
The texgit Package

Thomas Weise (汤卫思教授)
Institute of Applied Optimization (应用优化研究所, IAO)

School of Artificial Intelligence and Big Data (人工智能与大数据学院)
Hefei University (合肥大学)

Hefei 230601, Anhui, China (中国安徽省合肥市)
tweise@hfuu.edu.cn · tweise@ustc.edu.cn

June 26, 2025

Abstract

This package allows you to download and access files that reside in a
git repository from within your LATEX code. This can be used, for example,
to include program code from an actual software in life repository in your
LATEX documents. It allows you to postprocess these files, e.g., to apply
programs that remove comments or reformat code and then to include these
postprocessed files. It furthermore allows you to execute programs (or scripts
from git repositories) on your machine and include their output into your
LATEX documents. Finally, it also allows you to allocate files and pass them
as parameters to the programs that you execute. With this, you could create
PDF figures on the fly and then include them into your LATEX documents.

This LATEX package works only in combination with the Python package
texgit. To implement its functionality, it offers the following commands:

• \gitLoad{id}{repoURL}{pathInRepo}{postproc} loads a file
pathInRepo from the git repository repoURL, optionally post-
processes it by piping its contents into the standard input of a
command postproc capturing its standard output.

• \gitFile{id} provides a local path to a file created this way. Using the
\gitFile{id} macro, you can then include the file in LATEX directly
or load it as source code listing.

• \gitName{id} provides the name of the file created this way.

• \gitNameEsc{id} provides the name of the file created this way, but
with the characters _, $, and escaped to _, \$, and ~, respectively.

• \gitUrl{id} provides the URL to the original file in the git repository.

• \gitExec{id}{repoURL}{pathInRepo}{command} executes an arbi-
trary command command, either in the current directory or inside a
directory pathInRepo of the git repository repoURL and fetches the
standard output into a local file, the path to which is made available
to the file again as macro \gitFile{id}. You can also leave the id
parameter empty. This makes sense if you are not interested in the
output of the program. Maybe you just want to execute a script, say,
something that creates a figure stored in some file. Without id param-
eter, you cannot access the stdout of this command. And sometimes,
this is ok.

1

mailto:tweise@hfuu.edu.cn
mailto:tweise@ustc.edu.cn

• \gitArg{id}{prefix}{suffix} allocates an additional file, whose
name will be composed of the optional prefix and suffix. Such files
can be passed as arguments to \gitExec or \gitLoad by including
(?id?) in their commands’ argument list. This way, we can, for exam-
ple, instruct a program to create a graphic and store it in a certain file
that we can later load from \gitFile{id}.

• \gitIf{id}{ifDone}{ifNotDone} executes the code ifDone starting in
the second pdflatex pass, i.e., after the Python texgit package has
been applied to the aux file generated during the first pdflatex pass.
During the first pdflatex pass and before the Python texgit package
was applied, ifNotDone will be executed.

The functionality of the package is implemented by storing the git re-
quests in the aux file of the project during the first pdflatex pass. The aux
file is then processed by the Python package which performs the actual git
queries, program executions, stores the result in local files, and adds the re-
solved paths to the aux file. Thus, during the first pdflatex run, \gitFile
and \gitUrl offer dummy results. During the second and later pass, after
the Python program texgit has been applied to the aux file, they then pro-
vide the actual paths and URLs. In the essense, texgit works somewhat
like BibTEX.

Contents
1 Introduction 3

1.1 Addressed Problem and Use Case 3
1.2 Provided Functionality . 4

2 Usage 4
2.1 Installation . 5
2.2 Loading the Package . 6
2.3 Querying a File from a git Repository 6
2.4 Executing a Command (optionally inside a git Repository 6
2.5 Creating a File to be used as Argument 7
2.6 Executing the Python Package . 7
2.7 A Note on Python Virtual Environments 7

3 Provided Macros 8
3.1 gitLoad . 8
3.2 gitExec . 8
3.3 gitArg . 9
3.4 gitFile . 9
3.5 gitUrl . 9
3.6 gitName . 10
3.7 gitNameEsc . 10
3.8 gitIf . 10

4 Examples 10
4.1 Minimal Working Example . 11
4.2 The Second Example: Multiple Files and Post-Processing 13
4.3 The Third Example: Using the listings Package 17

2

4.4 The Fourth Example: Using Git Commands in Macros 18
4.5 The Fifth Example: Capturing the Output of a Program 20
4.6 The Sixth Example: Capturing the Output of a Program Executed

Inside a git Repository . 21
4.7 The Seventh Example: Capturing the Output of Multiple Programs

Executed Inside Different git Repositories 22
4.8 The Eight Example: Using Argument Files 25

5 A Note on LaTeX Floating Environments 28

6 Usage in GitHub Actions 28

7 Projects using texgit 28

8 Implementation 29

1 Introduction

1.1 Addressed Problem and Use Case
Let’s say you want to make teaching material in the field of computer science. In
a wide variety of computer science fields, you may want to include source code
examples in your lecture script or slides. The standard way is to either write some
pseudo-code or program-like snippets. Usually these neither compile nor are they
maintained well and they are, hence, often riddled with mistakes. That is not
nice.

What we want is to have snippets of “real” code. Code that we can compile,
unit test, and run. Now such code naturally would not be sprinkled into our LATEX
teaching material sources. That would be a mess to organize and maintain.

A natural location for source code examples is a separate git repository.
Maybe on GitHub, maybe somewhere else. If I wanted to do a lecture on, say,
optimization algorithms, I would like to have the optimization algorithms imple-
mented in an useful fashion. I would put them into a repository where I can build
and test these real codes as a complete and separate piece of work.

Then I want to use them in my lecture scripts (written in LATEX) as well.
However, I do not want to copy them there. I want that my lecture scripts directly
reference the git repository with the real code. I want them to “include” the
examples from there. If I change the code in the git repository and then re-
compile my teaching material, these changes should automatically be reflected
there.

That is the use case we tackle here. We offer a solution to the question

“How can we include snippets of code from a separate, complex code
basis (located in a git repository) into our LATEX documents?”

Additionally, sometimes we want to execute the code from that repository and
capture the standard output. This output could then be displayed as listing next
to the code. This package also provides this functionality.

Maybe we either have local programs or programs in a git repository that
create complex figures or graphics. Our package also offers us the ability execute

3

https://github.com
https://thomasweise.github.io/moptipy
https://thomasweise.github.io/moptipy

such programs, tell them where to store their output, and then allowing us to
include this output into our LATEX documents, say, via \includegraphics.

Our package furthermore caches such outputs. If you refer to multiple files
from one repository, this repository will be cloned only once. If you need to
perform several LATEX passes, say, because you have a bibliography and a glossary
and whatnot, then you need to run texgit after each pass. However, texgit will
only clone the repositories and execute the programs once, during its first pass.

All results are cached, usually in a directory called __git__ in your document’s
direcotry. Unless you delete this directory, the cache will persist, even if you change
your LATEX document and perform an entirely new compilation.

1.2 Provided Functionality
Our package offers a combination of

• a LATEX package – this package here – with its sources at https://github.
com/thomasWeise/texgit_tex, and

• a Python program, published at https://pypi.org/projects/texgit with
sources available at https://github.com/thomasWeise/texgit_py.

This LATEX package provides the command \gitLoad that can load a specific
file from a specific git repository and, optionally, pipe the file contents through a
program for post-processing.

It also provides the command \gitExec, which can execute either a local pro-
gram or a program loaded from a git repository and fetch its output.

The additional command \gitArg allows you to create files whose paths are
passed as arguments to programs, which may be useful to create graphics and
other non-textual output.

All three types of requests are stored in the aux file during the first pdflatex
pass, then resolved by the Python program, and their results become available in
the second pdflatex pass via the commands \gitFile and \gitUrl.

2 Usage
Using the package requires the following steps:

1. Obviously, both the LATEX package and its Python companion package must
be installed (see Section 2.1).

2. In your document, you need to load the package in the preamble (see Sec-
tion 2.2).

3. Then you can make git queries, e.g., via \gitLoad{id}... or \gitExec{id}...
(see Section 2.3).

4. At this stage, \gitFile{id} and \gitUrl{id} will hold dummy results,
meaning that you can still use these commands but they will not yet provide
useful data.

5. The Python post-processor package can carry them out after the first
pdflatex run.

4

https://github.com/thomasWeise/texgit_tex
https://github.com/thomasWeise/texgit_tex
https://pypi.org/projects/texgit
https://github.com/thomasWeise/texgit_py
https://thomasweise.github.io/texgit_tex
https://thomasweise.github.io/texgit_py

6. In the next pdflatex run, \gitFile{id} and \gitUrl{id} are defined ap-
propriately, see Section 2.6.

If your LATEX document is called article.tex, then you have at least the
following workflow:

pdflatex article
python3 -m texgit.run article
pdflatex article

All files are cached, usually in a directory called __git__ in your document’s
direcotry. Unless you delete this directory, the cache will persist, even if you
change your LATEX document and perform an entirely new compilation.

Comprehensive examples are provided in Section 4.

2.1 Installation
2.1.1 LATEX Package

First, make sure that you have the texgit.sty either installed or inside your
document’s directory. For this, there are several options:

1. You can just download the file from https://thomasweise.github.io/
texgit_tex/texgit.sty directly. You can now copy it into the folder of
your document.

