
RFC 9728
OAuth 2.0 Protected Resource Metadata

Abstract
This specification defines a metadata format that an OAuth 2.0 client or authorization server can
use to obtain the information needed to interact with an OAuth 2.0 protected resource.

Stream: Internet Engineering Task Force (IETF)
RFC: 9728
Category: Standards Track
Published: April 2025
ISSN: 2070-1721
Authors: M.B. Jones

Self-Issued Consulting
P. Hunt
Independent Identity, Inc.

A. Parecki
Okta

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9728

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents ( ) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Jones, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9728
https://www.rfc-editor.org/info/rfc9728
https://trustee.ietf.org/license-info


Table of Contents
1.  Introduction

1.1.  Requirements Notation and Conventions

1.2.  Terminology

2.  Protected Resource Metadata

2.1.  Human-Readable Resource Metadata

2.2.  Signed Protected Resource Metadata

3.  Obtaining Protected Resource Metadata

3.1.  Protected Resource Metadata Request

3.2.  Protected Resource Metadata Response

3.3.  Protected Resource Metadata Validation

4.  Authorization Server Metadata

5.  Use of WWW-Authenticate for Protected Resource Metadata

5.1.  WWW-Authenticate Response

5.2.  Changes to Resource Metadata

5.3.  Client Identifier and Client Authentication

5.4.  Compatibility with Other Authentication Methods

6.  String Operations

7.  Security Considerations

7.1.  TLS Requirements

7.2.  Scopes

7.3.  Impersonation Attacks

7.4.  Audience-Restricted Access Tokens

7.5.  Publishing Metadata in a Standard Format

7.6.  Authorization Servers

7.7.  Server-Side Request Forgery (SSRF)

7.8.  Phishing

7.9.  Differences Between Unsigned and Signed Metadata

7.10. Metadata Caching

3

4

4

5

6

7

8

8

9

10

10

11

13

13

13

14

14

14

14

15

15

15

16

16

16

17

17

17

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 2



8.  IANA Considerations

8.1.  OAuth Protected Resource Metadata Registry

8.1.1.  Registration Template

8.1.2.  Initial Registry Contents

8.2.  OAuth Authorization Server Metadata Registry

8.2.1.  Registry Contents

8.3.  Well-Known URIs Registry

8.3.1.  Registry Contents

9.  References

9.1.  Normative References

9.2.  Informative References

Acknowledgements

Authors' Addresses

17

18

18

19

21

21

21

21

21

21

24

24

25

1. Introduction
This specification defines a metadata format enabling OAuth 2.0 clients and authorization
servers to obtain information needed to interact with an OAuth 2.0 protected resource. The
structure and content of this specification are intentionally as parallel as possible to (1) 

, which enables a client to provide metadata
about itself to an OAuth 2.0 authorization server and (2) "OAuth 2.0 Authorization Server
Metadata" , which enables a client to obtain metadata about an OAuth 2.0
authorization server.

The means by which the client obtains the location of the protected resource is out of scope for
this document. In some cases, the location may be manually configured into the client; for
example, an email client could provide an interface for a user to enter the URL of their 

. In other cases, it may be dynamically
discovered; for example, a user could enter their email address into an email client, the client
could perform  (in a manner related to the description in 

) to find the resource server, and the client could then fetch the resource
server metadata to find the authorization server to use to obtain authorization to access the
user's email.

The metadata for a protected resource is retrieved from a well-known location as a JSON 
 document, which declares information about its capabilities and, optionally, its

relationships with other services. This process is described in Section 3.

"OAuth
2.0 Dynamic Client Registration Protocol" [RFC7591]

[RFC8414]

JSON
Meta Application Protocol (JMAP) server [RFC8620]

WebFinger discovery [RFC7033] Section
2 of [OpenID.Discovery]

[RFC8259]

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 3

https://openid.net/specs/openid-connect-discovery-1_0.html#IssuerDiscovery
https://openid.net/specs/openid-connect-discovery-1_0.html#IssuerDiscovery


This metadata can be communicated either in a self-asserted fashion or as a set of signed
metadata values represented as claims in a JSON Web Token (JWT) . In the JWT case, the
issuer is vouching for the validity of the data about the protected resource. This is analogous to
the role that the software statement plays in OAuth Dynamic Client Registration .

Each protected resource publishing metadata about itself makes its own metadata document
available at a well-known location deterministically derived from the protected resource's URL,
even when the resource server implements multiple protected resources. This prevents
attackers from publishing metadata that supposedly describes the protected resource but that is
not actually authoritative for the protected resource, as described in Section 7.3.

Section 2 defines metadata parameters that a protected resource can publish, which includes
things like which scopes are supported, how a client can present an access token, and more.
These values, such as the jwks_uri (see Section 2), may be used with other specifications; for
example, the public keys published in the jwks_uri can be used to verify the signed resource
responses, as described in .

Section 5 describes the use of WWW-Authenticate by protected resources to dynamically inform
clients of the URL of their protected resource metadata. This use of WWW-Authenticate can
indicate that the protected resource metadata may have changed.

[JWT]

[RFC7591]

[FAPI.MessageSigning]

1.1. Requirements Notation and Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14  when, and only when, they appear in
all capitals, as shown here.

All applications of  and 
 as discussed in this specification utilize the JWS Compact

Serialization or the JWE Compact Serialization; the JWS JSON Serialization and the JWE JSON
Serialization are not used. Choosing a single serialization is intended to facilitate interoperability.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

JSON Web Signature (JWS) data structures [JWS] JSON Web Encryption
(JWE) data structures [JWE]

1.2. Terminology
This specification uses the terms "access token", "authorization code", "authorization server",
"client", "client authentication", "client identifier", "protected resource", and "resource server"
defined by , and the terms "Claim Name" and "JSON Web Token (JWT)"
defined by "JSON Web Token (JWT)" .

This specification defines the following term:

Resource Identifier:
The protected resource's resource identifier, which is a URL that uses the https scheme and
has no fragment component. As specified in , it also 
include a query component, but it is recognized that there are cases that make a query

OAuth 2.0 [RFC6749]
[JWT]

Section 2 of [RFC8707] SHOULD NOT

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8707#section-2


component a useful and necessary part of a resource identifier. Protected resource metadata
is published at a .well-known location  derived from this resource identifier, as
described in Section 3. 

