tag-name = \UseStructureName{block/description}
278 ,tag-attr-class = description
279 ,tagging-recipe = list
280 ,inner-level-counter =
281 ,transparent-level = false
282 ,legacy-code =
283 ,block-instance = std-list
284 ,inner-instance-type = list
285 ,inner-instance = description
286 }

3.7.2 Their block instances

block std-list-1 (inst.)
block std-list-2 (inst.)
block std-list-3 (inst.)
block std-list-4 (inst.)
block std-list-5 (inst.)
block std-list-6 (inst.)

 The block instances for the various list environments use the same underlying instance
(well, by default) and nothing needs to be set up specifically (because that is already
done in the legacy \list⟨romannumeral⟩ unless a different layout is wanted.
287 \DeclareInstance{block}{std-list-1}{std}{
288 % begin-vspace = \topsep
289 % ,begin-extra-vspace = \partopsep

This is the only one we have to explicitly set for lists if the default setup is wanted.
290 ,para-vspace = \parsep
291 % ,end-vspace = \KeyValue{begin-vspace}
292 % ,end-extra-vspace = \KeyValue{begin-extra-vspace}
293 % ,item-vspace = \itemsep
294 % ,begin-penalty = \UseName{@beginparpenalty}
295 % ,end-penalty = \UseName{@endparpenalty}
296 % ,left-margin = \leftmargin
297 % ,right-margin = \rightmargin
298 % ,para-indent = 0pt
299 }

300 \DeclareInstanceCopy{block}{std-list-2}{std-list-1}
301 \DeclareInstanceCopy{block}{std-list-3}{std-list-2}
302 \DeclareInstanceCopy{block}{std-list-4}{std-list-3}
303 \DeclareInstanceCopy{block}{std-list-5}{std-list-4}
304 \DeclareInstanceCopy{block}{std-list-6}{std-list-5}

If the legacy \list⟨romannumeral⟩ is not used in a modern class then, of course, these
instances all need to set up the different parameters explicitly. The new implementation
of the standard classes (will) show that approach.

3.7.3 Their list instances

For all list instances we have to say what kind of label we want (item-label) and how
it should be formatted.

23

list itemize-1 (inst.)
list itemize-2 (inst.)
list itemize-3 (inst.)
list itemize-4 (inst.)

 For itemize environments this is all we need to do and we refer back to the external
definitions rather than defining the item-label code in the instance to ensure that old
documents still work.
305 \DeclareInstance{list}{itemize-1}{std}{ item-label = \labelitemi }
306 \DeclareInstance{list}{itemize-2}{std}{ item-label = \labelitemii }
307 \DeclareInstance{list}{itemize-3}{std}{ item-label = \labelitemiii }
308 \DeclareInstance{list}{itemize-4}{std}{ item-label = \labelitemiv }

list enumerate-1 (inst.)
list enumerate-2 (inst.)
list enumerate-3 (inst.)
list enumerate-4 (inst.)

 enumerate environments are similar, except that we also have to say which counter to
use on each level.
309 \DeclareInstance{list}{enumerate-1}{std}
310 { item-label = \labelenumi , counter = enumi }
311 \DeclareInstance{list}{enumerate-2}{std}
312 { item-label = \labelenumii , counter = enumii }
313 \DeclareInstance{list}{enumerate-3}{std}
314 { item-label = \labelenumiii , counter = enumiii }
315 \DeclareInstance{list}{enumerate-4}{std}
316 { item-label = \labelenumiv , counter = enumiv }

list description (inst.) The description lists also use only a single list instance with only one key not using
the default:
317 \DeclareInstance{list}{description}{std} { item-instance = description }

Of course, if handling of description lists should differ in nested lists all one has to do is
to provide an inner-level-counter and then define description-1, description-2,
etc.

3.7.4 Their item instances

item basic (inst.)
item description (inst.)

 There are two item instances to set up: description for use with the description
environment and basic for use with all other lists (up to now).
318 \DeclareInstance{item}{basic}{std}
319 { label-align = right }

320 \DeclareInstance{item}{description}{std}
321 {
322 ,label-format = \normalfont\bfseries #1
323 ,label-align = left
324 }

3.8 The legacy list and trivlist environments
list (env.) The legacy 2e list environment is more complicated as we have to get the extra arguments

accounted for.
325 \AddToHook{begindocument/before}[./legacy]{
326 \RenewDocumentEnvironment{list}{O{} m m }
327 {

We do this by storing them away and then call the list instance. Inside this instance the
legacy-code key contains \legacylistsetup which makes use of the stored values.
328 \tl_set:Nn \l_@@_legacy_env_params_tl
329 {
330 \tl_set:Nn \@itemlabel {#2}

24

331 #3
332 }

The LATEX2ε lists don’t support captions so we use \SimpleBlockEnv.
333 \SimpleBlockEnv{list} {#1}
334 }
335 { \BlockEnvEnd }
336 }

trivlist (env.) LATEX2ε defined trivlist as an implementation of list (or rather the other way
around).Replace with code

not using \list 337 \AddToHook{begindocument/before}[./legacy]{
338 \RenewDocumentEnvironment{trivlist}{ !O{} }
339 { \list[#1]{}
340 {
341 \dim_zero:N \leftmargin
342 \dim_zero:N \labelwidth
343 \cs_set_eq:NN \makelabel \use:n
344 }
345 }
346 { \BlockEnvEnd }
347 }