2. You can download texgit.dtx and texgit.ins from https://thomasweise.
github.io/texgit_tex/texgit.dtx and https://thomasweise.github.
io/texgit_tex/texgit.ins. You can then execute

pdflatex texgit.ins

and you should get the style file texgit.sty. You can now copy it into the
folder of your document.

3. Or you can download the texgit.tds.zip file from https://thomasweise.
github.io/texgit_tex/texgit.tds.zip and unpack it into your TEX tree.
If you know what that is.

2.1.2 Python Package

The Python package is available at https://github.com/thomasWeise/texgit_
py, https://thomasweise.github.io/texgit_py, and https://pypi.org/project/
texgit. You can most easily install it from PyPI by doing

pip install texgit

2.1.3 git Executable

Make sure that the git executable is available in the PATH. On Ubuntu Linux,
you could install it via sudo apt-get install git, for example. git is needed
because the primary use case of our package is to clone git repositories and include
the files from these repositories (or to execute them and to include their output)
into LATEX documents.

5

https://thomasweise.github.io/texgit_tex/texgit.sty
https://thomasweise.github.io/texgit_tex/texgit.sty
https://thomasweise.github.io/texgit_tex/texgit.dtx
https://thomasweise.github.io/texgit_tex/texgit.dtx
https://thomasweise.github.io/texgit_tex/texgit.ins
https://thomasweise.github.io/texgit_tex/texgit.ins
https://thomasweise.github.io/texgit_tex/texgit.tds.zip
https://thomasweise.github.io/texgit_tex/texgit.tds.zip
https://github.com/thomasWeise/texgit_py
https://github.com/thomasWeise/texgit_py
https://thomasweise.github.io/texgit_py
https://pypi.org/project/texgit
https://pypi.org/project/texgit

2.2 Loading the Package
Load this package using

\usepackage{texgit}

The package has no options or parameters.
Notice: If you load this package, then you must run the Python companion

package inbetween pdflatex runs. Otherwise, there the second pdflatex run will
abort with an error.

Loading the package will automatically load the package filecontents as well,
see Section 8.

2.3 Querying a File from a git Repository
To query a file stored at path path inside from a git repository available under
URL repositoryURL, you would specify the command

\gitLoad{id}{repositoryURL}{path}{postproc}

After this command is executed, a local path to the file becomes available in the
command \gitFile{id}. The full URL to the file in the git repository, includ-
ing the current commit id, becomes available in the fully-expandable command
\gitUrl{id}.

Notice that you must choose unique values of id for every \gitLoad, \gitExec,
and \gitArg invocation. You can invoke \gitLoad any number of times.

The fourth parameter, postproc, which we may often leave empty, can specify
an optional post-processing commend. If it is not left empty, this command will
be executed in the shell. The contents of the file loaded from the git repository
will be piped to the stdin of the command. The stdout of the command will be
piped to a file and \gitFile{id} will then contain the path to this file instead.
For example, under Linux, you could use the head command to return only the
first 5 lines of a file as follows:

\gitLoad{id}{repositoryURL}{path}{head -n 5}

2.4 Executing a Command (optionally inside a git Reposi-
tory

Sometimes, we want to execute a program and fetch its standard output.

\gitExec{id}{repositoryURL}{path}{theCommand}

The most common use case of our package is that you want to execute a program
which is part of a git repository. In this case, you would put the URL of the
repository in repositoryURL and the relative path to the directory inside the
repository in which the command should be invoked as path. If you want to
invoke the command in the root folder of the repository, put . as path. The
theCommand then holds the command line to be executed. Notice: You can also
leave both repositoryURL and path blank. In this case, the command is executed
in the current folder. (The use case for this is to fetch the output of stuff like
python3 --version.) Anyway, after this command is executed, a local path to

6

https://www.man7.org/linux/man-pages/man1/head.1.html

the file with the captured standard output becomes available in the command
\gitFile{id}.

Notice that you must choose unique values of id for every \gitLoad, \gitExec,
and \gitArg invocation. You can invoke \gitExec any number of times.

2.5 Creating a File to be used as Argument
Sometimes, we want to execute a program which requires a destination file. Let’s
say a program that creates a PDF figure. For this, we need to create an argument
file on the fly.

\gitArg{id1}{prefix}{suffix}
\gitExec{id2}{repositoryURL}{path}{theCommand (?id1?)}

For this purpose, use the \gitArg command. This command takes a unique
identifier id1, a prefix, and a suffix as parameters. It will allocate a unique file
path. This path can then be passed to a command to later invocation of \gitExec
as parameter (?id1?) somewhere in its argument list. (?id1?) is resolved to the
automatically generated file name before the actual command is invoked. After
that, you can access the path via \gitFile{id1}.

2.6 Executing the Python Package
During the first pdflatex run, \gitFile{id} points to an empty dummy file
(\jobname.texgit.dummy) and \gitUrl{id} points to http://example.com.
Both commands will only expand to useful information if the Python package
texgit is applied to the project’s aux file. This works very similar to BibTEX. If
the name of your TEX file is myfile.tex, then you would execute

python3 -m texgit.run myfile

More specifically, the Python package processes the aux files, so for a specific aux
file myfile.aux, you could also do:

python3 -m texgit.run myfile.aux

After this, in the next pass of pdflatex, \gitFile{id} and \gitUrl{id} will
contain the right paths and URLs.

2.7 A Note on Python Virtual Environments
The following only applies if you have installed this package inside a virtual envi-
ronment. It also only applies in conjunction with version 0.8.17 or newer of the
texgit Python package.

If you are running this package inside a virtual environment, it is important
that you create this environment using the --copies setting and not using the
(default) --symlinks parameter. In other words, you should have created the
virtual environment as follows, where venvDir is the directory inside of which the
virtual environment is created.

python3 -m venv --copies venvDir

7

https://pypi.org/project/texgit/0.8.17/

If you create the environment like this (and activated), then our package will
automatically pick it up and use its Python interpreter for any invocation of
python3 or python3.x (where x is the minor version of the interpreter). If you
use the --symlinks parameter to create the environment, then invocations of the
Python interpreter from our package may instead result in the system’s Python
interpreter.

3 Provided Macros
Here we discuss the macros that can directly be accessed by the user to make use
of the functionality of the texgit package. The implementation of these macros
is given in Section 8 and several examples can be found in Section 4.

3.1 gitLoad
The macro \gitLoad{⟨id⟩}{⟨repositoryURL⟩}{⟨path⟩}{⟨postProcessing⟩} provides\gitLoad
a local path to a file from a git repository.

{⟨id⟩} is the request ID chosen by the user. It must be unique over all requests
made to texgit. Imagine it something like a label.

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.
com/thomasWeise/texgit_tex or ssh://git@github.com/thomasWeise/
texgit_tex or any other valid repository URL.

{⟨path⟩} is then the path to the file within the repository. This could be, for example,
latex/texgit.dtx.

{⟨postProcessing⟩} Can either be empty, in which case the repository is downloaded and the
the local path to the file is returned. It can also be shell command, e.g.,
head -n 5. In this case, the contents of the file are piped to stdin of the
command and the text written to the stdout by the command is stored in
a file whose path is returned.

You can access two results of this command via the following two commands:

\gitFile{id} returns the path to the file that was loaded and/or post-processed.

\gitUrl{id} returns the full URL to the file in the git repository online. This com-
mand works for GitHub, but it may not provide the correct URL for other
repository types.

3.2 gitExec
The macro \gitExec{⟨id⟩}{⟨repositoryURL⟩}{⟨path⟩}{⟨theCommand⟩} provides\gitExec
a local path to a file containing the captured standard output of a command (that
may have been executed inside a directory inside a git repository).

{⟨id⟩} is the request ID chosen by the user. It must be unique over all requests
made to texgit. Imagine it something like a label.

8

https://github.com/thomasWeise/texgit_tex
https://github.com/thomasWeise/texgit_tex
ssh://git@github.com/thomasWeise/texgit_tex
ssh://git@github.com/thomasWeise/texgit_tex
https://github.com

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.
com/thomasWeise/texgit_tex or ssh://git@github.com/thomasWeise/
texgit_tex or any other valid repository URL. You can also leave this pa-
rameter empty if no git repository should be used.

{⟨path⟩} is the path to a directory within the repository. This could be, for example,
latex or .. If path is provided, then this will be the working directory
where the command is executed. If you want to execute a command in the
root directory of a git repository, you can put . here.

{⟨theCommand⟩} This is the command which should be executed. If repositoryURL and
path are provided, then the repository will be downloaded and path will be
resolved relative to the repository root directory. theCommand will then be
executed in this directory. If neither repositoryURL nor path are provided,
theCommand is executed in the current directory. Either way, its stdout is
captured in a file whose path is returned.

After invoking this command its result can be obtained via the following com-
mand:

\gitFile{id} returns the path to the file in which the standard output is stored.

3.3 gitArg
The macro \gitArg{⟨id⟩}{⟨prefix ⟩}{⟨suffix ⟩} allows you to create a file whose\gitArg
name has a given prefix and suffix. This file can then be used in the argument
list of the command invoked by \gitExec by writing (?id?). Before that com-
mand is executed, (?id?) is resolved to the actual file name. This allows you to
use commands that generate more structured output, say graphics.

{⟨id⟩} is the request ID chosen by the user. It must be unique over all requests
made to texgit. Imagine it something like a label.

{⟨prefix ⟩} is a prefix for the file name to be generated. It can be empty.