[RFC8615]

2. Protected Resource Metadata
Protected resources can have metadata describing their configuration. The following protected
resource metadata parameters are used by this specification and are registered in the "OAuth
Protected Resource Metadata" registry established in Section 8.1:

resource
. The protected resource's resource identifier, as defined in Section 1.2. 

authorization_servers
. JSON array containing a list of OAuth authorization server issuer identifiers, as

defined in , for authorization servers that can be used with this protected resource.
Protected resources  choose not to advertise some supported authorization servers even
when this parameter is used. In some use cases, the set of authorization servers will not be
enumerable, in which case this metadata parameter would not be used. 

jwks_uri
. URL of the protected resource's JSON Web Key (JWK) Set  document. This

contains public keys belonging to the protected resource, such as signing key(s) that the
resource server uses to sign resource responses. This URL  use the https scheme. When
both signing and encryption keys are made available, a use (public key use) parameter value
is  for all keys in the referenced JWK Set to indicate each key's intended usage. 

scopes_supported
. JSON array containing a list of scope values, as defined in 

, that are used in authorization requests to request access to this protected
resource. Protected resources  choose not to advertise some scope values supported even
when this parameter is used. 

bearer_methods_supported
. JSON array containing a list of the supported methods of sending an OAuth 2.0

bearer token  to the protected resource. Defined values are ["header", "body",
"query"], corresponding to Sections 2.1, 2.2, and 2.3 of . The empty array [] can be
used to indicate that no bearer methods are supported. If this entry is omitted, no default
bearer methods supported are implied, nor does its absence indicate that they are not
supported. 

resource_signing_alg_values_supported
. JSON array containing a list of the JWS  signing algorithms (alg values) 

supported by the protected resource for signing resource responses, for instance, as
described in . No default algorithms are implied if this entry is omitted.
The value none  be used. 

REQUIRED

OPTIONAL
[RFC8414]

MAY

OPTIONAL [JWK]

MUST

REQUIRED

RECOMMENDED OAuth 2.0
[RFC6749]

MAY

OPTIONAL
[RFC6750]

[RFC6750]

OPTIONAL [JWS] [JWA]

[FAPI.MessageSigning]
MUST NOT

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc6750#section-2.1
https://www.rfc-editor.org/rfc/rfc6750#section-2.2
https://www.rfc-editor.org/rfc/rfc6750#section-2.3


resource_name
Human-readable name of the protected resource intended for display to the end user. It is 

 that protected resource metadata include this field. The value of this field 
 be internationalized, as described in Section 2.1. 

resource_documentation
. URL of a page containing human-readable information that developers might

want or need to know when using the protected resource. The value of this field  be
internationalized, as described in Section 2.1. 

resource_policy_uri
. URL of a page containing human-readable information about the protected

resource's requirements on how the client can use the data provided by the protected
resource. The value of this field  be internationalized, as described in Section 2.1. 

resource_tos_uri
. URL of a page containing human-readable information about the protected

resource's terms of service. The value of this field  be internationalized, as described in 
Section 2.1. 

tls_client_certificate_bound_access_tokens
. Boolean value indicating protected resource support for mutual-TLS client

certificate-bound access tokens . If omitted, the default value is false. 

authorization_details_types_supported
. JSON array containing a list of the authorization details type values supported by

the resource server when the authorization_details request parameter  is used. 

dpop_signing_alg_values_supported
. JSON array containing a list of the JWS alg values (from the "JSON Web Signature

and Encryption Algorithms" registry ) supported by the resource server for
validating Demonstrating Proof of Possession (DPoP) proof JWTs . 

dpop_bound_access_tokens_required
. Boolean value specifying whether the protected resource always requires the use

of DPoP-bound access tokens . If omitted, the default value is false. 

Additional protected resource metadata parameters  also be used.

RECOMMENDED
MAY

OPTIONAL
MAY

OPTIONAL

MAY

OPTIONAL
MAY

OPTIONAL
[RFC8705]

OPTIONAL
[RFC9396]

OPTIONAL
[IANA.JOSE]

[RFC9449]

OPTIONAL
[RFC9449]

MAY

2.1. Human-Readable Resource Metadata
Human-readable resource metadata values and resource metadata values that reference human-
readable content  be represented in multiple languages and scripts. For example, the values
of fields such as resource_name, resource_documentation, resource_tos_uri, and 
resource_policy_uri might have multiple locale-specific metadata values to facilitate use in
different locations.

MAY

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 6



To specify the languages and scripts, language tags  are added to resource metadata
parameter names, delimited by a # character. Since member names as discussed in 

 are case sensitive, it is  that language tag values used in Claim Names
be spelled using the character case with which they are registered in the 

. In particular, normally, language names are spelled with lowercase
characters, region names are spelled with uppercase characters, and languages are spelled with
mixed-case characters. However, since language tag values are case insensitive per ,
implementations  interpret the language tag values supplied in a case-insensitive
manner. Per the recommendations in , language tag values used in metadata parameter
names should only be as specific as is necessary. For instance, using fr might be sufficient in
many contexts, rather than fr-CA or fr-FR.

For example, a resource could represent its name in English as "resource_name#en": "My
Resource" and its name in Italian as "resource_name#it": "La mia bella risorsa" within
its metadata. Any or all of these names  be displayed to the end user, choosing which names
to display based on system configuration, user preferences, or other factors.

If any human-readable field is sent without a language tag, parties using it  make any
assumptions about the language, character set, or script of the string value, and the string value 

 be used as is wherever it is presented in a user interface. To facilitate interoperability, it is 
 that each kind of human-readable metadata provided include an instance of its

metadata parameter without any language tags in addition to any language-specific parameters,
and it is  that any human-readable fields sent without language tags contain
values suitable for display on a wide variety of systems.