3.8.1 Its blockenv instance

blockenv list (inst.) The generic list environment of LATEX2ε is modeled with a blockenv instance named
list, a block instance named std-list-⟨level⟩, and an inner instance named legacy
(with no dependency on the nesting level). This environment has two arguments and
customization of the layout is expected to be directly set in the second argument. For
this reason this legacy instance is something that shouldn’t be changed (all that is
attempted to provide a way to support legacy setups).
To set up the default settings (as they were used in LATEX2ε) the legacy-code key gets
\legacylistsetup assigned that contains the necessary code to set up these defaults.
Changing the blockenv is therefore not recommended for the legacy list environment.
348 \DeclareInstance{blockenv}{list}{std}
349 {
350 name = list
351 ,tag-name = \UseStructureName{block/list}
352 ,tag-attr-class =
353 ,tagging-recipe = list
354 ,transparent-level = false
355 ,legacy-code = \legacylistsetup
356 ,block-instance = std-list
357 ,inner-level-counter =
358 ,inner-instance-type = list
359 ,inner-instance = legacy
360 }

3.8.2 Its list instance

list legacy (inst.) For the legacy list environment there is only one instance which is reused on all levels.
This is done this way because the legacy list environment sets all its parameters through

25

its arguments. So this instances shouldn’t really be touched. It sets the legacy-support
key to true, which means that the list code uses \makelabel for formatting the label.
361 \DeclareInstance{list}{legacy}{std} {
362 ,item-instance = basic
363 ,legacy-support = true
364 }

3.9 Theorem-like environments declared through \newtheorem

In standard LATEX theorem-like environments are not defined directly, but with the help
of a \newtheorem declaration. That allows specifying the typeset environment title, e.g.,
“ Lemma”, and the counter to use to number the environments, e.g., they could be all
numbered individually or one could number them using the same counter as some other
theorem-like environment.

This was first augmented by the theorem package which implemented the idea of
a \theoremstyle; this is now considered obsolete. Michael Downes from the AMS
improved on these early ideas and wrote the amsthm package, which offered more
functionality including a \newtheoremstyle declaration and for the document level a
\swapnumbers and an proof environment. It also provided star-forms for \newtheorem
(to define an unnumbered environment) and allowed to use star-forms of the theorem-like
environments to suppress numbering on an individual instance in the document.

This new implementation based on templates, is supposed to cover the functionality
of amsthm including it declarations so that documents that use amsthm explicitly or
implicitly via their class should continue to work seamlessly.

For other packages that provide theorem-like environments we have to see if they
could be easily remodeled using the new implementation or if there is a need for extended
templates.

Assuming declarations such as

 % \swapnumbers % <- commented out
 \theoremstyle{definition}
 \newtheorem{axiom}[def]{Axiom}

in a document, then the following instances of type blockenv and captionedtext are
declared by \newtheorem.

3.9.1 The blockenv instances they use

Given the above input \newtheorem defines the following blockenv instance:

 \DeclareInstance{blockenv}{axiom}{std}
 {

 name = theorem-like
,tag-name = \UseStructureName{block/theorem-like}
,tagging-recipe = standalone
,transparent-level = true
,block-instance:e = thm-

 \IfInstanceExistsTF{block}
 { thm-definition-1 }
 { definition } { plain }

,inner-instance-type = captionedtext

26

,inner-instance = axiom
,para-instance = justify

 }

The setting for block-instance means that it checks if a block instance with the
name thm-definition-1 exists. If so then the value thm-definition is used, otherwise
thm-plain is used which is always defined, i.e., if the theoremstyle does not specify any
special vertical spacing the block instance from the plain style is reused.

What varies from blockenv instance to instance are the values for block-instance
and inner-instance.

We use <theorem-like> as the structure name and role-map it to a <Sect> because
that can hold a <Caption>.

3.9.2 The captionedtext instances they use

The instance of type captionedtext is also defined by \newtheorem and in this case it
looks like this:

\DeclareInstance{captionedtext}{axiom}{thmlike}
{
,counter = def
,title = Axiom % <-- that the title provided to \newtheorem
,style = definition % <-- that's the used \theoremstyle

}

If we uncomment the \swapnumbers line in the example above then we get

,style = definition-swap

in the captionedtext instance instead.

3.9.3 The thmstyle instances they use

New theorem styles can be declared with \newtheoremstyle which then generates an
instance of type thmstyle. Alternatively, it is, of course, possible to declare the instances
directly (which gives you a bit more flexibility). A few such styles are predeclared,
matching what is offered by amsthm. These are shown below.

thmstyle plain (inst.) The main style used for many theorem-like environments, i.e., the one you get if no
special \theoremstyle has been specified.
365 \DeclareInstance{thmstyle}{plain}{std}
366 {
367 ,caption-placement = unchained
368 ,numbered = true
369 ,space = \
370 ,punct = .
371 ,before-hspace = 0pt
372 ,after-hspace = 5pt plus 1pt minus 1pt
373 ,order = {title, space, number, punct, space, note}
374 ,caption-decls = \bfseries
375 ,title-format = #1
376 ,number-format = #1
377 ,punct-format = #1