{⟨suffix ⟩} is the suffix for the file name to be generated. You can leave it empty.

3.4 gitFile
The macro \gitFile{⟨id⟩} returns the path to the file with the contents of the\gitFile
\gitLoad{id}..., \gitExec{id}...., or \gitArg{id}... request using ID id.
During the first pdflatex pass, this will be the path to a dummy file. After the
Python package has been applied to the aux file, then \gitFile{id} will point to
the proper file during the next pdflatex pass.

3.5 gitUrl
The macro \gitUrl{⟨id⟩} returns the URL from which the file corresponding\gitUrl
to the \gitLoad{id}... request was downloaded. This command is designed to
work with GitHub. It will be the repository URL combine with the path of the file
inside the repository and the commit has code. The Url thus points to the exact
same version of the file that was downloaded (and optionally post-processed).

9

https://github.com/thomasWeise/texgit_tex
https://github.com/thomasWeise/texgit_tex
ssh://git@github.com/thomasWeise/texgit_tex
ssh://git@github.com/thomasWeise/texgit_tex

3.6 gitName
The macro \gitName{⟨id⟩} returns the name of the file corresponding to the\gitName
\gitLoad{id}... request. This corresponds to the basename on unixoid file sys-
tems. In other words, only the local name of the file, without any other path
components. This command makes sense only with files that are directly down-
loaded from git or filtered versions thereof, or maybe argument files.

3.7 gitNameEsc
The macro \gitNameEsc{⟨id⟩} returns the escaped name of the file corresponding\gitNameEsc
to the \gitLoad{id}... request. This corresponds to the basename on unixoid
file systems, as returned by \gitName, but with _, $, and escaped to _, \$, and
~ respectively. This allows you to use the name of a file in plain TEX, maybe like
\texttt{\gitNameEsc{myId}}. This command makes sense only with files that
are directly downloaded from git or filtered versions thereof, or maybe argument
files.

3.8 gitIf
The macro \gitIf{⟨id⟩}ifDoneifNotDone executes the code provided as ifDone\gitIf
if the request with ID id has already been executed and completed by the texgit
Python package. Otherwise, it will execute the code provided as ifNotDone. As
stated before, during the first pdflatex pass, all results of \gitFile and \gitUrl
are dummies, either empty files or dummy URLs. However, some LATEX commands
cannot deal with that. For example, say that we execute a program to generate a
PDF graphic and store it in an argument file. During the first pdflatex run, this
file is empty. If we try to \includegraphics it, this will crash. So we would place
the \includegraphics into a \gitIf block and only execute it once the request
is completed. After the first pdflatex run, we would execute the Python package
texgit. This package will complete the request and the argument file will then
be a proper graphic. In the second pdflatex pass, the \includegraphics code
could be executed. An example for this is given in Section 4.8.

4 Examples
Here we provide a set of examples for the use of the package. Each example
demonstrates another facet of the package and, at the same time, serves as test
case. The first example given in Section 4.1 is a Minimal Working Example, i.e.,
just provides the barest bones. It shows you how to import a single file from a git
repository. The second example in Section 4.2 shows you how to import multiple
different files from different repositories (which equates to just using the same
command multiple times) and how to use post-processors. The third example in
Section 4.3 shows how to create beautiful (to my standards) listings by including
code from a git repository, post-processing it, and loading it as a listing. Finally,
the fourth example in Section 4.4 shows that you can also define macros for your
favorite repository and post-processors to have a more convenient way to import
files from git.

10

Listing 1: A minimal working example for using the texgit package, rendered as
Figure 1. The contents of dummy.tex are shown in Listing 2.� �

1 \documentclass{article}%
2 \usepackage{texgit}% use our package
3 \usepackage{verbatim}% for loading data
4 \begin{document}%
5 A\gitLoad{R1}{https://github.com/thomasWeise/texgit_tex}{examples/dummy.tex

}{}BC\input{\gitFile{R1}}D%
6 \end{document}% � �

Listing 2: The contents of the file dummy.tex included from git in Listing 1.� �
1 This is a dummy text file.
2 It just contains this text, nothing else.
3 It can directly be included into \LaTeX.
4 Since we directly \verb=\input= it, it can also contain macros.
5 And math: $1+2=\sqrt{9}$. � �

4.1 Minimal Working Example
This minimal working example shows how to load a file from a git repository and
directly \input its contents. The result can be seen in Figure 2.

As you can see in Listing 1, we first load the package texgit in line 2. Inside the
document, we define a git request via the \gitLoad command. This command
takes the ID of the request as first parameter. Here, we chose R1. Its second
parameter is the URL of a git repository. In this case, this is https://github.
com/thomasWeise/texgit_tex, which happens to be the URL where you can find
the repository of this package on GitHub. The third parameter is a path to the
file in this repository relative to the repository root. In this case, this is the path
to the file examples/dummy.tex, whose contents you can find in Listing 2.

The fourth parameter shall be ignored for now.
After defining the request, we can now use two commands, \gitFile{R1} and

\gitUrl{R1}. In this Minimal Working Example, we shall only consider the first
one. This command expands to a local path of a file with the contents downloaded
from the git repository.

Well, during the first LATEX or pdflatex run, it just points to a dummy file
with the name \jobname.texgit.dummy, where \jobname evaluates to the name
of the main LATEX document, say article for article.tex. At that point, the
dummy file’s content is a single space character followed by a newline.

After the first pdflatex pass, you can apply the Python processor (see Sec-
tion 2.1.2) as follows:

python3 -m texgit.run jobname

Where jobname shall be replaced with the main file name, again article for
article.tex, for instance.

This command then downloads the file from git and puts it into a path that
can locally accessed by LATEX. Usually, it will create a folder __git__ in your

11

https://github.com/thomasWeise/texgit_tex
https://github.com/thomasWeise/texgit_tex

ABCThis is a dummy text file. It just contains this text, nothing else. It
can directly be included into LATEX. Since we directly \input it, it can also
contain macros. And math: 1 + 2 =

√
9. D

1

Figure 1: The rendered result of Listing 1 (with trimmed page margins and bot-
tom).

project’s directory and place the file there.
Anyway, during the second LATEX or pdflatex pass, \gitFile{R1} points to

a valid file path with actual contents. By doing \input{\gitFile{R1}}, we here
include this file (remember, its contents are given in Listing 2) as if it was part of
our normal LATEX project. The result of this pass is shown in Figure 1.

If this example was stored as example_1.tex, then it could be built via

pdflatex example_1
python3 -m texgit.run example_1
pdflatex example_1

If we look back at the Listing 1 of our main file, you will notice the four blue
marks A, B, C, and D. These are just normal letters, colored and emphasized for
your convenience. I put them there so that you can see where the action takes
place. \gitLoad produces no output, so “ABC” come out next to each other.
\input{\gitFile} between C and D loads and directly includes the example file,
so this is where its content appear.

One small interesting thing is that, since we directly \input the file, its contents
are interpreted as LATEX code. This means that you could construct a document
by inputting files from different git repositories.

However, this is not the envisioned use case. The envisioned use case is to
include source codes and snippets from source codes as listings. We will show how
this could be done in the next example.

Side note: Our Python companion package texgit downloads the git repos-
itories into a folder called __git__ by default. If you do not delete the folder,
the same repository will not be downloaded again but the downloaded copy will
be used. This significantly increases speed and reduces bandwidth when applying
the texgit command several times.

12

4.2 The Second Example: Multiple Files and Post-Processing
In Listing 3 we, use texgit to download and present two different files from two
different GitHub repositories. We also show how post-processing can work, once
using the aforementioned simple head -n 5 command available in the Linux shell
and also by using the Python code formatting tool offered by the texgit Python
package. The result can be seen in Figure 2.

13

Listing 3: An example using the texgit package, rendered as Figure 2.� �
1 \documentclass{article}%
2 \usepackage{texgit}% use our package
3 \usepackage{verbatim}% for loading a file verbatim
4 \usepackage[colorlinks]{hyperref}% for printing the URL
5 \begin{document}%
6 %
7 \section{First File}%
8 First, we load a file from the GitHub repository
9 ‘‘\url{https://github.com/thomasWeise/texgit_py}’’, where the Python complement

10 package of our \LaTeX\ package is located. We will then include this file verbatim
11 without any modification.
12

13 \gitLoad{R2}{%
14 https://github.com/thomasWeise/pycommons}{%
15 pycommons/io/console.py}{}%
16 % now, \gitFile and \gitUrl are defined and can be used.
17 \verbatiminput{\gitFile{R2}}% print the contents of the file
18 The file \gitNameEsc{R2} was loaded from URL \url{\gitUrl{R2}}.% print url
19 %
20 \clearpage\section{Second File}%
21 We load the same file again, but this time retain only the first five lines.
22 We do this by specifying that the file contents should be piped through
23 ‘‘\verb=head −n 5=’’ before inclusion.
24 \gitLoad{R3}{https://github.com/thomasWeise/pycommons}{%
25 pycommons/io/console.py}{head −n 5}%
26 % now, \gitFile and \gitUrl are defined and can be used.
27 \verbatiminput{\gitFile{R3}}% print the contents of the file
28 The file \gitNameEsc{R3} was loaded from URL \url{\gitUrl{R3}}.% print url
29 %
30 \clearpage\section{Third File}%
31 We now load a file from the ‘‘\url{https://github.com/thomasWeise/moptipy}’’
32 GitHub repository. The contents of this file will be piped through the Python
33 code formatter, which retains only a snippet of the code and removes type
34 hints and comments, while keeping the doc strings. (It doesn’t really matter
35 what it does, it is just postprocessing.)
36 \gitLoad{R4}{%
37 https://github.com/thomasWeise/moptipy}{moptipy/api/encoding.py}{%
38 python3 −m texgit.formatters.python −−labels book −−args doc}% post−processor
39 % now, \gitFile and \gitUrl are defined and can be used.
40 \verbatiminput{\gitFile{R4}}% print the contents of the file
41 The file \gitNameEsc{R4} was loaded from URL \url{\gitUrl{R4}}.% print url
42 %
43 \end{document}% � �

14

The file example_2.tex shown in Listing 3 begins by loading our texgit pack-
age as well as package verbatim, which is later used to display the included files.
The document creates three sections, each of which is used to display one imported
file.