[BCP47]
JSON

[RFC8259] RECOMMENDED
"Language Subtag

Registry" [IANA.Language]

[BCP47]
SHOULD

[BCP47]

MAY

MUST NOT

MUST
RECOMMENDED

RECOMMENDED

2.2. Signed Protected Resource Metadata
In addition to JSON elements, metadata values  also be provided as a signed_metadata
value, which is a JSON Web Token (JWT)  that asserts metadata values about the protected
resource as a bundle. A set of metadata parameters that can be used in signed metadata as
claims are defined in Section 2. The signed metadata  be digitally signed or MACed
(protected with a Message Authentication Code) using a  and 

 contain an iss (issuer) claim denoting the party attesting to the claims in the signed
metadata. Consumers of the metadata  ignore the signed metadata if they do not support this
feature. If the consumer of the metadata supports signed metadata, metadata values conveyed
in the signed metadata  take precedence over the corresponding values conveyed using
plain JSON elements.

Signed metadata is included in the protected resource metadata JSON object using this 
metadata parameter:

signed_metadata
A JWT containing metadata parameters about the protected resource as claims. This is a
string value consisting of the entire signed JWT. A signed_metadata parameter 
appear as a claim in the JWT; it is  to reject any metadata in which this occurs.

MAY
[JWT]

MUST
JSON Web Signature (JWS) [JWS]

MUST
MAY

MUST

OPTIONAL

SHOULD NOT
RECOMMENDED

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 7



3. Obtaining Protected Resource Metadata
Protected resources supporting metadata  make a JSON document containing metadata as
specified in Section 2 available at a URL formed by inserting a well-known URI string into the
protected resource's resource identifier between the host component and the path and/or query
components, if any. By default, the well-known URI string used is /.well-known/oauth-
protected-resource. The syntax and semantics of .well-known are defined in . The
well-known URI path suffix used  be registered in the "Well-Known URIs" registry 

. Examples of this construction can be found in Section 3.1.

The term "application", as used below (and as used in ), encompasses all the
components used to accomplish the task for the use case. That can include OAuth clients,
authorization servers, protected resources, and non-OAuth components, inclusive of the code
running in each of them. Applications are built to solve particular problems and may utilize
many components and services.

Different applications utilizing OAuth protected resources in application-specific ways 
define and register different well-known URI path suffixes for publishing protected resource
metadata used by those applications. For instance, if the Example application uses an OAuth
protected resource in an Example-specific way and there are Example-specific metadata values
that it needs to publish, then it might register and use the example-protected-resource URI
path suffix and publish the metadata document at the URL formed by inserting /.well-known/
example-protected-resource between the host and path and/or query components of the
protected resource's resource identifier. Alternatively, many such applications will use the
default well-known URI string /.well-known/oauth-protected-resource, which is the right
choice for general-purpose OAuth protected resources, and not register an application-specific
one.

An OAuth 2.0 application using this specification  specify what well-known URI suffix it will
use for this purpose. The same protected resource  choose to publish its metadata at
multiple well-known locations derived from its resource identifier -- for example, publishing
metadata at both /.well-known/example-protected-resource and /.well-known/oauth-
protected-resource.

MUST

[RFC8615]
MUST

[IANA.well-known]

[RFC8414]

MAY

MUST
MAY

3.1. Protected Resource Metadata Request
A protected resource metadata document  be queried using an HTTP GET request at the
previously specified URL.

The consumer of the metadata would make the following request when the resource identifier is 
https://resource.example.com and the well-known URI path suffix is oauth-protected-
resource to obtain the metadata, since the resource identifier contains no path component:

MUST

  GET /.well-known/oauth-protected-resource HTTP/1.1
  Host: resource.example.com

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 8



If the resource identifier value contains a path or query component, any terminating slash (/)
following the host component  be removed before inserting /.well-known/ and the well-
known URI path suffix between the host component and the path and/or query components. The
consumer of the metadata would make the following request when the resource identifier is 
https://resource.example.com/resource1 and the well-known URI path suffix is oauth-
protected-resource to obtain the metadata, since the resource identifier contains a path
component:

Using path components enables supporting multiple resources per host. This is required in some
multi-tenant hosting configurations. This use of .well-known is for supporting multiple
resources per host; unlike its use in , it does not provide general information about the
host.

MUST

  GET /.well-known/oauth-protected-resource/resource1 HTTP/1.1
  Host: resource.example.com

[RFC8615]

3.2. Protected Resource Metadata Response
The response is a set of metadata parameters about the protected resource's configuration. A
successful response  use the 200 OK HTTP status code and return a JSON object using the 
application/json content type that contains a set of metadata parameters as its members that
are a subset of the metadata parameters defined in Section 2. Additional metadata parameters 

 be defined and used; any metadata parameters that are not understood  be ignored.

Parameters with multiple values are represented as JSON arrays. Parameters with zero values 
 be omitted from the response.

An error response uses the applicable HTTP status code value.

The following is a non-normative example response:

MUST

MAY MUST

MUST

  HTTP/1.1 200 OK
  Content-Type: application/json

  {
   "resource":
     "https://resource.example.com",
   "authorization_servers":
     ["https://as1.example.com",
      "https://as2.example.net"],
   "bearer_methods_supported":
     ["header", "body"],
   "scopes_supported":
     ["profile", "email", "phone"],
   "resource_documentation":
     "https://resource.example.com/resource_documentation.html"
  }

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 9



3.3. Protected Resource Metadata Validation
The resource value returned  be identical to the protected resource's resource identifier
value into which the well-known URI path suffix was inserted to create the URL used to retrieve
the metadata. If these values are not identical, the data contained in the response  be
used.

If the protected resource metadata was retrieved from a URL returned by the protected resource
via the WWW-Authenticate resource_metadata parameter, then the resource value returned 

 be identical to the URL that the client used to make the request to the resource server. If
these values are not identical, the data contained in the response  be used.

These validation actions can thwart impersonation attacks, as described in Section 7.3.

The recipient  validate that any signed metadata was signed by a key belonging to the
issuer and that the signature is valid. If the signature does not validate or the issuer is not
trusted, the recipient  treat this as an error condition.

