module Array: ArrayLabelsval length : 'a array -> intval get : 'a array -> int -> 'aArray.get a n returns the element number n of array a.
   The first element has number 0.
   The last element has number Array.length a - 1.
   You can also write a.(n) instead of Array.get a n.
   Raise Invalid_argument "index out of bounds"
   if n is outside the range 0 to (Array.length a - 1).
val set : 'a array -> int -> 'a -> unitArray.set a n x modifies array a in place, replacing
   element number n with x.
   You can also write a.(n) <- x instead of Array.set a n x.
   Raise Invalid_argument "index out of bounds"
   if n is outside the range 0 to Array.length a - 1.
val make : int -> 'a -> 'a arrayArray.make n x returns a fresh array of length n,
   initialized with x.
   All the elements of this new array are initially
   physically equal to x (in the sense of the == predicate).
   Consequently, if x is mutable, it is shared among all elements
   of the array, and modifying x through one of the array entries
   will modify all other entries at the same time.
   Raise Invalid_argument if n < 0 or n > Sys.max_array_length.
   If the value of x is a floating-point number, then the maximum
   size is only Sys.max_array_length / 2.
val create : int -> 'a -> 'a array
val init : int -> f:(int -> 'a) -> 'a arrayArray.init n f returns a fresh array of length n,
   with element number i initialized to the result of f i.
   In other terms, Array.init n f tabulates the results of f
   applied to the integers 0 to n-1.
   Raise Invalid_argument if n < 0 or n > Sys.max_array_length.
   If the return type of f is float, then the maximum
   size is only Sys.max_array_length / 2.
val make_matrix : dimx:int -> dimy:int -> 'a -> 'a array arrayArray.make_matrix dimx dimy e returns a two-dimensional array
   (an array of arrays) with first dimension dimx and
   second dimension dimy. All the elements of this new matrix
   are initially physically equal to e.
   The element (x,y) of a matrix m is accessed
   with the notation m.(x).(y).
   Raise Invalid_argument if dimx or dimy is negative or
   greater than Sys.max_array_length.
   If the value of e is a floating-point number, then the maximum
   size is only Sys.max_array_length / 2.
val create_matrix : dimx:int -> dimy:int -> 'a -> 'a array array
val append : 'a array -> 'a array -> 'a arrayArray.append v1 v2 returns a fresh array containing the
   concatenation of the arrays v1 and v2.val concat : 'a array list -> 'a arrayArray.append, but concatenates a list of arrays.val sub : 'a array -> pos:int -> len:int -> 'a arrayArray.sub a start len returns a fresh array of length len,
   containing the elements number start to start + len - 1
   of array a.
   Raise Invalid_argument "Array.sub" if start and len do not
   designate a valid subarray of a; that is, if
   start < 0, or len < 0, or start + len > Array.length a.
val copy : 'a array -> 'a arrayArray.copy a returns a copy of a, that is, a fresh array
   containing the same elements as a.val fill : 'a array -> pos:int -> len:int -> 'a -> unitArray.fill a ofs len x modifies the array a in place,
   storing x in elements number ofs to ofs + len - 1.
   Raise Invalid_argument "Array.fill" if ofs and len do not
   designate a valid subarray of a.
val blit : src:'a array -> src_pos:int -> dst:'a array -> dst_pos:int -> len:int -> unitArray.blit v1 o1 v2 o2 len copies len elements
   from array v1, starting at element number o1, to array v2,
   starting at element number o2. It works correctly even if
   v1 and v2 are the same array, and the source and
   destination chunks overlap.
   Raise Invalid_argument "Array.blit" if o1 and len do not
   designate a valid subarray of v1, or if o2 and len do not
   designate a valid subarray of v2.
val to_list : 'a array -> 'a listArray.to_list a returns the list of all the elements of a.val of_list : 'a list -> 'a arrayArray.of_list l returns a fresh array containing the elements
   of l.val iter : f:('a -> unit) -> 'a array -> unitArray.iter f a applies function f in turn to all
   the elements of a.  It is equivalent to
   f a.(0); f a.(1); ...; f a.(Array.length a - 1); ().val map : f:('a -> 'b) -> 'a array -> 'b arrayArray.map f a applies function f to all the elements of a,
   and builds an array with the results returned by f:
   [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].val iteri : f:(int -> 'a -> unit) -> 'a array -> unitArray.iter, but the
   function is applied to the index of the element as first argument,
   and the element itself as second argument.val mapi : f:(int -> 'a -> 'b) -> 'a array -> 'b arrayArray.map, but the
   function is applied to the index of the element as first argument,
   and the element itself as second argument.val fold_left : f:('a -> 'b -> 'a) -> init:'a -> 'b array -> 'aArray.fold_left f x a computes
   f (... (f (f x a.(0)) a.(1)) ...) a.(n-1),
   where n is the length of the array a.val fold_right : f:('b -> 'a -> 'a) -> 'b array -> init:'a -> 'aArray.fold_right f a x computes
   f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...)),
   where n is the length of the array a.val iter2 : f:('a -> 'b -> unit) -> 'a array -> 'b array -> unitArray.iter2 f a b applies function f to all the elements of a
   and b.
   Raise Invalid_argument if the arrays are not the same size.val map2 : f:('a -> 'b -> 'c) -> 'a array -> 'b array -> 'c arrayArray.map2 f a b applies function f to all the elements of a
   and b, and builds an array with the results returned by f:
   [| f a.(0) b.(0); ...; f a.(Array.length a - 1) b.(Array.length b - 1)|].
   Raise Invalid_argument if the arrays are not the same size.val exists : f:('a -> bool) -> 'a array -> boolArray.exists p [|a1; ...; an|] checks if at least one element of
    the array satisfies the predicate p. That is, it returns
    (p a1) || (p a2) || ... || (p an).val for_all : f:('a -> bool) -> 'a array -> boolArray.for_all p [|a1; ...; an|] checks if all elements of the array
   satisfy the predicate p. That is, it returns
   (p a1) && (p a2) && ... && (p an).val mem : 'a -> set:'a array -> boolmem x a is true if and only if x is equal
   to an element of a.val memq : 'a -> set:'a array -> boolArray.mem, but uses physical equality instead of structural
   equality to compare list elements.val create_float : int -> float arrayArray.create_float n returns a fresh float array of length n,
    with uninitialized data.val make_float : int -> float array
val sort : cmp:('a -> 'a -> int) -> 'a array -> unitcompare is
   a suitable comparison function, provided there are no floating-point
   NaN values in the data.  After calling Array.sort, the
   array is sorted in place in increasing order.
   Array.sort is guaranteed to run in constant heap space
   and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant stack space.
   Specification of the comparison function:
   Let a be the array and cmp the comparison function.  The following
   must be true for all x, y, z in a :
cmp x y > 0 if and only if cmp y x < 0cmp x y >= 0 and cmp y z >= 0 then cmp x z >= 0Array.sort returns, a contains the same elements as before,
   reordered in such a way that for all i and j valid indices of a :cmp a.(i) a.(j) >= 0 if and only if i >= jval stable_sort : cmp:('a -> 'a -> int) -> 'a array -> unitArray.sort, but the sorting algorithm is stable (i.e.
   elements that compare equal are kept in their original order) and
   not guaranteed to run in constant heap space.
   The current implementation uses Merge Sort. It uses n/2
   words of heap space, where n is the length of the array.
   It is usually faster than the current implementation of Array.sort.
val fast_sort : cmp:('a -> 'a -> int) -> 'a array -> unit