The first section loads one Python source file from the Python package py-
commons. The sources of this package are available in the GitHub repos-
itory https://github.com/thomasWeise/pycommons. We download the file
pycommons/io/console.py, which is just a small utility for printing log strings to
the output together with a time mark. The full request, with the ID R2, contains
these two components.

Issuing this request will set the command \gitFile{R2} to the local file con-
taining the downloaded contents of pycommons/io/console.py from the reposi-
tory https://github.com/thomasWeise/pycommons. The command \gitUrl{R2}
will expand to the URL pointing to the downloaded version of the file in the origi-
nal repository. This command, at the present time, is only really valid for GitHub.
It builds a URL relative to the original repository based on the commit ID that
was valid when the file was downloaded from the repository. Therefore, the URL
then points to the exact same contents that were put into the file. Anyway, the
file contents and the generated URL are displayed in Figure 2a.

The second section of the example document queries the same file again. How-
ever, this time, the fourth parameter of \gitLoad is specified. If the fourth param-
eter is left blank, the downloaded file will be provided as-is. However, especially if
we would like to include some snippets of a more complex source file, we sometimes
do not want to have the complete original contents. In this case, we can specify
a post-processing command as third parameter. This command will be executed
in the shell The contents of the downloaded file will then be piped into the stdin
of the command and everything that the command writes to its stdout will be
collected in a file. We use ID R2 for this request. \gitFile{R2} then returns the
path to that file.

Since you can provide arbitrary commands as post-processors, this allows you
to do, well, arbitrary post-processing. This could include re-formatting of code
or selecting only specific lines from the file. The command can have arguments,
separated by spaces, allowing you to pass information such as line indices or other
instructions to your post-processing command.

In the example, we use the standard Linux command head -n 5, which writes
the first five lines that were written to its stdin to its stdout.

The resulting output in Figure 2b looks thus similar to Figure 2a, but only
imports ths first five lines from the downloaded file.

If this example was stored as example_2.tex, then it could be built via

pdflatex example_2
python3 -m texgit.run example_2
pdflatex example_2

Side note: Such post-processing steps are cached by the Python companion
package texgit in the __git__ folder as well.

Finally, in the third section, of Listing 3, we import a file from the sources of
our Python package for metaheuristic optimization (moptipy). The sources of this
package are located on GitHub at https://github.com/thomasWeise/moptipy.
We download the file moptipy/api/encoding.py, which offers a convenient API

15

https://thomasweise.github.io/pycommons
https://thomasweise.github.io/pycommons
https://github.com/thomasWeise/pycommons
https://github.com/thomasWeise/pycommons
https://thomasweise.github.io/moptipy
https://github.com/thomasWeise/moptipy

1 First File

First, we load a file from the GitHub repository “https://github.com/thomasWeise/
texgit_py”, where the Python complement package of our LATEX package is lo-
cated. We will then include this file verbatim without any modification.

"""The ‘logger‘ routine for writing a log string to stdout."""

import datetime

from contextlib import AbstractContextManager, nullcontext

from typing import Callable, Final

from pycommons.processes.caller import is_doc_test

#: the "now" function

__DTN: Final[Callable[[], datetime.datetime]] = datetime.datetime.now

def logger(message: str, note: str = "",

lock: AbstractContextManager = nullcontext(),

do_print: bool = not is_doc_test()) -> None:

"""

Write a message to the console log.

The line starts with the current date and time, includes the note, and

then the message string after an ": ".

This function can use a ‘lock‘ context to prevent multiple processes or

threads to write to the console at the same time.

:param message: the message

:param note: a note to put between the time and the message

:param lock: the lock to prevent multiple threads to write log

output at the same time

:param do_print: really print the output, by default ‘False‘ if this

method is called from a "doctest", ‘True‘ otherwise

>>> from io import StringIO

>>> from contextlib import redirect_stdout

>>> sio = StringIO()

>>> dt1 = datetime.datetime.now()

>>> with redirect_stdout(sio):

... logger("hello world!", do_print=True)

>>> line = sio.getvalue().strip()

>>> print(line[line.index(" ", line.index(" ") + 1) + 1:])

hello world!

>>> dt2 = datetime.datetime.now()

>>> dtx = datetime.datetime.strptime(line[:26], "%Y-%m-%d %H:%M:%S.%f")

1

(a) Page 1 of the pdf compiled from List-
ing 3.

>>> dt1 <= dtx <= dt2

True

>>> sio = StringIO()

>>> with redirect_stdout(sio):

... logger("hello world!", "note", do_print=True)

>>> line = sio.getvalue().strip()

>>> print(line[line.index("n"):])

note: hello world!

>>> from contextlib import AbstractContextManager

>>> class T:

... def __enter__(self):

... print("x")

... def __exit__(self, exc_type, exc_val, exc_tb):

... print("y")

>>> sio = StringIO()

>>> with redirect_stdout(sio):

... logger("hello world!", "", T(), do_print=True)

>>> sio.seek(0)

0

>>> lines = sio.readlines()

>>> print(lines[0].rstrip())

x

>>> l = lines[1]

>>> print(l[l.index(" ", l.index(" ") + 1) + 1:].rstrip())

hello world!

>>> print(lines[2].rstrip())

y

>>> sio = StringIO()

>>> with redirect_stdout(sio):

... logger("hello world!", "note", T(), do_print=True)

>>> sio.seek(0)

0

>>> lines = sio.readlines()

>>> print(lines[0].rstrip())

x

>>> l = lines[1]

>>> print(l[l.index("n"):].rstrip())

note: hello world!

>>> print(lines[2].rstrip())

y

>>> logger("hello world") # not printed in doctests

2

(b) Page 2 of the pdf compiled from List-
ing 3.

>>> logger("hello world", do_print=False) # not printed anyway

"""

if do_print:

text: Final[str] = f"{__DTN()}{note}: {message}"

with lock:

print(text, flush=True) # noqa

The file console.py was loaded from URL https://github.com/thomasWeise/

pycommons/blob/9a77fd6d95a35b3507c5baec2404a6eaa62ae91c/pycommons/

io/console.py.

3

(c) Page 3 of the pdf compiled from Listing 3.

Figure 2: The rendered result of Listing 3 (with trimmed page margins and bot-
toms).

for implementing an encoding which translates from the search to the solution
space (but that would lead too far here). Either way, this is a file that has lots
of content. So we want to select certain contents while ignoring other. We also
remove all Python type hints and all comments from the source and then reformat
it.

Luckily, our texgit Python package also offers a Python code formatter,
namely the executable module texgit.formatters.python. This module takes a
set of parameters such as limiting labels that denote the start and end of code
snippets (in this case, the label “book”) to include as well args telling the system
which part of the “omittable” code to preserve (in this case, preserve docstrings
and delete everything else that is non-essential). If you are interested in such post-
processing, feel invited to check out the documentation of the Python companion
package at https://thomasweise.github.io/texgit_py. Either way, the file
is downloaded, piped through this post-processor, and the result is included as
shown in Figure 2c.

16

https://thomasweise.github.io/texgit_py/texgit.formatters.html#module-texgit.formatters.python
https://thomasweise.github.io/texgit_py
https://thomasweise.github.io/texgit_py

Listing 4: An example using the listings package, rendered as Figure 3.� �
1 \documentclass{article}%
2 \usepackage{texgit}% use our package
3 \usepackage{xcolor}% to be able to use colors
4 \usepackage[colorlinks]{hyperref}% for printing the URL
5 \usepackage{listings}% importing external code
6 \lstset{language=Python,basicstyle=\small\ttfamily,%
7 keywordstyle=\ttfamily\color{teal!90!black}\bfseries,%
8 identifierstyle=,commentstyle=\color{gray}\footnotesize,%
9 stringstyle=\ttfamily\color{red!90!black},%

10 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
11 backgroundcolor=\color{black!10!yellow!5!white}}%
12 \begin{document}%
13 %
14 Behold the beautiful \autoref{l}.%
15 %
16 \gitLoad{R5}{https://github.com/thomasWeise/moptipy}{%
17 moptipy/algorithms/so/rls.py}{%
18 python3 −m texgit.formatters.python −−labels book}% post−processor
19 %
20 \lstinputlisting[label=l,caption={%
21 The RLS Algorithm. (\href{\gitUrl{R5}}{src})}]{\gitFile{R5}}%
22 %
23 \end{document}% � �

4.3 The Third Example: Using the listings Package
As third example, let us show the interaction with the package listings. This
is not much different from using the package verbatim in the second example
above. I just wanted to show you how it looks like. Also, I wanted to show the
intended use of \gitUrl: You can use it to put some small “(src)” link in the
listing’s caption. This way, you can create teaching material where every listing is
linked to the correct version of source code online without splattering long URLs
into your text. Anyway. The source code of the third example is given in Listing 4
and the compiled result as Figure 3.