MUST

MUST NOT

MUST
MUST NOT

MUST

SHOULD

4. Authorization Server Metadata
To support use cases in which the set of legitimate protected resources to use with the
authorization server is enumerable, this specification defines the authorization server metadata
parameter protected_resources, which enables the authorization server to explicitly list the
protected resources. Note that if the set of legitimate authorization servers to use with a
protected resource is also enumerable, lists in the authorization server metadata and protected
resource metadata should be cross-checked against one another for consistency when these lists
are used by the application profile.

The following authorization server metadata parameter is defined by this specification and is
registered in the "OAuth Authorization Server Metadata" registry established in "OAuth 2.0
Authorization Server Metadata" .

protected_resources
. JSON array containing a list of resource identifiers for OAuth protected resources

that can be used with this authorization server. Authorization servers  choose not to
advertise some supported protected resources even when this parameter is used. In some use
cases, the set of protected resources will not be enumerable, in which case this metadata
parameter will not be present. 

[RFC8414]

OPTIONAL
MAY

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 10



5. Use of WWW-Authenticate for Protected Resource Metadata
A protected resource  use the WWW-Authenticate HTTP response header field, as discussed in

, to return a URL to its protected resource metadata to the client. The client can then
retrieve protected resource metadata as described in Section 3. The client might then, for
instance, determine what authorization server to use for the resource based on protected
resource metadata retrieved.

A typical end-to-end flow doing so is as follows. Note that while this example uses the OAuth 2.0
authorization code flow, a similar sequence could also be implemented with any other OAuth
flow.

MAY
[RFC9110]

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 11



The client makes a request to a protected resource without presenting an access token.
The resource server responds with a WWW-Authenticate header including the URL of the
protected resource metadata.
The client fetches the protected resource metadata from this URL.
The resource server responds with the protected resource metadata according to Section 3.2.
The client validates the protected resource metadata, as described in Section 3.3, and builds
the authorization server metadata URL from an issuer identifier in the resource metadata
according to .
The client makes a request to fetch the authorization server metadata.
The authorization server responds with the authorization server metadata document
according to .

Figure 1: Sequence Diagram

Client

Client

Resource
Server

Resource
Server

Authorization
Server

Authorization
Server

1. Resource Request
Without Access Token

2. WWW-Authenticate

3. Fetch RS Metadata

4. RS Metadata Response

5. Validate RS Metadata,
Build AS Metadata URL

6. Fetch AS Metadata

7. AS Metadata Response

8-9. OAuth Authorization Flow
Client Obtains Access Token

10. Resource Request
With Access Token

11. Resource Response

1. 
2. 

3. 
4. 
5. 

[RFC8414]
6. 
7. 

[RFC8414]

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 12



The client directs the user agent to the authorization server to begin the authorization flow.
The authorization exchange is completed and the authorization server returns an access
token to the client.
The client repeats the resource request from step 1, presenting the newly obtained access
token.
The resource server returns the requested protected resource.

8. 
9. 

10. 

11. 

5.1. WWW-Authenticate Response
This specification introduces a new parameter in the WWW-Authenticate HTTP response header
field to indicate the protected resource metadata URL:

resource_metadata:
The URL of the protected resource metadata. 

The response below is an example of a WWW-Authenticate header that includes the resource
identifier.

The HTTP status code in the example response above is defined by .

This parameter  also be used in WWW-Authenticate responses using authorization
schemes other than "Bearer" , such as the DPoP scheme defined by .

The resource_metadata parameter  be combined with other parameters defined in other
extensions, such as the max_age parameter defined by .

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer resource_metadata=
  "https://resource.example.com/.well-known/oauth-protected-resource"

[RFC6750]

MAY
[RFC6750] [RFC9449]

MAY
[RFC9470]

5.2. Changes to Resource Metadata
At any point, for any reason determined by the resource server, the protected resource 
respond with a new WWW-Authenticate challenge that includes a value for the protected
resource metadata URL to indicate that its metadata may have changed. If the client receives
such a WWW-Authenticate response, it  retrieve the updated protected resource
metadata and use the new metadata values obtained, after validating them as described in 
Section 3.3. Among other things, this enables a resource server to change which authorization
servers it uses without any other coordination with clients.

MAY

SHOULD

5.3. Client Identifier and Client Authentication
The way in which the client identifier is established at the authorization server is out of scope
for this specification.

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 13



This specification is intended to be deployed in scenarios where the client has no prior
knowledge about the resource server and where the resource server might or might not have
prior knowledge about the client.

There are some existing methods by which an unrecognized client can make use of an
authorization server, such as using Dynamic Client Registration  to register the client
prior to initiating the authorization flow. Future OAuth extensions might define alternatives,
such as using URLs to identify clients.

[RFC7591]

5.4. Compatibility with Other Authentication Methods
Resource servers  return other WWW-Authenticate headers indicating various
authentication schemes. This allows the resource server to support clients that may or may not
implement this specification and allows clients to choose their preferred authentication scheme.

MAY

6. String Operations
Processing some OAuth 2.0 messages requires comparing values in the messages to known
values. For example, the member names in the metadata response might be compared to
specific member names such as resource. Comparing Unicode strings , however, has
significant security implications.

Therefore, comparisons between JSON strings and other Unicode strings  be performed as
specified below:

Remove any JSON-applied escaping to produce an array of Unicode code points.
Unicode Normalization  be applied at any point to either the JSON string
or the string it is to be compared against.
Comparisons between the two strings  be performed as a Unicode code-point-to-code-
point equality comparison.

Note that this is the same equality comparison procedure as that described in 
.

[UNICODE]

MUST

1. 
2. [USA15] MUST NOT

3. MUST

Section 8.3 of
[RFC8259]

7. Security Considerations

7.1. TLS Requirements
Implementations  support TLS. They  follow the guidance in , which provides
recommendations and requirements for improving the security of deployed services that use
TLS.

The use of TLS at the protected resource metadata URLs protects against information disclosure
and tampering.

MUST MUST [BCP195]

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 14

https://www.rfc-editor.org/rfc/rfc8259#section-8.3


7.2. Scopes
The scopes_supported parameter is the list of scopes the resource server is willing to disclose
that it supports. It is not meant to indicate that an OAuth client should request all scopes in the
list. The client  still follow OAuth best practices and request tokens with as limited a
scope as possible for the given operation, as described in 

.