27

378 ,note-format = (#1)
379 ,body-decls = \itshape
380 }

thmstyle remark (inst.) The remark is like plain with two changes:
381 \DeclareInstanceCopy{thmstyle}{remark}{plain}
382 \EditInstance{thmstyle}{remark}
383 {
384 ,caption-decls = \itshape
385 ,body-decls = \normalfont
386 }

thmstyle definition (inst.) The definition is like plain with only a difference in the font used for the body:
387 \DeclareInstanceCopy{thmstyle}{definition}{plain}
388 \EditInstance{thmstyle}{definition}
389 {
390 ,body-decls = \normalfont
391 }

thmstyle legacy2e (inst.) Vanilla LATEX2ε (without amsthm loaded) had a slightly different default. We provide
this under the name legacy2e. It doesn’t use a punctuation after the number and it has
slightly different vertical spacing (defined by thm-legacy2e-1 below).
Thus, to reprocess an old document for tagging that uses \newtheorem without loading
amsthm one has to set \theoremstyle{legacy2e} to avoid layout changes. How such a
compatibility setting is automated is not yet decided.
392 \DeclareInstanceCopy{thmstyle}{legacy2e}{plain}
393 \EditInstance{thmstyle}{legacy2e}{ punct = }

3.9.4 The block instances they use

block thm-plain-1 (inst.)
block thm-plain-2 (inst.)

 Theorems do not support nesting, so in theory we have only one to set up. There are,
however, documents that put theorem-like environments inside of lists or other block
environments. While that is in most case somewhat dubious, it can make sense, for
example, in description lists. So we support it by providing thm-plain instances for
levels 1 and 2. If somebody really nests them further down, then more such instances
need to be declared.
The LATEX default reused the general value of \parindent and \parskip and, of course,
they start at the outer margin.
394 \DeclareInstance{block}{thm-plain-1}{std}
395 {
396 ,begin-extra-vspace = 0pt
397 ,left-margin = 0pt
398 ,para-indent = \parindent
399 ,para-vspace = \parskip
400 }

401 \DeclareInstanceCopy{block}{thm-plain-2}{thm-plain-1}

block thm-remark-1 (inst.)
block thm-remark-2 (inst.)

 The \thmstyle for “ remarks” is defined by amsthm to use less vertical spacing. It
therefore needs its own block instance.
402 \DeclareInstance{block}{thm-remark-1}{std}
403 {
404 ,begin-vspace = 0.5\topsep

28

405 ,begin-extra-vspace = 0pt
406 ,left-margin = 0pt
407 ,para-indent = \parindent
408 ,para-vspace = \parskip
409 }

410 \DeclareInstanceCopy{block}{thm-remark-2}{thm-remark-1}

block thm-legacy2e-1 (inst.)
block thm-legacy2e-2 (inst.)

 These are like the plain ones but without resetting begin-extra-vspace to zero.
411 \DeclareInstance{block}{thm-legacy2e-1}{std}
412 {
413 ,left-margin = 0pt
414 ,para-indent = \parindent
415 ,para-vspace = \parskip
416 }

417 \DeclareInstanceCopy{block}{thm-legacy2e-2}{thm-legacy2e-1}

3.10 The proof environment (from amsthm)
proof (env.) The proof environment expects one optional argument holding an alternative title for

the proof. We parse this optional argument as an implicit key/value argument, so that
it is possible to interpret it either as the value for the key note or as a key/value list
that holds special key settings for this particular environment instance. The result is
analyzed by \ParseLaTeXeTheoremlike which then calls a blockenv instance with the
name proof.
In addition we have to set up handling of QED symbols using \pushQED and \popQED
using the logic already defined in amsthm. Details on all this is given in the code section
of this module but normally this top-level declaration doesn’t require any changes.
418 \NewDocumentEnvironment{proof}{ ={note}o }
419 { \pushQED{\qed}%
420 \ParseLaTeXeTheoremlike {proof} \BooleanTrue {#1} }
421 { \popQED \BlockEnvEnd }

blockenv proof (inst.) A proof uses its own proofblock instance of type block for vertical spacing. As the
proof has a heading we use a captionedtext instance with name proof as the inner
instance and the paragraphs of the proof are justified.
422 \DeclareInstance{blockenv}{proof}{std}
423 {
424 name = proof
425 ,tag-name = \UseStructureName{block/proof}
426 ,tag-attr-class =
427 ,tagging-recipe = standalone
428 ,inner-level-counter =
429 ,transparent-level = true
430 ,legacy-code =
431 ,block-instance = proof
432 ,inner-instance-type = captionedtext
433 ,inner-instance = proof
434 ,para-instance = justify
435 }

29

captionedtext proof (inst.) We use a special captionedtext template to set up the proof because proofs are not
numbered and the argument to a proof environment has a somewhat different semantic
meaning than that of theorem-like environments.
436 \DeclareInstance{captionedtext}{proof}{proof}
437 {
438 ,title = Proof
439 ,punct = .
440 ,before-hspace = 0pt
441 ,after-hspace = 5pt plus 1pt minus 1pt
442 ,caption-decls = \itshape
443 ,title-format = #1
444 ,punct-format = #1
445 ,body-decls = \normalfont
446 }

3.10.1 Block instances for the proofs

block proof-1 (inst.)
block proof-2 (inst.)

 Blocks for proofs are pretty normal (the values are taken from the amsthm implementa­
tion):
447 \DeclareInstance{block}{proof-1}{std}
448 {
449 ,begin-vspace = 6pt plus 6pt
450 ,left-margin = 0pt
451 ,para-indent = \parindent
452 ,para-vspace = \parskip
453 }
454 \DeclareInstanceCopy{block}{proof-2}{proof-1}

4 Declaring para instances
Display block environments often require special paragraph settings and therefore have a
para-instance key to specify and appropriate instance. Here are the standard instances
that are predefined for this purpose.

para justify (inst.) Justifying is exactly what the default values do, so the instance hasn’t any special setup.
455 \DeclareInstance{para}{justify}{std}
456 {
457 % ,para-attr-class = justify
458 % ,para-indent = \parindent
459 % ,begin-hspace = 0pt
460 % ,left-hspace = \z@skip
461 % ,right-hspace = \z@skip
462 % ,end-hspace = \@flushglue
463 % ,final-hyphen-demerits = 5000
464 % ,newline-cmd = \@normalcr
465 }

para center (inst.) Centering a paragraph means putting stretchable glue on both sides.
466 \DeclareInstance{para}{center}{std}
467 {
468 ,para-attr-class = center
469 ,para-indent = 0pt

30

470 % ,begin-hspace = 0pt
471 ,left-hspace = \@flushglue
472 ,right-hspace = \@flushglue
473 ,end-hspace = \z@skip
474 ,final-hyphen-demerits = 0
475 ,newline-cmd = \@centercr
476 }

para raggedright (inst.) This is the plain TEX version of ragged right, which basically means no hyphenation
unless a word is truly longer than a line. This implements flushleft.
477 \DeclareInstance{para}{raggedright}{std}
478 {
479 ,para-attr-class = raggedright
480 ,para-indent = 0pt
481 % ,begin-hspace = 0pt
482 ,left-hspace = \z@skip
483 ,right-hspace = \@flushglue
484 ,end-hspace = \z@skip
485 ,final-hyphen-demerits = 0
486 ,newline-cmd = \@centercr
487 }

para raggedleft (inst.) This here is for flushright.
488 \DeclareInstance{para}{raggedleft}{std}
489 {
490 ,para-attr-class = raggedleft
491 ,para-indent = 0pt
492 % ,begin-hspace = 0pt
493 ,left-hspace = \@flushglue
494 ,right-hspace = \z@skip
495 ,end-hspace = \z@skip
496 ,final-hyphen-demerits = 0
497 ,newline-cmd = \@centercr
498 }

Here are the attribute definitions used in the para-attr-class in the above in­
stances:this should be

moved elsewhere 499 \tagpdfsetup
500 {
501 ,role/new-attribute = {justify} {/O /Layout /TextAlign/Justify}
502 ,role/new-attribute = {center} {/O /Layout /TextAlign/Center}
503 ,role/new-attribute = {raggedright}{/O /Layout /TextAlign/Start}
504 ,role/new-attribute = {raggedleft} {/O /Layout /TextAlign/End}
505 }

\centering
\raggedleft

\raggedright
\justifying

These instances are also used to implement declarations for direct use in documents or
in user definitions.
506 \DeclareRobustCommand\centering {\UseInstance{para}{center}{}}
507 \DeclareRobustCommand\raggedleft {\UseInstance{para}{raggedleft}{}}
508 \DeclareRobustCommand\raggedright{\UseInstance{para}{raggedright}{}}
509 \DeclareRobustCommand\justifying {\UseInstance{para}{justify}{}}

LATEX’s default is to typeset paragraphs justified.
510 \justifying

31

(End of definition for \centering and others.)

para verse (inst.) For the verse environment we use a special para instance. If the right hand side should
be ragged then a different right-hspace is needed.
511 \DeclareInstance{para}{verse}{std}
512 {
513 para-attr-class = justify ,
514 para-indent = 0pt ,
515 begin-hspace = -1.5em ,
516 left-hspace = 1.5em ,
517 right-hspace = 0pt ,
518 end-hspace = \@flushglue ,
519 final-hyphen-demerits = 0 ,
520 newline-cmd = \@centercr ,
521 }

522 ⟨/class-code⟩

5 Advice on adjusting the layout of standard block
environments

to document

6 Tagging support
6.1 Paragraph tags
Paragraphs in LATEX can be nested, e.g., you can have a paragraph containing a display
quote, which in turn consists of more than one (sub)paragraph, followed by some more
text which all belongs to the same outer paragraph.

In the PDF model and in the HTML model that is not supported — a limitation
that conflicts with real life, given that such constructs are quite normal in spoken and
written language.

The approach we take to resolve this is to model such “ big” paragraphs with a
structure named <text-unit> and use <text> (role-mapped to <P>) only for (portions
of) the actual paragraph text in a way that the <text>s are not nested. As a result we
have for a simple paragraph the structures

 <text>
 <text>

 The paragraph text …
 </text>

 </text>

The <text-unit> structure is role-mapped to <Part> or possibly to <Div> so we get a
valid PDF, but processors who care can identify the complete paragraphs by looking for
<text-unit> tags.

In the case of an element, such as a display quote or a display list inside the para­
graph, we then have

32

 <text-unit>
 <text>

 The paragraph text before the display element …
 </text>
 <display element structure>

 Content of the display structure possibly involving inner <text-unit> tags
 </display element structure>
 <text>

 … continuing the outer paragraph text
 </text>

 </text-unit>

In other words such a display block is always embedded in a <text-unit> structure,
possibly preceded by a <text>…</text> block and possibly followed by one, though
both such blocks are optional.

Thus an itemize environment that has some introductory text but no text imme­
diately following the list would be tagged as follows:

 <text-unit>
 <text>

 The intro text for the itemize environment …
 </text>
 <itemize>

 <itemlabel> label </itemlabel>
 <itembody>

 The text of the first item involving <text-unit> as necessary …
 </itembody>

 The second item …

 … further items …

 </itemize>
 </text-unit>

The <itemize> is roll-mapped to <L>.
For some display blocks, such as centered text, we use a simpler strategy. Such

blocks still ensure that they are inside a <text-unit> structure but their body uses
simple <text> blocks and not <text-unit><text> inside, e.g., the input

This is a paragraph with some
\begin{center}
 centered lines

 with a paragraph break between them
\end{center}
followed by some more text.

33

will be tagged as follows:

 <text-unit>
 <text>

 This is a paragraph with some
 </text>
 <text /O /Layout /TextAlign/Center>

 centered lines
 </text>
 <text /O /Layout /TextAlign/Center>

 with a paragraph break between them
 </text>
 <text>

 followed by some more text.
 </text-unit>

The text-unit structures are added by using the tagging sockets para/semantic/begin
and para/semantic/end declared in lttagging.dtx. They can be disabled by assigning
these sockets the plug noop.

6.1.1 Tagging recipes

There are a number of different tagging recipes that implement different tagging ap­
proaches. They are selected through the tagging-recipe of the blockenv template.
Currently the following values are implemented:

standalone This recipe does the following:

• Ensure that the blockenv is not inside a <text-unit> structure. If
necessary, close the open one (and any open <text> structure).

• Text inside the body of the environment start with <text-unit><text>
unless the key tagging-suppress-paras is set to true (which is most likely
the wrong thing to do because we then get just <text> as the structure).

• At the end of the environment close </text> and possibly an inner
</text-unit> if open.

• Finally, ensure that after the environment a new <text-unit> is started, if
appropriate, e.g., if text is following.

basic This recipe does the following:

• Ensure that the blockenv is inside a <text-unit> structure, if necessary,
start one.

• If inside a <text-unit><text>, then close the </text> but leave the
<text-unit> open.

• Text inside the body of the environment start with <text-unit><text> if
tagging-suppress-paras is set to false, otherwise just with <text>.

• At the end of the environment close </text> and possibly an inner
</text-unit> if open.

34

• Then look if the environment is followed by an empty line (\par). If so, close
the outer </text-unit> and start any following text with
<text-unit><text>. Otherwise, don’t and following text restarts with a just
a <text> (and no paragraph indentation)

standard This recipe is like the basic one as far as handling <text-unit> and <text>
is concerned. In addition

• it starts an inner tagging structure (i.e., which is therefore a child of the
outer <text-unit>).

• By default this structure is a <Div> unless overwritten by the key tag-name.
If that key is used, a suitable role-map needs to be provided for the name
given.

• At the end of the environment that inner structure is closed again so that we
are back on the <text-unit> level from the outside.

• Then the lookahead for an empty line is done as described previously.

list This recipe is like the standard one except that

• the inner structure is a list (<L>).
• Furthermore everything is set up so that we have list items () with

suitable substructures (<itemlabel> for the item labels and <itembody> for
the item bodies).

• If the key tag-name is specified, this is used as the tag name for the whole
list instead of <L>. Of course, it should then have a suitable rolemap.

• If the key tag-attr-class is specified then this is used as the class
attribute. Again, this requires a suitable setup on the outside.

• At the end of the environment the </itembody>, , and </L> (or the
tag name used) are closed.

• Then the lookahead for an empty line is done as described previously.

7 Tracing and debugging

These commands enable/disable debugging messages for blocks. They also enable/disable
debugging of templates (e.g., call \DebugTemplatesOn or \DebugTemplatesOff).

\DebugBlocksOn
\DebugBlocksOff
\block_debug_on:
\block_debug_off:

The data that is produced is rather verbose and largely guided (so far) by what
seemed helpful while developing the code. This needs some cleanup at a later stage. At cleanup
the moment, if you have the following simple document

1 \DocumentMetadata{tagging=on, lang=en}
2

3 \documentclass{article}
4

5 \DebugBlocksOn
6

7 \begin{document}

35

8 \begin{itemize}[item-vspace=3pt]
9 \item A normal item

10 \item[\textbf{+}] A special item
11 \end{itemize}
12 \end{document}

then you will get the following information on the screen and in the .log file:

[Template] ==> Use 'blockenv' instance: itemize on input line 8
[Template] ==> template: 'std'; arguments: |item-vspace=3pt|\BooleanFalse |\NoValue |\NoValue |
[Template] ==> Use 'block' instance: std-list-1 on input line 8
[Template] ==> template: 'std'; argument: |item-vspace={3pt}|
[Blocks] ==> @endpe=false on input line 8
[Template] ==> Use 'list' instance: itemize-1 on input line 8
[Template] ==> template: 'std'; arguments: ||\BooleanFalse |\NoValue |\NoValue |
[Blocks] ==> Set first block everypar on input line 8
[Blocks] ==> template:list:std end

[Template] ==> Use 'item' instance: basic on input line 9
[Template] ==> template: 'std'; argument: ||
[Blocks] ==> Set item block everypar on input line 9
[Blocks] ==> ... in item block everypar on input line 9
[Blocks] ==> increment P on input line 9
[Blocks] ==> Set noop block everypar on input line 9

[Template] ==> Use 'item' instance: basic on input line 10
[Template] ==> template: 'std'; argument: |label={\textbf {+}}|
[Blocks] ==> item with optional
[Blocks] ==> Set item block everypar on input line 10
[Blocks] ==> ... in item block everypar on input line 10
[Blocks] ==> increment P on input line 10
[Blocks] ==> Set noop block everypar on input line 10

[Blocks] ==> blockenv common ending on input line 11

[Blocks] ==> flattened=false on input line 12
[Blocks] ==> Structure-end text-unit after displayblock on input line 12

8 New and redefined kernel command

to be documented\SimpleBlockEnv
\BlockEnv
\BlockEnvEnd
\g_block_nesting_depth_int

to be documented\legacyverbatimsetup
\legacyallttsetup
\legacylistsetup

A counterpart definition to the kernel command \@setupverbinvisiblespace, needed
as we need to handle real space chars in verbatim.

\@setupverbinvisiblespace

36

Reimplemented to fit the template approach. \newtheoremstyle was defined by amsthm.\newtheorem
\newtheoremstyle

These are no longer used (to be removed).\@nthm
\@xnthm
\@ynthm
\@thm
\@xthm
\@ythm
\@othm
\@begintheorem
\@opargbegintheorem
\@endtheorem

The \item is redefined.\item
\@itemlabel

A counter to increase or decrease the number of supported level. If increased, one needs
to supply additional level instances.

\c@maxblocklevels

The \begin is slightly redefined to handle \@doendpe better. TODO: move to kernel\begin

The original LATEX2ε command is augmented to allow for tagging.\@doendpe

TODO: consider name, document\para_end:

The para/begin hook is enhanced to support list endspara/begin

37

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
@@ commands:
 \l_@@_legacy_env_params_tl 328
\␣ . 369

A
\AddToHook . 50, 94, 138, 155, 237, 325, 337
alltt (env.) . 160
alltt* (env.) . 160

B
\begin . 37
\bfseries 322, 374
block commands:
 \block_debug_off: 35
 \block_debug_on: 35
 \g_block_nesting_depth_int 36
block proof-1 (instance) 447
block proof-2 (instance) 447
block quotation-1 (instance) 131
block quotation-2 (instance) 131
block quotation-3 (instance) 131
block quotation-4 (instance) 131
block quotation-5 (instance) 131
block quotation-6 (instance) 131
block quote-1 (instance) 124
block quote-2 (instance) 124
block quote-3 (instance) 124
block quote-4 (instance) 124
block quote-5 (instance) 124
block quote-6 (instance) 124
block std-display-1 (instance) 31
block std-display-2 (instance) 31
block std-display-3 (instance) 31
block std-display-4 (instance) 31
block std-display-5 (instance) 31
block std-display-6 (instance) 31
block std-list-1 (instance) 287
block std-list-2 (instance) 287
block std-list-3 (instance) 287
block std-list-4 (instance) 287
block std-list-5 (instance) 287
block std-list-6 (instance) 287
block thm-legacy2e-1 (instance) 411
block thm-legacy2e-2 (instance) 411
block thm-plain-1 (instance) 394
block thm-plain-2 (instance) 394
block thm-remark-1 (instance) 402

block thm-remark-2 (instance) 402
block verbatim-1 (instance) 227
block verbatim-2 (instance) 227
block verbatim-3 (instance) 227
block verbatim-4 (instance) 227
block verbatim-5 (instance) 227
block verbatim-6 (instance) 227
\BlockEnv . 14
\BlockEnv . 14, 36
blockenv alltt (instance) 197
blockenv alltt* (instance) 212
blockenv center (instance) 58
blockenv description (instance) 274
blockenv displayblock (instance) 6
blockenv displayblockflattened (in­

stance) . 23
blockenv enumerate (instance) 260
blockenv flushleft (instance) 72
blockenv flushright (instance) 90
blockenv itemize (instance) 245
blockenv list (instance) 348
blockenv proof (instance) 422
blockenv quotation (instance) 100
blockenv quote (instance) 112
blockenv verbatim (instance) 165
blockenv verbatim* (instance) 181
blockenv verse (instance) 142
\BlockEnvEnd . 14
\BlockEnvEnd 14, 36, 3,

5, 52, 54, 56, 96, 98, 140, 157, 159,
161, 163, 239, 241, 243, 335, 346, 421

\BooleanFalse . 13
\BooleanTrue 13, 420

C
captionedtext proof (instance) 436
center (env.) . 50
\centering . 506
cs commands:
 \cs_set_eq:NN 343

D
\DebugBlocksOff 35
\DebugBlocksOn 35
\DebugTemplatesOff 35
\DebugTemplatesOn 35
\DeclareDocumentEnvironment

. 17, 95, 97, 139, 242

38

\DeclareInstance
. . 6, 23, 31, 58, 72, 100, 112, 124,
131, 142, 165, 181, 197, 212, 227,
245, 260, 274, 287, 305, 306, 307,
308, 309, 311, 313, 315, 317, 318,
320, 348, 361, 365, 394, 402, 411,
422, 436, 447, 455, 466, 477, 488, 511

\DeclareInstanceCopy . 45, 46, 47, 48,
49, 86, 90, 126, 127, 128, 129, 130,
133, 134, 135, 136, 137, 232, 233,
234, 235, 236, 300, 301, 302, 303,
304, 381, 387, 392, 401, 410, 417, 454

\DeclareRobustCommand . 506, 507, 508, 509
description (env.) 237
dim commands:
 \dim_zero:N 341, 342
displayblock (env.) 2
displayblockflattened (env.) 2

E
\EditInstance 87, 91, 382, 388, 393
enumerate (env.) 237
environments:
 alltt . 160
 alltt* . 160
 center . 50
 description 237
 displayblock 2
 displayblockflattened 2
 enumerate 237
 flushleft . 50
 flushright 50
 itemize . 237
 list . 325
 proof . 418
 quotation . 94
 quote . 94
 trivlist . 337
 verbatim . 155
 verbatim* 155
 verse . 138

F
flushleft (env.) 50
flushright (env.) 50

I
\ignorespaces . 21
instances:
 block proof-1 447
 block proof-2 447
 block quotation-1 131
 block quotation-2 131
 block quotation-3 131

 block quotation-4 131
 block quotation-5 131
 block quotation-6 131
 block quote-1 124
 block quote-2 124
 block quote-3 124
 block quote-4 124
 block quote-5 124
 block quote-6 124
 block std-display-1 31
 block std-display-2 31
 block std-display-3 31
 block std-display-4 31
 block std-display-5 31
 block std-display-6 31
 block std-list-1 287
 block std-list-2 287
 block std-list-3 287
 block std-list-4 287
 block std-list-5 287
 block std-list-6 287
 block thm-legacy2e-1 411
 block thm-legacy2e-2 411
 block thm-plain-1 394
 block thm-plain-2 394
 block thm-remark-1 402
 block thm-remark-2 402
 block verbatim-1 227
 block verbatim-2 227
 block verbatim-3 227
 block verbatim-4 227
 block verbatim-5 227
 block verbatim-6 227
 blockenv alltt 197
 blockenv alltt* 212
 blockenv center 58
 blockenv description 274
 blockenv displayblock 6
 blockenv displayblockflattened . . 23
 blockenv enumerate 260
 blockenv flushleft 72
 blockenv flushright 90
 blockenv itemize 245
 blockenv list 348
 blockenv proof 422
 blockenv quotation 100
 blockenv quote 112
 blockenv verbatim 165
 blockenv verbatim* 181
 blockenv verse 142
 captionedtext proof 436
 item basic 318
 item description 318
 list description 317

39

 list enumerate-1 309
 list enumerate-2 309
 list enumerate-3 309
 list enumerate-4 309
 list itemize-1 305
 list itemize-2 305
 list itemize-3 305
 list itemize-4 305
 list legacy 361
 para center 466
 para justify 455
 para raggedleft 488
 para raggedright 477
 para verse 511
 thmstyle definition 387
 thmstyle legacy2e 392
 thmstyle plain 365
 thmstyle remark 381
\item . 9, 37
item basic (instance) 318
item description (instance) 318
itemize (env.) 237
\itemsep . 38, 293
\itshape 379, 384, 442

J
\justifying . 506

K
\KeyValue 36, 37, 125, 132, 291, 292

L
\labelenumi . 310
\labelenumii 312
\labelenumiii 314
\labelenumiv 316
\labelitemi . 305
\labelitemii 306
\labelitemiii 307
\labelitemiv 308
\labelwidth . 342
\leftmargin 296, 341
\legacyallttsetup 36, 210, 225
\legacylistsetup 25, 36, 355
\legacyverbatimsetup 36, 178, 194
list (env.) . 325
\list . 339
list description (instance) 317
list enumerate-1 (instance) 309
list enumerate-2 (instance) 309
list enumerate-3 (instance) 309
list enumerate-4 (instance) 309
list itemize-1 (instance) 305
list itemize-2 (instance) 305

list itemize-3 (instance) 305
list itemize-4 (instance) 305
list legacy (instance) 361
\listparindent . 6

M
\makelabel . 343

N
\NewDocumentEnvironment 2, 4, 160, 162, 418
\newtheorem 26–28, 37
\newtheoremstyle 13, 26, 27, 37
\normalfont 322, 385, 390, 445
\NoValue 3–5, 12, 13
\Novalue . 13

O
\obeyedline 19, 157, 159

P
\par . 16
para center (instance) 466
para commands:
 \para_end: 37
para justify (instance) 455
para raggedleft (instance) 488
para raggedright (instance) 477
para verse (instance) 511
para/begin . 37
\parindent 398, 407, 414, 451, 458
\ParseLaTeXeTheoremlike 29, 420
\parsep . 290
\parskip 8, 35, 399, 408, 415, 452
\partopsep 34, 289
\popQED . 29, 421
proof (env.) . 418
\pushQED . 29, 419

Q
\qed . 419
quotation (env.) 94
quote (env.) . 94

R
\raggedleft . 506
\raggedright 506
\RenewDocumentEnvironment 17,

51, 53, 55, 156, 158, 238, 240, 326, 338
\rightmargin 42, 297

S
\setcounter . 30
\SimpleBlockEnv 13
\SimpleBlockEnv 13,

25, 36, 3, 5, 52, 54, 56, 96, 98, 140,
157, 159, 161, 163, 239, 241, 243, 333

\swapnumbers 13, 26, 27

40

T
\tagpdfsetup 499
TEX and LATEX2ε commands:
 \@beginparpenalty 8
 \@begintheorem 37
 \@centercr 475, 486, 497, 520
 \@doendpe . 37
 \@endparpenalty 8
 \@endtheorem 37
 \@enumdepth 22, 270
 \@flushglue

. 9, 462, 471, 472, 483, 493, 518
 \@itemdepth 22, 251
 \@itemlabel 37, 330
 \@itempenalty 8
 \@list... 7
 \@listdepth . 7
 \@listi . 6, 7
 \@listii . 6, 7
 \@listvi . 7
 \@normalcr 9, 464
 \@nthm . 37
 \@opargbegintheorem 37
 \@othm . 37
 \@setupverbinvisiblespace 36
 \@sxverbatim 20, 195
 \@thm . 37
 \@xnthm . 37
 \@xthm . 37
 \@xverbatim 179
 \@ynthm . 37
 \@ythm . 37
 \arabic . 10
 \begin . 37
 \c@maxblocklevels 37
 \ignorespaces 7
 \item . 14, 37
 \itemsep . 8

 \labelsep . 10
 \labelwidth 10
 \leftmargin . 8
 \legacylistsetup 24
 \list . 25
 \list⟨romannumeral⟩ 15, 23
 \makelabel 10, 26
 \par . 35
 \parindent 9, 28
 \parskip 8, 28
 \partopsep . 8
 \pdffakespace 20
 \rightmargin 8
 \strut . 10
 \topsep . 8
 \z@skip 460, 461, 473, 482, 484, 494, 495
\theoremstyle 26, 27
\thmstyle . 28
thmstyle definition (instance) 387
thmstyle legacy2e (instance) 392
thmstyle plain (instance) 365
thmstyle remark (instance) 381
tl commands:
 \tl_set:Nn 328, 330
\topsep 33, 288, 404
trivlist (env.) 337

U
use commands:
 \use:n . 343
\UseInstance 506, 507, 508, 509
\UseName 39, 40, 294, 295
\UseStructureName . 103, 115, 145, 168,

184, 200, 215, 248, 263, 277, 351, 425

V
verbatim (env.) 155
verbatim* (env.) 155
verse (env.) . 138

41

	Contents
	1 Introduction
	2 Template types and templates for blocks and lists
	2.1 Template types
	2.1.1 The template type `blockenv'
	2.1.2 The template type `block'
	2.1.3 The template type `para'
	2.1.4 The template type `list'
	2.1.5 The template type `captionedtext'
	2.1.6 The template type `item'
	2.1.7 The template type `thmstyle'

	2.2 Templates
	2.2.1 The blockenv template `std'
	2.2.2 The block template `std'
	2.2.3 The para template `std'
	2.2.4 The list template `std'
	2.2.5 The item template `std'
	2.2.6 The captionedtext template `thmlike'
	2.2.7 The captionedtext template `proof'
	2.2.8 The thmstyle template `std'

	3 Declaring standard display block environments and their instances
	3.1 The display and displayflattened environments
	3.1.1 Their blockenv instances
	3.1.2 Their block instances

	3.2 The center, flushleft, and flushright environments
	3.2.1 Their blockenv instances
	3.2.2 Their block instances
	3.2.3 Their para instances

	3.3 The quote and quotation environments
	3.3.1 Their blockenv instances
	3.3.2 Their block instances

	3.4 The verse environment
	3.4.1 Their blockenv instances

	3.5 The verbatim, verbatim* and alltt environments
	3.5.1 Their blockenv instances
	3.5.2 Their block instances

	3.6 The trivlist environment
	3.7 The standard lists: itemize, enumerate, and description
	3.7.1 Their blockenv instances
	3.7.2 Their block instances
	3.7.3 Their list instances
	3.7.4 Their item instances

	3.8 The legacy list and trivlist environments
	3.8.1 Its blockenv instance
	3.8.2 Its list instance

	3.9 Theorem-like environments declared through \newtheorem
	3.9.1 The blockenv instances they use
	3.9.2 The captionedtext instances they use
	3.9.3 The thmstyle instances they use
	3.9.4 The block instances they use

	3.10 The proof environment (from amsthm)
	3.10.1 Block instances for the proofs

	4 Declaring para instances
	5 Advice on adjusting the layout of standard block environments
	6 Tagging support
	6.1 Paragraph tags
	6.1.1 Tagging recipes

	7 Tracing and debugging
	8 New and redefined kernel command
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