If this example was stored as example_3.tex, then it could be built via

pdflatex example_3
python3 -m texgit.run example_3
pdflatex example_3

Side note: If you actually check the source code of the RLS algorithm, which
is linked to by the “(src)” in the caption of the example and that is displayed in
the example, you will find that it actually uses Python type hints. It also has a
comprehensive doc-string and is commented well. In source code of a real project,
we do want this. In a listing in a book, we do not. The post-processor command

python3 -m texgit.formatters.python --labels book

only keeps the code between the labels “# start book” and “# end book.” It also
removes all non-essential stuff such as type hints, comments, and the doc-string.

17

https://thomasweise.github.io/moptipy/_modules/moptipy/algorithms/so/rls.html
https://thomasweise.github.io/moptipy/_modules/moptipy/algorithms/so/rls.html

Behold the beautiful Listing 1.

Listing 1: The RLS Algorithm. (src)� �
1 class RLS(Algorithm1):

2 def solve(self , process):

3 best_x = process.create ()

4 new_x = process.create ()

5 random = process.get_random ()

6

7 evaluate = process.evaluate

8 op1 = self.op1.op1

9 should_terminate = process.should_terminate

10

11 self.op0.op0(random , best_x)

12 best_f = evaluate(best_x)

13

14 while not should_terminate ():

15 op1(random , new_x , best_x)

16 new_f = evaluate(new_x)

17 if new_f <= best_f:

18 best_f = new_f

19 best_x , new_x = new_x , best_x � �

1

Figure 3: The rendered result of Listing 4 (with trimmed page margins and bot-
tom).

Then it re-formats the code to save space. Again, check out the documentation
of our texgit Python companion package at https://thomasweise.github.io/
texgit_py. This is the main intended use case of our package: Be able to have
nicely documented “real” code and to use parts of it in teaching materials.

4.4 The Fourth Example: Using Git Commands in Macros
The goal of the fourth example is to show that we can also put the commands from
our texgit package into LATEX macros. We define a new command \moptipySrc
with three parameters. moptipy is a Python package that implements lots of
metaheuristic algorithms. We could want to load several files from such a repos-
itory https://github.com/thomasWeise/moptipy and post-process and display
them all in the same way. Then, it would be annoying to always do \gitLoad,
\lstinputlisting, and spell out the post-processor each time. So we put all of
this into a single command whose first argument is the label to put for the listing,
whose second command is the caption to use, and whose third command is the
path relative to the folder “moptipy” in the git repository. We also use this first
parameter, the label, as ID for our texgit commands. In Listing 5, we can then
simply call \moptipySrc and it will do the whole process of loading a file from the
right repository, post-processing it, putting a floating listing, and even putting a
small “(src)” into the caption of the listing. The results are shown in Figure 4 and
can be obtained via

pdflatex example_4
python3 -m texgit.run example_4
pdflatex example_4

(if the example code from Listing 5 was stored in a file called example_4.tex,

18

https://thomasweise.github.io/texgit_py
https://thomasweise.github.io/texgit_py
https://thomasweise.github.io/moptpiy
https://github.com/thomasWeise/moptipy
https://thomasweise.github.io/moptpiy

Listing 5: An example using commands from the texgit package in macros, ren-
dered as Figure 4.� �

1 \documentclass{article}%
2 \usepackage{texgit}% use our package
3 \usepackage{xcolor}% to be able to use colors
4 \usepackage[colorlinks]{hyperref}% for printing the URL
5 \usepackage{listings}% importing external code
6 \lstset{language=Python,basicstyle=\small\ttfamily,%
7 keywordstyle=\ttfamily\color{teal!90!black}\bfseries,%
8 identifierstyle=,commentstyle=\color{gray}\footnotesize,%
9 stringstyle=\ttfamily\color{red!90!black},%

10 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
11 backgroundcolor=\color{black!10!yellow!5!white}}%
12 %
13 \gdef\moptipySrc#1#2#3{%
14 \gitLoad{#1}{https://github.com/thomasWeise/moptipy}{moptipy/#3}{%
15 python3 −m texgit.formatters.python −−labels book}%
16 \lstinputlisting[float,label={#1},caption={%
17 #2~(\href{\gitUrl{#1}}{\texttt{\gitNameEsc{#1}}})}]{\gitFile{#1}}}
18 %
19 \begin{document}%
20 %
21 Behold the beautiful \autoref{R6} and \autoref{R7}.%
22 %
23 \moptipySrc{R6}{Randomized Sampling}{algorithms/random_sampling.py}
24 \moptipySrc{R7}{Randomized Local Search}{algorithms/so/rls.py}
25 %
26 \end{document}% � �

that is.)

19

Listing 1: Randomized Sampling (random sampling.py)� �
1 class RandomSampling(Algorithm0):

2 def solve(self , process):

3 x = process.create ()

4 random = process.get_random ()

5

6 evaluate = process.evaluate

7 op0 = self.op0.op0

8 should_terminate = process.should_terminate

9

10 while not should_terminate ():

11 op0(random , x)

12 evaluate(x) � �
Behold the beautiful Listing 1 and Listing 2.

1

(a) Page 1 of the pdf compiled from List-
ing 5.

Listing 2: Randomized Local Search (rls.py)� �
1 class RLS(Algorithm1):

2 def solve(self , process):

3 best_x = process.create ()

4 new_x = process.create ()

5 random = process.get_random ()

6

7 evaluate = process.evaluate

8 op1 = self.op1.op1

9 should_terminate = process.should_terminate

10

11 self.op0.op0(random , best_x)

12 best_f = evaluate(best_x)

13

14 while not should_terminate ():

15 op1(random , new_x , best_x)

16 new_f = evaluate(new_x)

17 if new_f <= best_f:

18 best_f = new_f

19 best_x , new_x = new_x , best_x � �

2

(b) Page 2 of the pdf compiled from List-
ing 5.

Figure 4: The rendered result of Listing 5 (with trimmed page margins and bot-
toms).

4.5 The Fifth Example: Capturing the Output of a Pro-
gram

The goal of the fifth example is to show that we can capture the output of a
program. In Listing 6, we just invoke python3 --version and capture the output
in a file. We then load this file as listing. The results are shown in Figure 5 and
can be obtained via

pdflatex example_5
python3 -m texgit.run example_5
pdflatex example_5

Listing 6: An example of capturing the output of a program, rendered as Figure 5.� �
1 \documentclass{article}%
2 \usepackage{texgit}% use our package
3 \usepackage{xcolor}% to be able to use colors
4 \usepackage[colorlinks]{hyperref}% for printing the URL
5 \usepackage{listings}% importing external code
6 \lstset{language={},basicstyle=\small\ttfamily,%
7 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
8 backgroundcolor=\color{black!10!yellow!5!white}}%
9 %

10 \begin{document}%
11 %
12 Check the output of a simple command in \autoref{lst:out}:
13 %
14 \gitExec{R8}{}{}{python3 −−version}%
15 \lstinputlisting[float,label={lst:out},caption={%
16 The result of \texttt{python3 {−}{−} version}.}]{\gitFile{R8}}
17 %
18 \end{document}% � �

20

Listing 1: The result of python3 -- version.� �
1 Python 3.12.3 � �

Check the output of a simple command in Listing 1:

1

Figure 5: The rendered result of Listing 6 (with trimmed page margins and bot-
toms).

(if the example code from Listing 6 was stored in a file called example_5.tex,
that is.)

4.6 The Sixth Example: Capturing the Output of a Pro-
gram Executed Inside a git Repository

The goal of the sixth example is to show that we can capture the output of a
program – but this time we execute it inside a git repository. In Listing 7, we
invoke a program which is part of the examples suite of the pycommons utility
package. We capture its standard output in a file. We then load this file as listing.
The results are shown in Figure 6 and can be obtained via

pdflatex example_6

Listing 7: An example of capturing the output of a program executed inside a git
repository, rendered as Figure 6.� �

1 \documentclass{article}%
2 \usepackage{texgit}% use our package
3 \usepackage{xcolor}% to be able to use colors
4 \usepackage[colorlinks]{hyperref}% for printing the URL
5 \usepackage{listings}% importing external code
6 \lstset{language={},basicstyle=\tiny,%
7 breaklines=true,numbers=left,numberstyle=\tiny,%
8 frame=shadowbox,frameround=tttt,%
9 backgroundcolor=\color{black!10!yellow!5!white}}%

10 %
11 \begin{document}%
12 %
13 Check the output of a command executed inside a git
14 repository in \autoref{lst:out}:
15 %
16 \gitExec{R9}{https://github.com/thomasWeise/pycommons}{examples}{python3

temp.py}%
17 \lstinputlisting[float,label={lst:out},caption={%
18 The result of command executed inside a git repository.}]{\gitFile{R9}}
19 %
20 \end{document}% � �

21

https://github.com/thomasWeise/pycommons

Listing 1: The result of command executed inside a git repository.� �
1 This i s a temporary d i r e c t o r y : ’/tmp/ tmp97iy9trt ’ .
2 I t i s c reated via temp dir () , i t s path i s s to red in ’ td ’ , and i t i s de l e t ed (with

a l l o f i t s contents i n s i d e) once the ’ with ’−block ends .
3 This i s a temporary f i l e : ’/tmp/ tmpgjak0c5i ’ .
4 I t i s c reated via t emp f i l e () , i t s path i s s to red in ’ t f ’ , and i t i s de l e t ed

automat i ca l ly once the ’ with ’−block ends .
5 You can a l s o c r ea t e a temp f i l e ’/tmp/tmpo81xn81f/tmp zfmohjw ’ i n s i d e any d i r ec to ry ,

even a temp d i r e c t o r y ’/tmp/tmpo81xn81f ’ and have them de l e t ed once your are
done . � �

Check the output of a command executed inside a git repository in Listing 1:

1

Figure 6: The rendered result of Listing 7 (with trimmed page margins and bot-
toms).

python3 -m texgit.run example_6
pdflatex example_6

(if the example code from Listing 7 was stored in a file called example_6.tex,
that is.)