SHOULD
Section 2.3 of "Best Current Practice for

OAuth 2.0 Security" [RFC9700]

7.3. Impersonation Attacks
TLS certificate checking  be performed by the client as described in  when
making a protected resource metadata request. Checking that the server certificate is valid for
the resource identifier URL prevents adversary-in-the-middle and DNS-based attacks. These
attacks could cause a client to be tricked into using an attacker's resource server, which would
enable impersonation of the legitimate protected resource. If an attacker can accomplish this,
they can access the resources that the affected client has access to, using the protected resource
that they are impersonating.

An attacker may also attempt to impersonate a protected resource by publishing a metadata
document that contains a resource metadata parameter using the resource identifier URL of the
protected resource being impersonated but that contains information of the attacker's choosing.
This would enable it to impersonate that protected resource, if accepted by the client. To prevent
this, the client  ensure that the resource identifier URL it is using as the prefix for the
metadata request exactly matches the value of the resource metadata parameter in the
protected resource metadata document received by the client, as described in Section 3.3.

MUST [RFC9525]

MUST

7.4. Audience-Restricted Access Tokens
If a client expects to interact with multiple resource servers, the client  request audience-
restricted access tokens using , and the authorization server  support
audience-restricted access tokens.

Without audience-restricted access tokens, a malicious resource server (RS1) may be able to use
the WWW-Authenticate header to get a client to request an access token with a scope used by a
legitimate resource server (RS2), and after the client sends a request to RS1, then RS1 could
reuse the access token at RS2.

While this attack is not explicitly enabled by this specification and is possible in a plain OAuth
2.0 deployment, it is made somewhat more likely by the use of dynamically configured clients.
As such, the use of audience-restricted access tokens and Resource Indicators  is 

 when using the features in this specification.

SHOULD
[RFC8707] SHOULD

[RFC8707]
RECOMMENDED

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc9700#section-2.3


7.5. Publishing Metadata in a Standard Format
Publishing information about the protected resource in a standard format makes it easier for
both legitimate clients and attackers to use the protected resource. Whether a protected
resource publishes its metadata in an ad hoc manner or in the standard format defined by this
specification, the same defenses against attacks that might be mounted that use this information
should be applied.

7.6. Authorization Servers
To support use cases in which the set of legitimate authorization servers to use with the
protected resource is enumerable, this specification defines the authorization_servers
metadata parameter, which enables explicitly listing them. Note that if the set of legitimate
protected resources to use with an authorization server is also enumerable, lists in the protected
resource metadata and authorization server metadata should be cross-checked against one
another for consistency when these lists are used by the application profile.

Secure determination of appropriate authorization servers to use with a protected resource for
all use cases is out of scope for this specification. This specification assumes that the client has a
means of determining appropriate authorization servers to use with a protected resource and
that the client is using the correct metadata for each protected resource. Implementers need to
be aware that if an inappropriate authorization server is used by the client, an attacker may be
able to act as an adversary-in-the-middle proxy to a valid authorization server without it being
detected by the authorization server or the client.

The ways to determine the appropriate authorization servers to use with a protected resource
are, in general, application dependent. For instance, some protected resources are used with a
fixed authorization server or a set of authorization servers, the locations of which may be known
via out-of-band mechanisms. Alternatively, as described in this specification, the locations of the
authorization servers could be published by the protected resource as metadata values. In other
cases, the set of authorization servers that can be used with a protected resource can be
dynamically changed by administrative actions or by changes to the set of authorization servers
adhering to a trust framework. Many other means of determining appropriate associations
between protected resources and authorization servers are also possible.

7.7. Server-Side Request Forgery (SSRF)
The OAuth client is expected to fetch the authorization server metadata based on the value of
the issuer in the resource server metadata. Since this specification enables clients to
interoperate with RSs and ASes it has no prior knowledge of, this opens a risk for Server-Side
Request Forgery (SSRF) attacks by malicious users or malicious resource servers. Clients 
take appropriate precautions against SSRF attacks, such as blocking requests to internal IP
address ranges. Further recommendations can be found in the Open Worldwide Application
Security Project (OWASP) SSRF Prevention Cheat Sheet .

SHOULD

[OWASP.SSRF]

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 16



7.8. Phishing
This specification may be deployed in a scenario where the desired HTTP resource is identified
by a user-selected URL. If this resource is malicious or compromised, it could mislead the user
into revealing their account credentials or authorizing unwanted access to OAuth-controlled
capabilities. This risk is reduced, but not eliminated, by following best practices for OAuth user
interfaces, such as providing clear notice to the user, displaying the authorization server's
domain name, supporting origin-bound phishing-resistant authenticators, supporting the use of
password managers, and applying heuristic checks such as domain reputation.

7.9. Differences Between Unsigned and Signed Metadata
Unsigned metadata is integrity protected by the use of TLS at the site where it is hosted. This
means that its security is dependent upon the Internet Public Key Infrastructure using X.509
(PKIX), as described in . Signed metadata is additionally integrity protected by the JWS
signature applied by the issuer, which is not dependent upon the Internet PKI.

When using unsigned metadata, the party issuing the metadata is the protected resource itself,
which is represented by the resource value in the metadata, whereas when using signed
metadata, the party issuing the metadata is represented by the iss (issuer) claim in the signed
metadata. When using signed metadata, applications can make trust decisions based on the
issuer that performed the signing -- information that is not available when using unsigned
metadata. How these trust decisions are made is out of scope for this specification.

[RFC9525]

7.10. Metadata Caching
Protected resource metadata is retrieved using an HTTP GET request, as specified in Section 3.1.
Normal HTTP caching behaviors apply, meaning that the GET request may retrieve a cached copy
of the content, rather than the latest copy. Implementations should utilize HTTP caching
directives such as Cache-Control with max-age, as defined in , to enable caching of
retrieved metadata for appropriate time periods.

[RFC9111]

8. IANA Considerations
Values are registered via Specification Required . Registration requests should be sent
to <oauth-ext-review@ietf.org> to initiate a two-week review period. However, to allow for the
allocation of values prior to publication of the final version of a specification, the designated
experts may approve registration once they are satisfied that the specification will be completed
and published. However, if the specification is not completed and published in a timely manner,
as determined by the designated experts, the designated experts may request that IANA
withdraw the registration.

Registration requests sent to the mailing list for review should use an appropriate subject (e.g.,
"Request to register OAuth Protected Resource Metadata: example").

[RFC8126]

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 17



Within the review period, the designated experts will either approve or deny the registration
request, communicating this decision to the review list and IANA. Denials should include an
explanation and, if applicable, suggestions as to how to make the request successful. If the
designated experts are not responsive, the registration requesters should contact IANA to
escalate the process.

Designated experts should apply the following criteria when reviewing proposed registrations:
They must be unique -- that is, they should not duplicate existing functionality; they are likely
generally applicable, as opposed to being used for a single application; and they are clear and fit
the purpose of the registry.

IANA must only accept registry updates from the designated experts and should direct all
requests for registration to the review mailing list.

In order to enable broadly informed review of registration decisions, there should be multiple
designated experts to represent the perspectives of different applications using this
specification. In cases where registration may be perceived as a conflict of interest for a
particular expert, that expert should defer to the judgment of the other experts.

The mailing list is used to enable public review of registration requests, which enables both
designated experts and other interested parties to provide feedback on proposed registrations.
Designated experts may allocate values prior to publication of the final specification. This allows
authors to receive guidance from the designated experts early, so any identified issues can be
fixed before the final specification is published.

8.1. OAuth Protected Resource Metadata Registry
This specification establishes the "OAuth Protected Resource Metadata" registry for OAuth 2.0
protected resource metadata names. The registry records the protected resource metadata
parameter and a reference to the specification that defines it.

8.1.1. Registration Template

Metadata Name:
The name requested (e.g., "resource"). This name is case sensitive. Names may not match
other registered names in a case-insensitive manner unless the designated experts state that
there is a compelling reason to allow an exception. 

Metadata Description:
Brief description of the metadata (e.g., "Resource identifier URL"). 

Change Controller:
For IETF Stream RFCs, list "IETF". For others, give the name of the responsible party. Other
details (e.g., postal address, email address, home page URI) may also be included. 

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 18



Specification Document(s):
Reference to the document or documents that specify the parameter, preferably including
URIs that can be used to retrieve copies of the documents. An indication of the relevant
sections may also be included but is not required. 

Metadata Name:
Metadata Description:
Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:
Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

8.1.2. Initial Registry Contents

resource
Protected resource's resource identifier URL 

IETF 
Section 2 of RFC 9728 

authorization_servers
JSON array containing a list of OAuth authorization server issuer

identifiers 
IETF 

Section 2 of RFC 9728 

jwks_uri
URL of the protected resource's JWK Set document 

IETF 
Section 2 of RFC 9728 

scopes_supported
JSON array containing a list of the OAuth 2.0 scope values that are used

in authorization requests to request access to this protected resource 
IETF 

Section 2 of RFC 9728 

bearer_methods_supported
JSON array containing a list of the OAuth 2.0 bearer token presentation

methods that this protected resource supports 
IETF 

Section 2 of RFC 9728 

resource_signing_alg_values_supported
JSON array containing a list of the JWS signing algorithms (alg values)

supported by the protected resource for signed content 
IETF 

Section 2 of RFC 9728 

resource_name
Human-readable name of the protected resource 

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 19



Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:

IETF 
Section 2 of RFC 9728 

resource_documentation
URL of a page containing human-readable information that developers

might want or need to know when using the protected resource 
IETF 

Section 2 of RFC 9728 

resource_policy_uri
URL of a page containing human-readable information about the

protected resource's requirements on how the client can use the data provided by the
protected resource 

IETF 
Section 2 of RFC 9728 

resource_tos_uri
URL of a page containing human-readable information about the

protected resource's terms of service 
IETF 

Section 2 of RFC 9728 

tls_client_certificate_bound_access_tokens
Boolean value indicating protected resource support for mutual-TLS

client certificate-bound access tokens 
IETF 

Section 2 of RFC 9728 

authorization_details_types_supported
JSON array containing a list of the authorization details type values

supported by the resource server when the authorization_details request parameter is
used 

IETF 
Section 2 of RFC 9728 

dpop_signing_alg_values_supported
JSON array containing a list of the JWS alg values supported by the

resource server for validating DPoP proof JWTs 
IETF 

Section 2 of RFC 9728 

dpop_bound_access_tokens_required

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 20



[BCP195]

9. References

9.1. Normative References

Metadata Description:

Change Controller:
Specification Document(s):

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

Boolean value specifying whether the protected resource always
requires the use of DPoP-bound access tokens 

IETF 
Section 2 of RFC 9728 

signed_metadata
Signed JWT containing metadata parameters about the protected

resource as claims 
IETF 

Section 2.2 of RFC 9728 

8.2. OAuth Authorization Server Metadata Registry
IANA has registered the following authorization server metadata parameter in the "OAuth
Authorization Server Metadata" registry established in "OAuth 2.0 Authorization Server
Metadata" .[RFC8414]

Metadata Name:
Metadata Description:

Change Controller:
Specification Document(s):

8.2.1. Registry Contents

protected_resources
JSON array containing a list of resource identifiers for OAuth protected

resources 
IETF 

Section 4 of RFC 9728 

8.3. Well-Known URIs Registry
This specification registers the well-known URI defined in Section 3 in the "Well-Known URIs"
registry .[IANA.well-known]

URI Suffix:
Reference:
Status:
Change Controller:
Related Information:

8.3.1. Registry Contents

oauth-protected-resource
Section 3 of RFC 9728 

permanent 
IETF 

(none) 

Best Current Practice 195, .<https://www.rfc-editor.org/info/bcp195>
At the time of writing, this BCP comprises the following:

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 21

https://www.rfc-editor.org/info/bcp195


[BCP47]

[IANA.Language]

[JWA]

[JWE]

[JWK]

[JWS]

[JWT]

[RFC2119]

[RFC6749]

[RFC6750]

, , 
. 

, , , , May
2015, . 

 and , , , 
, May 2015, . 