4.7 The Seventh Example: Capturing the Output of Multi-
ple Programs Executed Inside Different git Repositories

The goal of the seventh example is to show that we can capture the out-
put of multiple programs from inside different git repositories. In Listing 8,
we invoke the same program as in Listing 7 and of two programs which are
part of the examples suite of the Programming with Python book. The
examples can be found in the repository https://github.com/thomasWeise/
programmingWithPythonCode, whereas the book can be downloaded from https:
//github.com/thomasWeise/programmingWithPython. We capture the standard
output of both programs in three files. We then load these file as listings. The
results are shown in Figure 7 and can be obtained via

pdflatex example_7
python3 -m texgit.run example_7
pdflatex example_7

(if the example code from Listing 8 was stored in a file called example_7.tex,
that is.)

22

https://github.com/thomasWeise/programmingWithPython
https://github.com/thomasWeise/programmingWithPythonCode
https://github.com/thomasWeise/programmingWithPythonCode
https://github.com/thomasWeise/programmingWithPython
https://github.com/thomasWeise/programmingWithPython

Listing 8: An example of capturing the output of three programs executed inside
different git repositories, rendered as Figure 7.� �

1 \documentclass{article}%
2 \usepackage{texgit}% use our package
3 \usepackage{xcolor}% to be able to use colors
4 \usepackage[colorlinks]{hyperref}% for printing the URL
5 \usepackage{listings}% importing external code
6 \lstset{language={},basicstyle=\tiny,literate={π}{{π}}1,%
7 numbers=left,numberstyle=\tiny,frame=shadowbox,frameround=tttt,%
8 breaklines=true,backgroundcolor=\color{black!10!yellow!5!white}}%
9 %

10 \begin{document}%
11 %
12 Check the output of three programs executed inside a git
13 repository in \autoref{lst:out1}, \autoref{lst:out2}, and \autoref{lst:out3}:
14 %
15 \gitExec{R10}{https://github.com/thomasWeise/pycommons}{examples}{python3

temp.py}%
16 \lstinputlisting[label={lst:out1},caption={%
17 The result of command executed inside a git repository.}]{\gitFile{R10}}
18 %
19 \gitExec{R11}{https://github.com/thomasWeise/programmingWithPythonCode}{%
20 veryFirstProject}{python3 very_first_program.py}%
21 \lstinputlisting[label={lst:out2},caption={%
22 The first program, which prints ‘‘Hello World!’’.}]{\gitFile{R11}}
23 %
24 \gitExec{R12}{https://github.com/thomasWeise/programmingWithPythonCode}{%
25 conditionals}{python3 if_elif_example.py}%
26 \lstinputlisting[label={lst:out3},caption={%
27 The second program with if end else−if.}]{%
28 \gitFile{R12}}
29 %
30 \end{document}% � �

23

Check the output of three programs executed inside a git repository in List-
ing 1, Listing 2, and Listing 3:

Listing 1: The result of command executed inside a git repository.� �
1 This i s a temporary d i r e c t o r y : ’/tmp/tmpuct9c5nm ’ .
2 I t i s c reated via temp dir () , i t s path i s s to red in ’ td ’ , and i t i s de l e t ed (with

a l l o f i t s contents i n s i d e) once the ’ with ’−block ends .
3 This i s a temporary f i l e : ’/tmp/tmpmw7gei8r ’ .
4 I t i s c reated via t emp f i l e () , i t s path i s s to red in ’ t f ’ , and i t i s de l e t ed

automat i ca l ly once the ’ with ’−block ends .
5 You can a l s o c r ea t e a temp f i l e ’/tmp/ tmpir4zxz3o /tmp16nsw8ir ’ i n s i d e any d i r ec to ry ,

even a temp d i r e c t o r y ’/tmp/ tmpir4zxz3o ’ and have them de l e t ed once your are
done . � �

Listing 2: The first program, which prints “Hello World!”.� �
1 Hel lo World ! � �

Listing 3: The second program with if end else-if.� �
1 A person o f 42 years i s in t h e i r m id l i f e . � �

1

Figure 7: The rendered result of Listing 8 (with trimmed page margins and bot-
toms).

24

4.8 The Eight Example: Using Argument Files
The goal of the eighth example is to show how to use argu-
ment files. In Listing 9, we first create an argument file via
\gitArg{R13}{test}{.pdf}. This file will have the name prefix test and
the suffix .pdf. It will be available under the ID R13. The command
\gitExec{}{...}{...}{python3 make_pdf.py (?R13?)} invokes the Python
program make_pdf.py residing in a certain directory of a git repository (actually,
our repository here). We leave the first parameter, the id, empty, because we are
not interested in the output of this program. The agument (?R13?) passed to the
program will be resolved to the argument file path before invoking the program.
The program is illustrated in Listing 10. It generates a PDF graphic and stores
it in the file that it received as argument. We can then include this graphic using
\includegraphics and passing in \gitFile{R13}.

However, \gitFile{R13} will only be valid after we applied the Python texgit
command after the first pdflatex pass. Therefore, during the first pdflatex pass,
this file will be empty. \includegraphics would fail. Therefore, we protect this
code to be only executed once the file has been filled with data. This is done by
placing it into the \gitIf{R13}{<exec if done>}{<otherwise>} block.

The results are shown in Figure 8 and can be obtained via

pdflatex example_8
python3 -m texgit.run example_8
pdflatex example_8

(if the example code from Listing 9 was stored in a file called example_8.tex,
that is.)

Listing 9: An example of running a script residing in git and passing an automat-
ically generated file path to it as input, rendered as Figure 8.� �

1 \documentclass{article}%
2 \usepackage{texgit}% use our package
3 \usepackage{xcolor}% to be able to use colors
4 \usepackage[colorlinks]{hyperref}% for printing the URL
5 \usepackage{graphicx}% loading graphics
6 %
7 \begin{document}%
8 %
9 \gitArg{R13}{test}{.pdf}%

10 \gitExec{}{https://github.com/thomasWeise/texgit_tex}{%
11 examples}{python3 make_pdf.py (?R13?)}%
12 %
13 \gitIf{R13}{%
14 \fbox{\includegraphics[width=0.9\linewidth]{\gitFile{R13}}}%
15 }{}%
16 %
17 \end{document}% � �

25

Listing 10: The Python script invoked in Listing 9 to create a graphic and store
it in an argument file.� �

1 """Create a PDF and store it in the file provided as command line argument."""
2 from sys import argv
3

4 from fpdf import FPDF
5

6 pdf = FPDF() # Create an instance of an FPDF class.
7 pdf.add_page() # Add a page.
8

9 for i in range(1000): # Draw 1000 almost−random ellipses
10 pdf.set_fill_color((i ∗ 4919) % 255, (i ∗ 3527) % 255,
11 (i ∗ 6329) % 255)
12 pdf.ellipse((i ∗ 3677) % 130, (i ∗ 5003) % 170,
13 (i ∗ 4391) % 130, (i ∗ 9049) % 170, "F")
14

15 # Write some text.
16 pdf.set_font("helvetica", style="B", size=60) # Set the font.
17 pdf.set_text_color(255, 255, 255) # Set text color to white.
18 pdf.cell(200, 10, text="Hello␣World!", align="C")
19

20 # Here is the important part! argv[1] is our \gitArg result!
21 pdf.output(argv[1]) # Save the PDF to the specified file. � �

26

Hello World!

1

Figure 8: The rendered result of Listing 9 (with trimmed page margins and bot-
toms).

27

5 A Note on LaTeX Floating Environments
LATEX offers us floating environments for laying out tables and fig-
ures. Such environments, e.g., \begin{figure}...\end{figure} or
\begin{table}...\end{table} are automatically arranged by LATEX. This
means that their order can change depending how they layout engine determines
where to put them. This means that, if you put \gitLoad, \gitArg, or \gitExec
commands into such environments, their execution order can change. It is there-
fore recommended to put these commands always outside of these environments.
Then the execution order is always the same and clear.

6 Usage in GitHub Actions
It is possible to use texgit in GitHub actions. For this purpose, you would simply
copy the texgit.sty file into the directory of your LATEX sources. You can use xu-
cheng/texlive-action, which provides TexLive, to run several pdflatex / texgit
cycles. Then, you could deploy the book that was built using JamesIves/github-
pages-deploy-action to a GitHub page. This way, whenever you commit changes
LATEX sources residing in a git repository, your book would be re-built. The
projects below do it this way.

7 Projects using texgit
texgit was developed specifically for teaching material book projects. There are
several book projects that use it.

• Programming with Python, available at https://thomasWeise.github.io/
programmingWithPython is a book and a set of slides introducing the reader
to Python programming. It is enriched with many source code exam-
ples, which reside in the repository https://github.com/thomasWeise/
programmingWithPythonCode. These examples are automatically included
and executed in the book building process via texgit.

• Databases, available at https://thomasWeise.github.io/databases is a
book and a set of slides introducing the reader to relational databases. It
is enriched with many source code examples, which reside in the reposi-
tory https://github.com/thomasWeise/databasesCode. These examples
are automatically included and executed in the book building process via
texgit. Actually, they are sql scripts that run on a PostgreSQL database
management system. With texgit, you can run complex scripts residing in
git repositories. It is possible to interact with a database server without
problems.

28

https://github.com/xu-cheng/texlive-action
https://github.com/xu-cheng/texlive-action
https://github.com/JamesIves/github-pages-deploy-action
https://github.com/JamesIves/github-pages-deploy-action
https://thomasWeise.github.io/programmingWithPython
https://thomasWeise.github.io/programmingWithPython
https://github.com/thomasWeise/programmingWithPythonCode
https://github.com/thomasWeise/programmingWithPythonCode
https://thomasWeise.github.io/databases
https://github.com/thomasWeise/databasesCode

8 Implementation
The names of all internal elements of the package are prefixed with @texgit@.
This naming convention should prevent any name clashes with other packages.

Our texgit package requires only one other package:

1. filecontents [1] is used to allow us to generate the dummy file on the fly.
This package is obsolete for the most recent LATEX version, where it simply
does nothing, but may help us to get our package to work on older systems.

1 \RequirePackage{filecontents}% Allow us to create the dummy file.

2 %
3 % This is the path to the dummy file.
4 % The dummy file is created directly below.
5 % The dummy file is referenced by all invocations of |\gitFile| until the
6 % Python package has been applied to the |.aux| file and has loaded the
7 % actual files.
8 \xdef\@texgit@dummyPath{\jobname.texgit.dummy}% the dummy file
9 %

10 % Create the dummy file that replaces files before they are loaded.
11 % This file only has one line with one single space.
12 \expandafter\begin\expandafter{filecontents*}{\@texgit@dummyPath}
13
14 \end{filecontents*}
15 %
16 %% We need to make sure that the texgit postprocessor is actually
17 %% properly applied.
18 %% If you load our package, then if the postprocessor is not applied
19 %% before the second pdflatex pass, we make sure that pdflatex
20 %% crashes with an error.
21 \protected\gdef\@texgit@needsTexgitPass{%
22 \errmessage{texgit: You must run the Python companion package of texgit %
23 % *before* doing the second pdflatex pass. %
24 You can do this by invoking ’python3 -m texgit.run \jobname’. %
25 You can obtain this Python package via ’pip install texgit’. %
26 Check the documentation at %
27 https://thomasweise.github.io/texgit_tex/texgit.pdf%
28 }%
29 %% force quit
30 \batchmode\read-1 to \foo%
31 }%
32 %% Make sure that the texgit postprocessor is actually applied.
33 \AtEndDocument{%
34 \let\@texgit@needsTexgitPass\relax%
35 \immediate\write\@mainaux{\noexpand\@texgit@needsTexgitPass}}%
36 %
37 % The dummy URL that is returned by |\gitURL| unless a proper URL is
38 % available.
39 \xdef\@texgit@dummyUrl{https://example.com}% the dummy URL
40 %
41 % This command does nothing and is just a placeholder in the |aux| files.
42 \gdef\@texgit@gitFile#1#2#3#4{}%
43 % This command as well.
44 \gdef\@texgit@process#1#2#3#4{}%

29

45 % This command as well.
46 \gdef\@texgit@argFile#1#2#3{}%

\gitLoad The macro \gitLoad{⟨id⟩}{⟨repositoryURL⟩}{⟨path⟩}{⟨postProcessing⟩} defines
a query to a git repository. The query is stored in the aux file of the project
and carried out by the Python companion package (see Section 2.6). The results
of this macro will become available via the two other macros \gitFile{id} and
\gitUrl{id}. During the first LATEX build, these macros will return a path to
a dummy file which only has a single space character in it followed by a newline
and the dummy URL https://example.com, respectively. As said, \gitLoad
will store all information in the aux file, which then permits the texgit Python
package to download (and optionally post-process) the actual file. In the second
round of LATEX building, \gitFile{id} and \gitUrl{id} will then return the
local path to that downloaded file and the actual URL, respectively.

{⟨id⟩} the uniquely chosen ID for this request. Imagine this being something like
a label.

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.
com/thomasWeise/texgit_tex or ssh://git@github.com/thomasWeise/
texgit_tex or any other valid repository URL.

{⟨path⟩} is then the path to the file within the repository. This could be, for example,
latex/texgit.dtx.

{⟨postProcessing⟩} Can either be empty, in which case the repository is downloaded and the
the local path to the file is returned. It can also be shell command, e.g.,
head -n 5. In this case, the contents of the file are piped to stdin of the
command and the text written to the stdout by the command is stored in
a file whose path is returned.

47 %%
48 %% Define a query to load and post-process a file from a |git| repository.
49 %% #1 is the request ID
50 %% #2 is the repository URL
51 %% #3 is the path to the file inside the repository
52 %% #4 is a command through which the file contents should be piped
53 %%% (leave #4 empty to use the file as-is)
54 \protected\gdef\gitLoad#1#2#3#4{%
55 \edef\@texgit@pA{#1}% fully expand the request ID
56 \edef\@texgit@pB{#2}% fully expand the repository URL
57 \edef\@texgit@pC{#3}% fully expand the path into the repository
58 \edef\@texgit@pD{#4}% fully expand the (optional) shell command
59 % Write the parameters to the aux file.
60 \immediate\write\@mainaux{%
61 \noexpand\@texgit@gitFile{\@texgit@pA}{\@texgit@pB}{%
62 \@texgit@pC}{\@texgit@pD}}%
63 }%

\gitExec The macro \gitExec{⟨id⟩}{⟨repositoryURL⟩}{⟨path⟩}{⟨theCommand⟩} defines a
command to be executed either inside a git repository or in the current directory.
The query is stored in the aux file of the project and carried out by the Python
companion package (see Section 2.6). The results of this macro will become avail-
able via the macro \gitFile{id}. During the first LATEX build, this macro will

30

https://example.com
https://github.com/thomasWeise/texgit_tex
https://github.com/thomasWeise/texgit_tex
ssh://git@github.com/thomasWeise/texgit_tex
ssh://git@github.com/thomasWeise/texgit_tex

return a path to a dummy file which only has a single space character in it fol-
lowed by a newline. As said, \gitExec will store all information in the aux file,
which then permits the texgit Python package to download (and optionally post-
process) the actual file. In the second round of LATEX building, \gitFile{id} will
then return the local path to the file with the standard output of the executed
command.

{⟨id⟩} the uniquely chosen ID for this request. Imagine this being something like
a label.

{⟨repositoryURL⟩} is the URL of the git repository. It could, e.g., be https://github.
com/thomasWeise/texgit_tex or ssh://git@github.com/thomasWeise/
texgit_tex or any other valid repository URL. You can leave this argu-
ment empty if you want to execute the command in the current directory.

{⟨path⟩} is then the path to the directory within the repository. This could be, for
example, latex. The command is executed at this directory. Use . for the
repository root. Leave this empty if no repository is used.

{⟨theCommand⟩} The command line to be executed. It can also be shell command, e.g.,
python3 --version. The standard output produced by this command is
captured as file.

64 \newcount\@texgit@counter% The counter for the dummy arguments of \gitExec
65 \@texgit@counter0\relax% We start the counter at 0.
66 %%
67 %% Define a query to execute a command, optionally in a |git| repository.
68 %% #1 is the request ID, leave empty if you do not want to access the output
69 %% #2 is the repository URL, or empty if no repository is needed
70 %% #3 is the path to a directory inside the repository or empty
71 %% #4 is a command to be executed
72 \protected\gdef\gitExec#1#2#3#4{%
73 \edef\@texgit@pA{#1}% the request ID
74 \ifx\@texgit@pA\empty\relax\edef\@texgit@pA{%
75 @texgit@dummy@\the\@texgit@counter}%
76 \global\advance\@texgit@counter by 1% step the counter for the next dummy
77 \fi%
78 \edef\@texgit@pB{#2}% fully expand the repository URL, or empty
79 \edef\@texgit@pC{#3}% fully expand the path into the repository, or empty
80 \edef\@texgit@pD{#4}% fully expand the (optional) shell command
81 % Write the parameters to the aux file.
82 \immediate\write\@mainaux{%
83 \noexpand\@texgit@process{\@texgit@pA}{\@texgit@pB}{%
84 \@texgit@pC}{\@texgit@pD}}%
85 }%

\gitArg The macro \gitArg{⟨id⟩}{⟨prefix ⟩}{⟨suffix ⟩} allocates a unique file name with
the given prefix and suffix that can be passed as argument in invocations
of \gitExec. The results of this macro will become available via the macro
\gitFile{id}. During the first LATEX build, this macro will return a path to
a dummy file which only has a single space character in it followed by a newline.
As said, \gitExec will store all information in the aux file, which then permits
the texgit Python package to download (and optionally post-process) the actual

31

https://github.com/thomasWeise/texgit_tex
https://github.com/thomasWeise/texgit_tex
ssh://git@github.com/thomasWeise/texgit_tex
ssh://git@github.com/thomasWeise/texgit_tex

file. In the second round of LATEX building, \gitFile{id} will then return the
local path to the file with the standard output of the executed command.

{⟨id⟩} the uniquely chosen ID for this request. Imagine this being something like
a label.

{⟨prefix ⟩} is the optional prefix, which can be left empty.

{⟨suffix ⟩} is the optional suffix, which can be left empty.

86 %%
87 %% Define a query to allocate a file.
88 %% #1 is the request ID
89 %% #2 is the prefix
90 %% #3 is the suffix
91 \protected\gdef\gitArg#1#2#3{%
92 \edef\@texgit@pA{#1}% the request ID
93 \edef\@texgit@pB{#2}% fully expand the prefix
94 \edef\@texgit@pC{#3}% fully expand the suffix
95 % Write the parameters to the aux file.
96 \immediate\write\@mainaux{%
97 \noexpand\@texgit@argFile{\@texgit@pA}{\@texgit@pB}{%
98 \@texgit@pC}}%
99 }%

\gitIf The macro \gitIf{⟨id⟩}{⟨ifDone⟩}{⟨ifNotDone⟩} executes ifDone if the request
under the given id has already been executed, otherwise executes ifNotDone.

{⟨id⟩} the request ID.

{⟨ifDone⟩} executed if the request with the given ID has already been executed.

{⟨ifNotDone⟩} executed if the request with the given ID has not yet been executed.

100 %%
101 %% Conditionally execute code depending on whether the given request was
102 %% already executed.
103 %% #1 is the request ID
104 %% #2 the code to execute if the request of the given ID has been executed.
105 %% #3 the code to execute if the request of the given ID has NOT been
106 %% executed.
107 \gdef\gitIf#1#2#3{%
108 \expandafter\ifx\csname @texgit@path@#1\endcsname\relax%
109 \expandafter\@firstoftwo\else\expandafter\@secondoftwo\fi{#3}{#2}%
110 }%

\gitFile The macro \gitFile{⟨id⟩} get the file path associated with the request of ID id.

{⟨id⟩} the request ID. yet been executed.

111 %%
112 %% Get the file path associated with the request ID.
113 %% #1 is the request ID
114 \gdef\gitFile#1{%
115 \expandafter\ifx\csname @texgit@path@#1\endcsname\relax%
116 \@texgit@dummyPath\else\csname @texgit@path@#1\endcsname\fi%
117 }%

32

\gitUrl The macro \gitUrl{⟨id⟩} get the URL associated with the request of ID id.

{⟨id⟩} the request ID. yet been executed.

118 %%
119 %% Get the URL associated with the request ID.
120 %% #1 is the request ID
121 \gdef\gitUrl#1{%
122 \expandafter\ifx\csname @texgit@url@#1\endcsname\relax%
123 \@texgit@dummyUrl\else\csname @texgit@url@#1\endcsname\fi%
124 }%

\gitName The macro \gitName{⟨id⟩} gets the base name of the path associated with the
request of ID id. Like \gitUrl, this makes only sense if the file is hosted in a git
repository. If the file contains the data generated by a process, then this command
returns an empty string.

{⟨id⟩} the request ID. yet been executed.

125 %%
126 %% Get the base name of the path associated with the request ID.
127 %% #1 is the request ID
128 \gdef\gitName#1{%
129 \expandafter\ifx\csname @texgit@name@#1\endcsname\relax%
130 \else\csname @texgit@name@#1\endcsname\fi%
131 }%

\gitNameEsc The macro \gitNameEsc{⟨id⟩} gets the escaped base name of the path associated
with the request of ID id. Sometimes, file names may contain characters like _
or $. This means that you could not print the result of \getFileName in plain
TEX, because it would cause an error during compilation. \getNameEsc escapes
_, $, and to _, \$, and ~, respectively. Therefore, its result can be typeset like
normal text, at least in \texttt{...}. Like \gitUrl, this makes only sense if
the file is hosted in a git repository. If the file contains the data generated by a
process, then this command returns an empty string.

{⟨id⟩} the request ID. yet been executed.

132 %%
133 %% Get the base name of the path associated with the request ID.
134 %% #1 is the request ID
135 \gdef\gitNameEsc#1{%
136 \expandafter\ifx\csname @texgit@escName@#1\endcsname\relax%
137 \else\csname @texgit@escName@#1\endcsname\fi%
138 }%

References
[1] Scott Pakin. The filecontents package. CTAN Comprehensive TEX Archive

Network, April 2, 2023. URL https://ctan.org/pkg/filecontents

33

https://ctan.org/pkg/filecontents

Change History

0.8.0
General: the initial draft version . . 1

0.8.1
General: slightly improved

documentation 1
0.8.2

General: improved texgit.tds.zip . . 1
0.8.4

General: improved build process . . 1
0.8.5

General: improved examples:
added an example with
multiple git command results . . 1

0.9.0
General: complete overhaul of the

API . 1
0.9.1

General: improved documentation 1

0.9.2
General: gitExec with empty ID

permitted 1
0.9.3

General: better documentation . . . 1
0.9.4

General: name change to texgit . . 1
0.9.5

General: improved documentation
and slight updates 1

0.9.6
General: now forcing pdflatex to

crash if Python postprocessor
is not applied 1

0.9.7
General: now offering file names

(via gitName) and escaped file
names (via gitNameEsc) 1

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@firstoftwo 109
\@mainaux 35, 60, 82, 96
\@secondoftwo 109
\@texgit@argFile 46, 97
\@texgit@counter . .

. . . . 64, 65, 75, 76
\@texgit@dummyPath .

. 8, 12, 116
\@texgit@dummyUrl .

. 39, 123
\@texgit@gitFile 42, 61
\@texgit@needsTexgitPass

. 21, 34, 35
\@texgit@pA . . 55, 61,

73, 74, 83, 92, 97
\@texgit@pB 56,

61, 78, 83, 93, 97
\@texgit@pC 57,

62, 79, 84, 94, 98
\@texgit@pD 58, 62, 80, 84
\@texgit@process 44, 83
__git__ 11, 12, 15

\gitArg 2, 7
\gitExec 1, 6, 7
\gitFile 1, 2, 6, 7
\gitLoad 1, 2, 6
\gitName 1
\gitUrl 1, 6
\input 11, 12
\jobname 11
\jobname.texgit.dummy

. 7

A
\advance 76
\AtEndDocument 33
aux 2, 7

B
\batchmode 30
\begin 12

C
\csname . . . 108, 115,

116, 122, 123,
129, 130, 136, 137

E
\edef 55, 56, 57,

58, 73, 74, 78,
79, 80, 92, 93, 94

\else 109,
116, 123, 130, 137

\empty 74
\end 14
\endcsname 108, 115,

116, 122, 123,
129, 130, 136, 137

\errmessage 22
\expandafter

. . 12, 108, 109,
115, 122, 129, 136

F
filecontents 6, 29
\foo 30

G
\gdef . 21, 42, 44, 46,

54, 72, 91, 107,
114, 121, 128, 135

34

git 1, 6
\gitArg 86
\gitExec 64
\gitFile 5, 111
\gitIf 100
\gitLoad 47
\gitName 125
\gitNameEsc 132
\gitURL 37
\gitUrl 118
\global 76

H
head 6
http://example.com . . 7

I
\ifx 74, 108,

115, 122, 129, 136
\immediate 35, 60, 82, 96

J
\jobname 8, 24

L
\let 34
Linux 6

N
\newcount 64
\noexpand 35, 61, 83, 97

P
pdflatex 2, 5, 7
\protected 21, 54, 72, 91
PyPI 5
Python 4, 5, 11

R
\read 30
\relax 34, 65, 74, 108,

115, 122, 129, 136

\RequirePackage 1

S
shell 6, 15
stdin 6, 8, 15
stdout 6, 8, 9, 15

T
texgit.dtx 5
texgit.ins 5
texgit.sty 5
texgit_py 5
\the 75

W
\write . . . 35, 60, 82, 96

X
\xdef 8, 39

35

	Contents
	1 Introduction
	1.1 Addressed Problem and Use Case
	1.2 Provided Functionality

	2 Usage
	2.1 Installation
	2.2 Loading the Package
	2.3 Querying a File from a git Repository
	2.4 Executing a Command (optionally inside a git Repository
	2.5 Creating a File to be used as Argument
	2.6 Executing the Python Package
	2.7 A Note on Python Virtual Environments

	3 Provided Macros
	3.1 gitLoad
	3.2 gitExec
	3.3 gitArg
	3.4 gitFile
	3.5 gitUrl
	3.6 gitName
	3.7 gitNameEsc
	3.8 gitIf

	4 Examples
	4.1 Minimal Working Example
	4.2 The Second Example: Multiple Files and Post-Processing
	4.3 The Third Example: Using the listings Package
	4.4 The Fourth Example: Using Git Commands in Macros
	4.5 The Fifth Example: Capturing the Output of a Program
	4.6 The Sixth Example: Capturing the Output of a Program Executed Inside a git Repository
	4.7 The Seventh Example: Capturing the Output of Multiple Programs Executed Inside Different git Repositories
	4.8 The Eight Example: Using Argument Files

	5 A Note on LaTeX Floating Environments
	6 Usage in GitHub Actions
	7 Projects using texgit
	8 Implementation
	References