, , , , May 2015, 
. 

, , and , , , 
, May 2015, . 

, , and , , , 
, May 2015, . 

, , , 
, , March 1997, 
. 

, , , 
, October 2012, . 

 and , 
, , , October 2012, 

. 

 and , , , ,
, March 2021, . 

Moriarty, K. S. Farrell "Deprecating TLS 1.0 and TLS 1.1" BCP 195 RFC 8996
DOI 10.17487/RFC8996 <https://www.rfc-editor.org/info/rfc8996>

, , and , 
, 

, , , November 2022, 
. 

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-
editor.org/info/rfc9325>

Best Current Practice 47, .<https://www.rfc-editor.org/info/bcp47>
At the time of writing, this BCP comprises the following:

 and , , , 
, , September 2006, 

. 

Phillips, A., Ed. M. Davis, Ed. "Matching of Language Tags" BCP 47 RFC
4647 DOI 10.17487/RFC4647 <https://www.rfc-editor.org/info/
rfc4647>

 and , , , 
, , September 2009, 

. 

Phillips, A., Ed. M. Davis, Ed. "Tags for Identifying Languages" BCP 47 RFC
5646 DOI 10.17487/RFC5646 <https://www.rfc-editor.org/info/
rfc5646>

IANA "Language Subtag Registry" <https://www.iana.org/assignments/
language-subtag-registry>

Jones, M. "JSON Web Algorithms (JWA)" RFC 7518 DOI 10.17487/RFC7518
<https://www.rfc-editor.org/info/rfc7518>

Jones, M. J. Hildebrand "JSON Web Encryption (JWE)" RFC 7516 DOI
10.17487/RFC7516 <https://www.rfc-editor.org/info/rfc7516>

Jones, M. "JSON Web Key (JWK)" RFC 7517 DOI 10.17487/RFC7517
<https://www.rfc-editor.org/info/rfc7517>

Jones, M. Bradley, J. N. Sakimura "JSON Web Signature (JWS)" RFC 7515
DOI 10.17487/RFC7515 <https://www.rfc-editor.org/info/rfc7515>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC 7519 DOI
10.17487/RFC7519 <https://www.rfc-editor.org/info/rfc7519>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Hardt, D., Ed. "The OAuth 2.0 Authorization Framework" RFC 6749 DOI
10.17487/RFC6749 <https://www.rfc-editor.org/info/rfc6749>

Jones, M. D. Hardt "The OAuth 2.0 Authorization Framework: Bearer Token
Usage" RFC 6750 DOI 10.17487/RFC6750 <https://www.rfc-
editor.org/info/rfc6750>

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 22

https://www.rfc-editor.org/info/rfc8996
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/bcp47
https://www.rfc-editor.org/info/rfc4647
https://www.rfc-editor.org/info/rfc4647
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.iana.org/assignments/language-subtag-registry
https://www.iana.org/assignments/language-subtag-registry
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750


[RFC7591]

[RFC8126]

[RFC8174]

[RFC8259]

[RFC8414]

[RFC8615]

[RFC8705]

[RFC8707]

[RFC9110]

[RFC9111]

[RFC9396]

[RFC9449]

[RFC9525]

, , , , and , 
, , , July

2015, . 

, , and , 
, , , , June

2017, . 

, , 
, , , May 2017, 

. 

, , 
, , , December 2017, 

. 

, , and , 
, , , June 2018, 

. 

, , , 
, May 2019, . 

, , , and , 
, , 

, February 2020, . 

, , and , , 
, , February 2020, 

. 

, , and , , 
, , , June 2022, 

. 

, , and , , 
, , , June 2022, 

. 

, , and , 
, , , May 2023, 

. 

, , , , , and , 
, , ,

September 2023, . 

 and , , , 
, November 2023, . 

Richer, J., Ed. Jones, M. Bradley, J. Machulak, M. P. Hunt "OAuth 2.0
Dynamic Client Registration Protocol" RFC 7591 DOI 10.17487/RFC7591

<https://www.rfc-editor.org/info/rfc7591>

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Jones, M. Sakimura, N. J. Bradley "OAuth 2.0 Authorization Server
Metadata" RFC 8414 DOI 10.17487/RFC8414 <https://www.rfc-
editor.org/info/rfc8414>

Nottingham, M. "Well-Known Uniform Resource Identifiers (URIs)" RFC 8615
DOI 10.17487/RFC8615 <https://www.rfc-editor.org/info/rfc8615>

Campbell, B. Bradley, J. Sakimura, N. T. Lodderstedt "OAuth 2.0 Mutual-
TLS Client Authentication and Certificate-Bound Access Tokens" RFC 8705 DOI
10.17487/RFC8705 <https://www.rfc-editor.org/info/rfc8705>

Campbell, B. Bradley, J. H. Tschofenig "Resource Indicators for OAuth 2.0"
RFC 8707 DOI 10.17487/RFC8707 <https://www.rfc-editor.org/
info/rfc8707>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD
97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/
rfc9110>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Caching" STD
98 RFC 9111 DOI 10.17487/RFC9111 <https://www.rfc-editor.org/info/
rfc9111>

Lodderstedt, T. Richer, J. B. Campbell "OAuth 2.0 Rich Authorization
Requests" RFC 9396 DOI 10.17487/RFC9396 <https://www.rfc-
editor.org/info/rfc9396>

Fett, D. Campbell, B. Bradley, J. Lodderstedt, T. Jones, M. D. Waite "OAuth
2.0 Demonstrating Proof of Possession (DPoP)" RFC 9449 DOI 10.17487/RFC9449

<https://www.rfc-editor.org/info/rfc9449>

Saint-Andre, P. R. Salz "Service Identity in TLS" RFC 9525 DOI 10.17487/
RFC9525 <https://www.rfc-editor.org/info/rfc9525>

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 23

https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8414
https://www.rfc-editor.org/info/rfc8615
https://www.rfc-editor.org/info/rfc8705
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc8707
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9111
https://www.rfc-editor.org/info/rfc9396
https://www.rfc-editor.org/info/rfc9396
https://www.rfc-editor.org/info/rfc9449
https://www.rfc-editor.org/info/rfc9525


[UNICODE]

[USA15]

[FAPI.MessageSigning]

[IANA.JOSE]

[IANA.well-known]

[OpenID.Discovery]

[OWASP.SSRF]

[RFC7033]

[RFC8620]

[RFC9470]

[RFC9700]

, , 
. 

, , , 
14 August 2024, . 

9.2. Informative References

 and , , 24 March
2023, . 

, , 
. 

, , 
. 

, , , and , 
, 15 December 2023, 

. 

, 
, 

. 

, , , and , , , 
, September 2013, . 

 and , , 
, , July 2019, 

. 

 and , 
, , , September 2023, 

. 

, , , and , 
, , , , January 2025, 

. 

The Unicode Consortium "The Unicode Standard" <https://www.unicode.org/
versions/latest/>

Whistler, K., Ed. "Unicode Normalization Forms" Unicode Standard Annex #15
<https://www.unicode.org/reports/tr15/>

Tonge, D. D. Fett "FAPI 2.0 Message Signing (Draft)"
<https://openid.net/specs/fapi-2_0-message-signing.html>

IANA "JSON Web Signature and Encryption Algorithms" <https://www.iana.org/
assignments/jose>

IANA "Well-Known URIs" <https://www.iana.org/assignments/well-known-
uris>

Sakimura, N. Bradley, J. Jones, M. E. Jay "OpenID Connect Discovery
1.0 incorporating errata set 2" <https://openid.net/specs/
openid-connect-discovery-1_0.html>

OWASP Foundation "OWASP Server-Side Request Forgery Prevention Cheat
Sheet" <https://cheatsheetseries.owasp.org/cheatsheets/
Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html>

Jones, P. Salgueiro, G. Jones, M. J. Smarr "WebFinger" RFC 7033 DOI
10.17487/RFC7033 <https://www.rfc-editor.org/info/rfc7033>

Jenkins, N. C. Newman "The JSON Meta Application Protocol (JMAP)" RFC
8620 DOI 10.17487/RFC8620 <https://www.rfc-editor.org/info/
rfc8620>

Bertocci, V. B. Campbell "OAuth 2.0 Step Up Authentication Challenge
Protocol" RFC 9470 DOI 10.17487/RFC9470 <https://www.rfc-
editor.org/info/rfc9470>

Lodderstedt, T. Bradley, J. Labunets, A. D. Fett "Best Current Practice for
OAuth 2.0 Security" BCP 240 RFC 9700 DOI 10.17487/RFC9700
<https://www.rfc-editor.org/info/rfc9700>

Acknowledgements
The authors of this specification would like to thank the attendees of the IETF 115 OAuth and
HTTP API Working Group meetings and the attendees of subsequent OAuth Working Group
meetings for their input on this specification. We would also like to thank , 

, , , , , , 
, , , , , 

Amanda Baber Mike
Bishop Ralph Bragg Brian Campbell Deb Cooley Gabriel Corona Roman Danyliw Vladimir
Dzhuvinov George Fletcher Arnt Gulbrandsen Pieter Kasselman Murray Kucherawy David

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 24

https://www.unicode.org/versions/latest/
https://www.unicode.org/versions/latest/
https://www.unicode.org/reports/tr15/
https://openid.net/specs/fapi-2_0-message-signing.html
https://www.iana.org/assignments/jose
https://www.iana.org/assignments/jose
https://www.iana.org/assignments/well-known-uris
https://www.iana.org/assignments/well-known-uris
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://www.rfc-editor.org/info/rfc7033
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc8620
https://www.rfc-editor.org/info/rfc9470
https://www.rfc-editor.org/info/rfc9470
https://www.rfc-editor.org/info/rfc9700


, , , , , , 
, , , , and  for their contributions to

the specification.

Mandelberg Tony Nadalin Francesca Palombini John Scudder Rifaat Shekh-Yusef Filip Skokan
Orie Steele Atul Tulshibagwale Éric Vyncke Paul Wouters Bo Wu

Authors' Addresses
Michael B. Jones
Self-Issued Consulting

michael_b_jones@hotmail.comEmail:
https://self-issued.info/URI:

Phil Hunt
Independent Identity, Inc.

phil.hunt@yahoo.comEmail:

Aaron Parecki
Okta

aaron@parecki.comEmail:
https://aaronparecki.com/URI:

RFC 9728 OAuth 2.0 Protected Resource Metadata April 2025

Jones, et al. Standards Track Page 25

mailto:michael_b_jones@hotmail.com
https://self-issued.info/
mailto:phil.hunt@yahoo.com
mailto:aaron@parecki.com
https://aaronparecki.com/

	RFC 9728
	OAuth 2.0 Protected Resource Metadata
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Notation and Conventions
	1.2. Terminology

	2. Protected Resource Metadata
	2.1. Human-Readable Resource Metadata
	2.2. Signed Protected Resource Metadata

	3. Obtaining Protected Resource Metadata
	3.1. Protected Resource Metadata Request
	3.2. Protected Resource Metadata Response
	3.3. Protected Resource Metadata Validation

	4. Authorization Server Metadata
	5. Use of WWW-Authenticate for Protected Resource Metadata
	5.1. WWW-Authenticate Response
	5.2. Changes to Resource Metadata
	5.3. Client Identifier and Client Authentication
	5.4. Compatibility with Other Authentication Methods

	6. String Operations
	7. Security Considerations
	7.1. TLS Requirements
	7.2. Scopes
	7.3. Impersonation Attacks
	7.4. Audience-Restricted Access Tokens
	7.5. Publishing Metadata in a Standard Format
	7.6. Authorization Servers
	7.7. Server-Side Request Forgery (SSRF)
	7.8. Phishing
	7.9. Differences Between Unsigned and Signed Metadata
	7.10. Metadata Caching

	8. IANA Considerations
	8.1. OAuth Protected Resource Metadata Registry
	8.1.1. Registration Template
	8.1.2. Initial Registry Contents

	8.2. OAuth Authorization Server Metadata Registry
	8.2.1. Registry Contents

	8.3. Well-Known URIs Registry
	8.3.1. Registry Contents


	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses


