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Chapter 4:
Programming PARI in Library Mode

The User’s Guide to Pari/GP gives in three chapters a general presentation of the system, of the
gp calculator, and detailed explanation of high level PARI routines available through the calculator.
The present manual assumes general familiarity with the contents of these chapters and the basics of
ANSI C programming, and focuses on the usage of the PARI library. In this chapter, we introduce
the general concepts of PARI programming and describe useful general purpose functions; the
following chapters describes all public low or high-level functions, underlying or extending the GP
functions seen in Chapter 3 of the User’s guide.

4.1 Introduction: initializations, universal objects.

To use PARI in library mode, you must write a C program and link it to the PARI library. See the
installation guide or the Appendix to the User’s Guide to Pari/GP on how to create and install
the library and include files. A sample Makefile is presented in Appendix A, and a more elaborate
one in examples/Makefile. The best way to understand how programming is done is to work
through a complete example. We will write such a program in Section 4.10. Before doing this, a
few explanations are in order.

First, one must explain to the outside world what kind of objects and routines we are going to
use. This is done* with the directive

#include <pari/pari.h>

In particular, this defines the fundamental type for all PARI objects: the type GEN, which is
simply a pointer to long.

Before any PARI routine is called, one must initialize the system, and in particular the PARI
stack which is both a scratchboard and a repository for computed objects. This is done with a call
to the function

void pari_init(size_t size, ulong maxprime)

The first argument is the number of bytes given to PARI to work with, and the second is the upper
limit on a precomputed prime number table; size should not reasonably be taken below 500000
but you may set maxprime = 0, although the system still needs to precompute all primes up to
about 2'6. For lower-level variants allowing finer control, e.g. preventing PARI from installing its
own error or signal handlers, see Section 5.1.2.

We have now at our disposal:

e a PARI stack containing nothing. This is a big connected chunk of size bytes of memory,
where all computations take place. In large computations, intermediate results quickly clutter up
memory so some kind of garbage collecting is needed. Most systems do garbage collecting when the
memory is getting scarce, and this slows down the performance. PARI takes a different approach,

* This assumes that PARI headers are installed in a directory which belongs to your compiler’s
search path for header files. You might need to add flags like =I/usr/local/include or modify
C_INCLUDE_PATH.
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admittedly more demanding on the programmer: you must do your own cleaning up when the
intermediate results are not needed anymore. We will see later how (and when) this is done.

e the following universal objects (by definition, objects which do not belong to the stack): the
integers 0, 1, —1, 2 and —2 (respectively called gen_0, gen_1, gen_ml, gen_2 and gen_m2), the
fraction 3 (ghalf). All of these are of type GEN.

e a heap which is just a linked list of permanent universal objects. For now, it contains
exactly the ones listed above. You will probably very rarely use the heap yourself; and if so, only
as a collection of copies of objects taken from the stack (called clones in the sequel). Thus you
need not bother with its internal structure, which may change as PARI evolves. Some complex
PARI functions create clones for special garbage collecting purposes, usually destroying them when
returning.

e a table of primes (in fact of differences between consecutive primes), called diffptr, of type
byteptr (pointer to unsigned char). Its use is described in Section 5.4 later. Using it directly
is deprecated, high-level iterators provide a cleaner and more flexible interface, see Section 4.8.2
(such iterators use the private prime table, but extend it dynamically).

e access to all the built-in functions of the PARI library. These are declared to the outside
world when you include pari.h, but need the above things to function properly. So if you forget
the call to pari_init, you will get a fatal error when running your program.

4.2 Important technical notes.

4.2.1 Backward compatibility. The PARI function names evolved over time, and deprecated
functions are eventually deleted. The file pariold.h contains macros implementing a weak form
of backward compatibility. In particular, whenever the name of a documented function changes, a
#define is added to this file so that the old name expands to the new one (provided the prototype
didn’t change also).

This file is included by pari.h, but a large section is commented out by default. Define
PARI_OLD_NAMES before including pari.h to pollute your namespace with lots of obsolete names
like un*: that might enable you to compile old programs without having to modify them. The
preferred way to do that is to add -DPARI_OLD_NAMES to your compiler CFLAGS, so that you don’t
need to modify the program files themselves.

Of course, it’s better to fix the program if you can!

4.2.2 Types.

Although PARI objects all have the C type GEN, we will freely use the word type to refer to PARI
dynamic subtypes: t_INT, t_REAL, etc. The declaration

GEN x;

declares a C variable of type GEN, but its “value” will be said to have type t_INT, t_REAL, etc. The
meaning should always be clear from the context.

* For (long)gen_1. Since 2004 and version 2.2.9, typecasts are completely unnecessary in PARI
programs.

14



4.2.3 Type recursivity.

Conceptually, most PARI types are recursive. But the GEN type is a pointer to long, not to GEN.
So special macros must be used to access GEN’s components. The simplest one is gel(V, i), where
el stands for element, to access component number ¢ of the GEN V. This is a valid 1value (may be
put on the left side of an assignment), and the following two constructions are exceedingly frequent

gel(V, i) = x;
x = gel(V, i);

where x and V are GENs. This macro accesses and modifies directly the components of V' and do
not create a copy of the coefficient, contrary to all the library functions.

More generally, to retrieve the values of elements of lists of ... of lists of vectors we have the
gmael macros (for multidimensional array element). The syntax is gmaeln(V,aq,...,a,), where
V is a GEN, the a; are indexes, and n is an integer between 1 and 5. This stands for z[a][as]. .. [an],
and returns a GEN. The macros gel (resp. gmael) are synonyms for gmaell (resp. gmael2).

Finally, the macro gcoeff(M,i,j) has exactly the meaning of M[i,j] in GP when M is a
matrix. Note that due to the implementation of t_MATs as horizontal lists of vertical vectors,
gcoeff (x,y) is actually equivalent to gmael(y,x). One should use gcoeff in matrix context, and
gmael otherwise.

4.2.4 Variations on basic functions. In the library syntax descriptions in Chapter 3, we have
only given the basic names of the functions. For example gadd(z,y) assumes that x and y are GENs,
and creates the result x4y on the PARI stack. For most of the basic operators and functions, many
other variants are available. We give some examples for gadd, but the same is true for all the basic
operators, as well as for some simple common functions (a complete list is given in Chapter 6):

GEN gaddgs(GEN x, long y)
GEN gaddsg(long x, GEN y)

In the following one, z is a preexisting GEN and the result of the corresponding operation is put
into z. The size of the PARI stack does not change:

void gaddz(GEN x, GEN y, GEN z)

(This last form is inefficient in general and deprecated outside of PARI kernel programming.) Low
level kernel functions implement these operators for specialized arguments and are also available:
Level 0 deals with operations at the word level (longs and ulongs), Level 1 with t_INT and t_REAL
and Level 2 with the rest (modular arithmetic, polynomial arithmetic and linear algebra). Here
are some examples of Level 1 functions:

GEN addii(GEN x, GEN y): here x and y are GENs of type t_INT (this is not checked).
GEN addrr(GEN x, GEN y): here x and y are GENs of type t_REAL (this is not checked).

There also exist functions addir, addri, mpadd (whose two arguments can be of type t_INT or
t_REAL), addis (to add a t_INT and a long) and so on.

The Level 1 names are self-explanatory once you know that i stands for a t_INT, r for a t _REAL,
mp for i or r, s for a signed C long integer, u for an unsigned C long integer; finally the suffix z
means that the result is not created on the PARI stack but assigned to a preexisting GEN object
passed as an extra argument. Chapter 6 gives a description of these low-level functions.
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Level 2 names are more complicated, see Section 7.1 for all the gory details, and we content
ourselves with a simple example used to implement t_INTMOD arithmetic:

GEN Fp_add(GEN x, GEN y, GEN m): returns the sum of # and y modulo m. Here z,y, m are
t_INTs (this is not checked). The operation is more efficient if the inputs x, y are reduced modulo
m, but this is not a necessary condition.

Important Note. These specialized functions are of course more efficient than the generic ones,
but note the hidden danger here: the types of the objects involved (which is not checked) must be
severely controlled, e.g. using addii on a t_FRAC argument will cause disasters. Type mismatches
may corrupt the PARI stack, though in most cases they will just immediately overflow the stack.
Because of this, the PARI philosophy of giving a result which is as exact as possible, enforced for
generic functions like gadd or gmul, is dropped in kernel routines of Level 1, where it is replaced by
the much simpler rule: the result is a t_INT if and only if all arguments are integer types (t_INT
but also C long and ulong) and a t_REAL otherwise. For instance, multiplying a t_REAL by a
t_INT always yields a t_REAL if you use mulir, where gmul returns the t_INT gen O if the integer
is 0.

4.2.5 Portability: 32-bit / 64-bit architectures.

PARI supports both 32-bit and 64-bit based machines, but not simultaneously! The library is
compiled assuming a given architecture, and some of the header files you include (through pari.h)
will have been modified to match the library.

Portable macros are defined to bypass most machine dependencies. If you want your programs
to run identically on 32-bit and 64-bit machines, you have to use these, and not the corresponding
numeric values, whenever the precise size of your long integers might matter. Here are the most
important ones:

64-bit 32-bit

BITS_IN_LONG 64 32

LONG_IS_64BIT defined undefined

DEFAULTPREC 3 4 (=~ 19 decimal digits, see formula below)
MEDDEFAULTPREC 4 6 (=~ 38 decimal digits)

BIGDEFAULTPREC 5 8 (~ 57 decimal digits)

For instance, suppose you call a transcendental function, such as
GEN gexp(GEN x, long prec).

The last argument prec is an integer > 3, corresponding to the default floating point precision
required. It is only used if x is an exact object, otherwise the relative precision is determined by
the precision of x. Since the parameter prec sets the size of the inexact result counted in (long)
words (including codewords), the same value of prec will yield different results on 32-bit and 64-bit
machines. Real numbers have two codewords (see Section 4.5), so the formula for computing the
bit accuracy is

bit_accuracy(prec) = (prec — 2) * BITS_IN_LONG

(this is actually the definition of an inline function). The corresponding accuracy expressed in
decimal digits would be
bit_accuracy(prec) * log(2)/log(10).

For example if the value of prec is 5, the corresponding accuracy for 32-bit machines is (5 — 2) x*
log(232)/log(10) ~ 28 decimal digits, while for 64-bit machines it is (5 — 2) * log(2%%)/log(10) ~ 57
decimal digits.
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Thus, you must take care to change the prec parameter you are supplying according to the bit
size, either using the default precisions given by the various DEFAULTPRECs, or by using conditional
constructs of the form:

#ifndef LONG_IS_64BIT

prec = 4;
#else

prec = 6;
#endif

which is in this case equivalent to the statement prec = MEDDEFAULTPREC;.
Note that for parity reasons, half the accuracies available on 32-bit architectures (the odd ones)

have no precise equivalents on 64-bit machines.

4.2.6 Using malloc / free. You should make use of the PARI stack as much as possible, and
avoid allocating objects using the customary functions. If you do, you should use, or at least have
a very close look at, the following wrappers:

void* pari_malloc(size_t size) calls malloc to allocate size bytes and returns a pointer to
the allocated memory. If the request fails, an error is raised. The SIGINT signal is blocked until
malloc returns, to avoid leaving the system stack in an inconsistent state.

void* pari_realloc(void* ptr, size_t size) as pari_malloc but calls realloc instead of
malloc.

void pari_realloc_ip(void** ptr, size_t size) equivalent to *ptr= realloc(*ptr, size),
while blocking SIGINT.

void* pari_calloc(size_t size) as pari_malloc, setting the memory to zero.

void pari_free(void* ptr) calls free to liberate the memory space pointed to by ptr, which
must have been allocated by malloc (pari_malloc) or realloc (pari_realloc). The SIGINT
signal is blocked until free returns.

If you use the standard libc functions instead of our wrappers, then your functions will be
subtly incompatible with the gp calculator: when the user tries to interrupt a computation, the
calculator may crash (if a system call is interrupted at the wrong time).

4.3 Garbage collection.

4.3.1 Why and how.

As we have seen, pari_init allocates a big range of addresses, the stack, that are going to be used
throughout. Recall that all PARI objects are pointers. Except for a few universal objects, they all
point at some part of the stack.

The stack starts at the address bot and ends just before top. This means that the quantity
(top — bot) / sizeof(long)

is (roughly) equal to the size argument of pari_init. The PARI stack also has a “current stack
pointer” called avma, which stands for available memory address. These three variables are global
(declared by pari.h). They are of type pari_sp, which means pari stack pointer.
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The stack is oriented upside-down: the more recent an object, the closer to bot. Accordingly,
initially avma = top, and avma gets decremented as new objects are created. As its name indicates,
avma always points just after the first free address on the stack, and (GEN)avma is always (a
pointer to) the latest created object. When avma reaches bot, the stack overflows, aborting all
computations, and an error message is issued. To avoid this you need to clean up the stack from
time to time, when intermediate objects are not needed anymore. This is called “garbage collecting.”

We are now going to describe briefly how this is done. We will see many concrete examples in
the next subsection.

e First, PARI routines do their own garbage collecting, which means that whenever a documented
function from the library returns, only its result(s) have been added to the stack, possibly up
to a very small overhead (undocumented ones may not do this). In particular, a PARI function
that does not return a GEN does not clutter the stack. Thus, if your computation is small enough
(e.g. you call few PARI routines, or most of them return long integers), then you do not need to
do any garbage collecting. This is probably the case in many of your subroutines. Of course the
objects that were on the stack before the function call are left alone. Except for the ones listed
below, PARI functions only collect their own garbage.

e It may happen that all objects that were created after a certain point can be deleted — for
instance, if the final result you need is not a GEN, or if some search proved futile. Then, it is enough
to record the value of avma just before the first garbage is created, and restore it upon exit:

pari_sp av = avma; /* record initial avma */

garbage ...
set_avma(av); /* restore it */

All objects created in the garbage zone will eventually be overwritten: they should no longer be
accessed after avma has been restored. Think of the set_avma call as a simple avma = av restoring

the avma value.

e If you want to destroy (i.e. give back the memory occupied by) the latest PARI object on the
stack (e.g. the latest one obtained from a function call), you can use the function

void cgiv(GEN z)

where z is the object you want to give back. This is equivalent to the above where the initial av is
computed from z.

e Unfortunately life is not so simple, and sometimes you will want to give back accumulated garbage
during a computation without losing recent data. We shall start with the lowest level function to

get a feel for the underlying mechanisms, we shall describe simpler variants later:

GEN gerepile(pari_sp ltop, pari_sp lbot, GEN q). This function cleans up the stack between
1ltop and 1bot, where 1bot < 1top, and returns the updated object q. This means:

1) we translate (copy) all the objects in the interval [avma, 1bot[, so that its right extremity
abuts the address 1top. Graphically
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bot avma 1lbot 1top top

End of stack |[|------—----—- [++++++[=/=/=/=/=/=/-|++++++++| Start
free memory garbage
becomes:
bot avma ltop top
End of stack |-——————————————————————o [++++++ [++++++++]|  Start

free memory

where ++ denote significant objects, —— the unused part of the stack, and -/- the garbage we
remove.

2) The function then inspects all the PARI objects between avma and lbot (i.e. the ones that
we want to keep and that have been translated) and looks at every component of such an object
which is not a codeword. Each such component is a pointer to an object whose address is either

— between avma and lbot, in which case it is suitably updated,
— larger than or equal to 1top, in which case it does not change, or

— between 1bot and 1ltop in which case gerepile raises an error (“significant pointers lost
in gerepile”).

3) avma is updated (we add 1top — lbot to the old value).

4) We return the (possibly updated) object q: if q initially pointed between avma and 1lbot,
we return the updated address, as in 2). If not, the original address is still valid, and is returned!

As stated above, no component of the remaining objects (in particular q) should belong to the
erased segment [lbot, 1top[, and this is checked within gerepile. But beware as well that the
addresses of the objects in the translated zone change after a call to gerepile, so you must not
access any pointer which previously pointed into the zone below 1top. If you need to recover more
than one object, use the gerepileall function below.

Remark. As a consequence of the preceding explanation, if a PARI object is to be relocated by
gerepile then, apart from universal objects, the chunks of memory used by its components should be
in consecutive memory locations. All GENs created by documented PARI functions are guaranteed
to satisfy this. This is because the gerepile function knows only about two connected zones: the
garbage that is erased (between 1bot and 1top) and the significant pointers that are copied and
updated. If there is garbage interspersed with your objects, disaster occurs when we try to update
them and consider the corresponding “pointers”. In most cases of course the said garbage is in fact
a bunch of other GENs, in which case we simply waste time copying and updating them for nothing.
But be wary when you allow objects to become disconnected.

In practice this is achieved by the following programming idiom:

ltop = avma; garbage(); lbot = avma; q = anything();
return gerepile(ltop, lbot, q); /* returns the updated q */

or directly

ltop = avma; garbage(); lbot = avma;
return gerepile(ltop, lbot, anything());

Beware that
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ltop = avma; garbage();
return gerepile(ltop, avma, anything())

might work, but should be frowned upon. We cannot predict whether avma is evaluated after or
before the call to anything(): it depends on the compiler. If we are out of luck, it is after the
call, so the result belongs to the garbage zone and the gerepile statement becomes equivalent to
set_avma(ltop). Thus we return a pointer to random garbage.

4.3.2 Variants.

GEN gerepileupto(pari_sp ltop, GEN q). Cleans the stack between 1top and the connected
object q and returns q updated. For this to work, q must have been created before all its compo-
nents, otherwise they would belong to the garbage zone! Unless mentioned otherwise, documented
PARI functions guarantee this.

GEN gerepilecopy(pari_sp ltop, GEN x). Functionally equivalent to, but more efficient than
gerepileupto(ltop, gcopy(x))

In this case, the GEN parameter x need not satisfy any property before the garbage collection: it
may be disconnected, components created before the root, and so on. Of course, this is about twice
slower than either gerepileupto or gerepile, because x has to be copied to a clean stack zone
first. This function is a special case of gerepileall below, where n = 1.

void gerepileall(pari_sp ltop, int n, ...). To cope with complicated cases where many
objects have to be preserved. The routine expects n further arguments, which are the addresses of
the GENs you want to preserve:

pari_sp ltop = avma;
R T . G
gerepileall(ltop, 2, &x, &y);

It cleans up the most recent part of the stack (between ltop and avma), updating all the GENs
added to the argument list. A copy is done just before the cleaning to preserve them, so they
do not need to be connected before the call. With gerepilecopy, this is the most robust of the
gerepile functions (the less prone to user error), hence the slowest.

void gerepileallsp(pari_sp ltop, pari_sp lbot, int n, ...). More efficient, but trickier
than gerepileall. Cleans the stack between lbot and ltop and updates the GENs pointed at
by the elements of gptr without any further copying. This is subject to the same restrictions as
gerepile, the only difference being that more than one address gets updated.

4.3.3 Examples.

4.3.3.1 gerepile.

Let x and y be two preexisting PARI objects and suppose that we want to compute x2 + y2.
This is done using the following program:

GEN x2 = gsqr(x);
GEN y2 = gsqr(y), z = gadd(x2,y2);

The GEN z indeed points at the desired quantity. However, consider the stack: it contains as
unnecessary garbage x2 and y2. More precisely it contains (in this order) z, y2, x2. (Recall that,
since the stack grows downward from the top, the most recent object comes first.)
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It is not possible to get rid of x2, y2 before z is computed, since they are used in the final
operation. We cannot record avma before x2 is computed and restore it later, since this would
destroy z as well. It is not possible either to use the function cgiv since x2 and y2 are not at the
bottom of the stack and we do not want to give back z.

But using gerepile, we can give back the memory locations corresponding to x2, y2, and
move the object z upwards so that no space is lost. Specifically:

pari_sp ltop = avma; /* remember the current top of the stack */
GEN x2 = gsqr(x);

GEN y2 = gsqr(y);

pari_sp lbot = avma; /* the bottom of the garbage pile */

GEN z = gadd(x2, y2); /* zis now the last object on the stack */
z = gerepile(ltop, lbot, z);

Of course, the last two instructions could also have been written more simply:
z = gerepile(ltop, lbot, gadd(x2,y2));

In fact gerepileupto is even simpler to use, because the result of gadd is the last object on the
stack and gadd is guaranteed to return an object suitable for gerepileupto:

ltop = avma;
z = gerepileupto(ltop, gadd(gsqr(x), gsqr(y)));

Make sure you understand exactly what has happened before you go on!

Remark on assignments and gerepile. When the tree structure and the size of the PARI
objects which will appear in a computation are under control, one may allocate sufficiently large
objects at the beginning, use assignment statements, then simply restore avma. Coming back to
the above example, note that if we know that x and y are of type real fitting into DEFAULTPREC
words, we can program without using gerepile at all:

z = cgetr (DEFAULTPREC); ltop = avma;
gaffect(gadd(gsqr(x), gsqr(y)), z);
set_avma(ltop);

This is often slower than a craftily used gerepile though, and certainly more cumbersome to use.
As a rule, assignment statements should generally be avoided.

Variations on a theme. it is often necessary to do several gerepiles during a computation.
However, the fewer the better. The only condition for gerepile to work is that the garbage be
connected. If the computation can be arranged so that there is a minimal number of connected
pieces of garbage, then it should be done that way.

For example suppose we want to write a function of two GEN variables x and y which creates
the vector [X2 +v,y% + x]. Without garbage collecting, one would write:

pl = gsqr(x); p2 = gadd(pl, y);
p3 = gsqr(y); pd = gadd(p3, x);
z = mkvec2(p2, p4); /* not suitable for gerepileupto! */

This leaves a dirty stack containing (in this order) z, p4, p3, p2, p1. The garbage here consists of
pl and p3, which are separated by p2. But if we compute p3 before p2 then the garbage becomes
connected, and we get the following program with garbage collecting;:
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ltop = avma; pl = gsqr(x); p3 = gsqr(y);

lbot = avma; z = cgetg(3, t_VEC);

gel(z, 1) = gadd(pl,y);

gel(z, 2) = gadd(p3,x); z = gerepile(ltop,lbot,z);

Finishing by z = gerepileupto(ltop, z) would be ok as well. Beware that

ltop = avma; pl = gadd(gsqr(x), y); p3 = gadd(gsqr(y), x);
z = cgetg(3, t_VEC);

gel(z, 1) = pi;

gel(z, 2) = p3; z = gerepileupto(ltop,z); /* WRONG */

is a disaster since pl and p3 are created before z, so the call to gerepileupto overwrites them,
leaving gel(z, 1) and gel(z, 2) pointing at random data! The following does work:

ltop = avma; pl = gsqr(x); p3 = gsqr(y);
lbot = avma; z = mkvec2(gadd(pl,y), gadd(p3,x));
z = gerepile(1ltop,lbot,z);

but is very subtly wrong in the sense that z = gerepileupto(ltop, z) would not work. The
reason being that mkvec2 creates the root z of the vector after its arguments have been evaluated,
creating the components of z too early; gerepile does not care, but the created z is a time bomb
which will explode on any later gerepileupto. On the other hand

ltop = avma; z = cgetg(3, t_VEC);
gel(z, 1) = gadd(gsqr(x), y);
gel(z, 2) = gadd(gsqr(y), x); z = gerepileupto(ltop,z); /* INEFFICIENT x/

leaves the results of gsqr(x) and gsqr(y) on the stack (and lets gerepileupto update them for
naught). Finally, the most elegant and efficient version (with respect to time and memory use) is
as follows

z = cgetg(3, t_VEC);
ltop = avma; gel(z, 1) = gerepileupto(ltop, gadd(gsqr(x), y));
ltop = avma; gel(z, 2) = gerepileupto(ltop, gadd(gsqr(y), x));

which avoids updating the container z and cleans up its components individually, as soon as they
are computed.

One last example. Let us compute the product of two complex numbers x and y, using the 3M
method which requires 3 multiplications instead of the obvious 4. Let z = x*y, and set x = x,.+i*x;
and similarly for y and z. We compute p1 = x, % y,, p2 = z; * y;, p3 = (, + x;) * (y» + v;), and
then we have z. = p; — p2, 2; = p3 — (p1 + p2). The program is as follows:

ltop = avma;

pl = gmul(gel(x,1), gel(y,1));

p2 = gmul(gel(x,2), gel(y,2));

p3 = gmul(gadd(gel(x,1), gel(x,2)), gadd(gel(y,1), gel(y,2)));
p4 = gadd(pl,p2);

lbot = avma; z = cgetg(3, t_COMPLEX);

gel(z, 1) = gsub(pl,p2);

gel(z, 2) gsub(p3,p4); z = gerepile(ltop,lbot,z);
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Exercise. Write a function which multiplies a matrix by a column vector. Hint: start with a
cgetg of the result, and use gerepile whenever a coeflicient of the result vector is computed. You
can look at the answer in src/basemath/RgV.c:RgM RgCmul ().

4.3.3.2 gerepileall.

Let us now see why we may need the gerepileall variants. Although it is not an infrequent
occurrence, we do not give a specific example but a general one: suppose that we want to do a
computation (usually inside a larger function) producing more than one PARI object as a result,
say two for instance. Then even if we set up the work properly, before cleaning up we have a stack
which has the desired results z1, z2 (say), and then connected garbage from lbot to ltop. If we
write

z1l = gerepile(ltop, lbot, z1);

then the stack is cleaned, the pointers fixed up, but we have lost the address of z2. This is where
we need the gerepileall function:

gerepileall(ltop, 2, &zl, &z2)

copies z1 and z2 to new locations, cleans the stack from ltop to the old avma, and updates
the pointers z1 and z2. Here we do not assume anything about the stack: the garbage can be
disconnected and z1, z2 need not be at the bottom of the stack. If all of these assumptions are
in fact satisfied, then we can call gerepilemanysp instead, which is usually faster since we do not
need the initial copy (on the other hand, it is less cache friendly).

A most important usage is “random” garbage collection during loops whose size requirements
we cannot (or do not bother to) control in advance:

pari_sp av = avma;
GEN x, y;
while (...)
{
garbage(); x = anything();
garbage(); y = anything(); garbage();
if (gc_needed(av,1)) /* memory is running low (half spent since entry) */
gerepileall(av, 2, &x, &y);
}

Here we assume that only x and y are needed from one iteration to the next. As it would be costly
to call gerepile once for each iteration, we only do it when it seems to have become necessary.

More precisely, the macro stack_lim(av,n) denotes an address where 2"~1/(2"~1 +1) of the
remaining stack space since reference point av is exhausted (1/2 for n = 1, 2/3 for n = 2). The
test gc_needed(av,n) becomes true whenever avma drops below that address.
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4.3.4 Comments.

First, gerepile has turned out to be a flexible and fast garbage collector for number-theoretic
computations, which compares favorably with more sophisticated methods used in other systems.
Our benchmarks indicate that the price paid for using gerepile and gerepile-related copies, when
properly used, is usually less than 1% of the total running time, which is quite acceptable!

Second, it is of course harder on the programmer, and quite error-prone if you do not stick to
a consistent PARI programming style. If all seems lost, just use gerepilecopy (or gerepileall)
to fix up the stack for you. You can always optimize later when you have sorted out exactly which
routines are crucial and what objects need to be preserved and their usual sizes.

If you followed us this far, congratulations, and rejoice: the rest is much easier.

4.4 Creation of PARI objects, assignments, conversions.

4.4.1 Creation of PARI objects. The basic function which creates a PARI object is

GEN cgetg(long 1, long t) [ specifies the number of longwords to be allocated to the object,
and ¢ is the type of the object, in symbolic form (see Section 4.5 for the list of these). The precise
effect of this function is as follows: it first creates on the PARI stack a chunk of memory of size
length longwords, and saves the address of the chunk which it will in the end return. If the
stack has been used up, a message to the effect that “the PARI stack overflows” is printed, and
an error raised. Otherwise, it sets the type and length of the PARI object. In effect, it fills its
first codeword (z[0]). Many PARI objects also have a second codeword (types t_INT, t_REAL,
t_PADIC, t_POL, and t_SER). In case you want to produce one of those from scratch, which should
be exceedingly rare, it is your responsibility to fill this second codeword, either explicitly (using the
macros described in Section 4.5), or implicitly using an assignment statement (using gaffect).

Note that the length argument [ is predetermined for a number of types: 3 for types t_INTMOD,
t_FRAC, t_COMPLEX, t_POLMOD, t_RFRAC, 4 for type t_QUAD, and 5 for type t_PADIC and t_QFB.
However for the sake of efficiency, cgetg does not check this: disasters will occur if you give an
incorrect length for those types.

Notes. 1) The main use of this function is create efficiently a constant object, or to prepare for
later assignments (see Section 4.4.3). Most of the time you will use GEN objects as they are created
and returned by PARI functions. In this case you do not need to use cgetg to create space to hold
them.

2) For the creation of leaves, i.e. t_INT or t_REAL,
GEN cgeti(long length)
GEN cgetr(long length)

should be used instead of cgetg(length, t_INT) and cgetg(length, t _REAL) respectively. Fi-
nally

GEN cgetc(long prec)

creates a t_COMPLEX whose real and imaginary part are t_REALs allocated by cgetr (prec).
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Examples. 1) Both z = cgeti(DEFAULTPREC) and cgetg(DEFAULTPREC, t_INT) create a t_INT
whose “precision” is bit_accuracy(DEFAULTPREC) = 64. This means z can hold rational integers
of absolute value less than 264, Note that in both cases, the second codeword is not filled. Of
course we could use numerical values, e.g. cgeti(4), but this would have different meanings on
different machines as bit_accuracy(4) equals 64 on 32-bit machines, but 128 on 64-bit machines.

2) The following creates a complez number whose real and imaginary parts can hold real numbers
of precision bit_accuracy(MEDDEFAULTPREC) = 96 bits:

z = cgetg(3, t_COMPLEX);
gel(z, 1) = cgetr (MEDDEFAULTPREC) ;
gel(z, 2) = cgetr (MEDDEFAULTPREC) ;

or simply z = cgetc (MEDDEFAULTPREC).
3) To create a matrix object for 4 x 3 matrices:

z = cgetg(4, t_MAT);
for(i=1; i<4; i++) gel(z, i) = cgetg(5, t_COL);

or simply z = zeromatcopy(4, 3), which further initializes all entries to gen_0.

These last two examples illustrate the fact that since PARI types are recursive, all the branches
of the tree must be created. The function cgetg creates only the “root”, and other calls to cgetg
must be made to produce the whole tree. For matrices, a common mistake is to think that z =
cgetg(4, tMAT) (for example) creates the root of the matrix: one needs also to create the column
vectors of the matrix (obviously, since we specified only one dimension in the first cgetg!). This
is because a matrix is really just a row vector of column vectors (hence a priori not a basic type),
but it has been given a special type number so that operations with matrices become possible.

Finally, to facilitate input of constant objects when speed is not paramount, there are four
varargs functions:

GEN mkintn(long n, ...) returns the nonnegative t_INT whose development in base 23? is given
by the following n 32bit-words (unsigned int).

mkintn(3, a2, al, a0);
returns a22% + a;23? + ao.

GEN mkpoln(long n, ...) Returns the t_POL whose n coefficients (GEN) follow, in order of
decreasing degree.

mkpoln(3, gen_1, gen_2, gen_0);

returns the polynomial X2 + 2X (in variable 0, use setvarn if you want other variable numbers).
Beware that n is the number of coefficients, hence one more than the degree.

GEN mkvecn(long n, ...) returns the t_VEC whose n coefficients (GEN) follow.

GEN mkcoln(long n, ...) returns the t_COL whose n coefficients (GEN) follow.
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Warning. Contrary to the policy of general PARI functions, the latter three functions do not copy
their arguments, nor do they produce an object a priori suitable for gerepileupto. For instance

/* gerepile-safe: components are universal objects */
z = mkvecn(3, gen_1, gen_0, gen_2);

/* not OK for gerepileupto: stoi(3) creates component before root */
z = mkvecn(3, stoi(3), gen_0, gen_2);

/* NO! First vector component x is destroyed */
x = gclone(gen_1);

z = mkvecn(3, x, gen_0, gen_2);
gunclone (x);

The following function is also available as a special case of mkintn:
GEN uu32toi(ulong a, ulong b)

Returns the GEN equal to 232a + b, assuming that a,b < 232. This does not depend on
sizeof (long): the behavior is as above on both 32 and 64-bit machines.

4.4.2 Sizes.

long gsizeword(GEN x) returns the total number of BITS_IN_LONG-bit words occupied by the tree
representing x.

long gsizebyte(GEN x) returns the total number of bytes occupied by the tree representing x,
i.e. gsizeword(x) multiplied by sizeof (long). This is normally useless since PARI functions use
a number of words as input for lengths and precisions.

4.4.3 Assignments. Firstly, if x and y are both declared as GEN (i.e. pointers to something), the
ordinary C assignment y = x makes perfect sense: we are just moving a pointer around. However,
physically modifying either x or y (for instance, x[1] = 0) also changes the other one, which is
usually not desirable.

Very important note. Using the functions described in this paragraph is inefficient and often
awkward: one of the gerepile functions (see Section 4.3) should be preferred. See the paragraph
end for one exception to this rule.

The general PARI assignment function is the function gaffect with the following syntax:
void gaffect(GEN x, GEN y)

Its effect is to assign the PARI object x into the preezisting object y. Both x and y must be scalar
types. For convenience, vector or matrices of scalar types are also allowed.

This copies the whole structure of x into y so many conditions must be met for the assignment
to be possible. For instance it is allowed to assign a t_INT into a t_REAL, but the converse is
forbidden. For that, you must use the truncation or rounding function of your choice, e.g.mpfloor.

It can also happen that y is not large enough or does not have the proper tree structure to
receive the object x. For instance, let y the zero integer with length equal to 2; then y is too small
to accommodate any nonzero t_INT. In general common sense tells you what is possible, keeping in
mind the PARI philosophy which says that if it makes sense it is valid. For instance, the assignment
of an imprecise object into a precise one does not make sense. However, a change in precision of
imprecise objects is allowed, even if it increases its accuracy: we complement the “mantissa” with
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infinitely many 0 digits in this case. (Mantissa between quotes, because this is not restricted to
t_REALs, it also applies for p-adics for instance.)

(1))

All functions ending in “z” such as gaddz (see Section 4.2.4) implicitly use this function. In
fact what they exactly do is record avma (see Section 4.3), perform the required operation, gaffect
the result to the last operand, then restore the initial avma.

You can assign ordinary C long integers into a PARI object (not necessarily of type t_INT)
using

void gaffsg(long s, GEN y)
Note. Due to the requirements mentioned above, it is usually a bad idea to use gaffect statements.

There is one exception: for simple objects (e.g. leaves) whose size is controlled, they can be easier
to use than gerepile, and about as efficient.

Coercion. It is often useful to coerce an inexact object to a given precision. For instance at the
beginning of a routine where precision can be kept to a minimum; otherwise the precision of the
input is used in all subsequent computations, which is inefficient if the latter is known to thousands
of digits. One may use the gaffect function for this, but it is easier and more efficient to call

GEN gtofp(GEN x, long prec) converts the complex number x (t_INT, t_REAL, t_FRAC, t_QUAD
or t_COMPLEX) to either a t_REAL or t_COMPLEX whose components are t_REAL of length prec.

4.4.4 Copy. It is also very useful to copy a PARI object, not just by moving around a pointer as
in the y = x example, but by creating a copy of the whole tree structure, without pre-allocating
a possibly complicated y to use with gaffect. The function which does this is called gcopy. Its
syntax is:

GEN gcopy(GEN x)
and the effect is to create a new copy of x on the PARI stack.

Sometimes, on the contrary, a quick copy of the skeleton of x is enough, leaving pointers
to the original data in x for the sake of speed instead of making a full recursive copy. Use GEN
shallowcopy (GEN x) for this. Note that the result is not suitable for gerepileupto !

Make sure at this point that you understand the difference between y = x, y = gecopy(x), y
= shallowcopy(x) and gaffect(x,y).

4.4.5 Clones. Sometimes, it is more efficient to create a persistent copy of a PARI object. This is
not created on the stack but on the heap, hence unaffected by gerepile and friends. The function
which does this is called gclone. Its syntax is:

GEN gclone(GEN x)
A clone can be removed from the heap (thus destroyed) using
void gunclone(GEN x)

No PARI object should keep references to a clone which has been destroyed!
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4.4.6 Conversions. The following functions convert C objects to PARI objects (creating them on
the stack as usual):

GEN stoi(long s): C long integer (“small”) to t_INT.

GEN dbltor(double s): C double to t_REAL. The accuracy of the result is 19 decimal digits, i.e. a
type t_REAL of length DEFAULTPREC, although on 32-bit machines only 16 of them are significant.

We also have the converse functions:

long itos(GEN x): x must be of type t_INT,
double rtodbl(GEN x): x must be of type t_REAL,
as well as the more general ones:

long gtolong(GEN x),

double gtodouble(GEN x).

4.5 Implementation of the PARI types.

We now go through each type and explain its implementation. Let z be a GEN, pointing at a PARI
object. In the following paragraphs, we will constantly mix two points of view: on the one hand, z
is treated as the C pointer it is, on the other, as PARI’s handle on some mathematical entity, so we
will shamelessly write z # 0 to indicate that the value thus represented is nonzero (in which case
the pointer z is certainly not NULL). We offer no apologies for this style. In fact, you had better feel
comfortable juggling both views simultaneously in your mind if you want to write correct PARI
programs.

Common to all the types is the first codeword z[0], which we do not have to worry about
since this is taken care of by cgetg. Its precise structure depends on the machine you are using,
but it always contains the following data: the internal type number attached to the symbolic type
name, the length of the root in longwords, and a technical bit which indicates whether the object
is a clone or not (see Section 4.4.5). This last one is used by gp for internal garbage collecting, you
will not have to worry about it.

Some types have a second codeword, different for each type, which we will soon describe as we
will shortly consider each of them in turn.

The first codeword is handled through the following macros:
long typ(GEN z) returns the type number of z.

void settyp(GEN z, long n) sets the type number of z to n (you should not have to use this
function if you use cgetg).

long 1g(GEN z) returns the length (in longwords) of the root of z.

long setlg(GEN z, long 1) sets the length of z to 1; you should not have to use this function if
you use cgetg.

void lg_increase(GEN z) increase the length of z by 1; you should not have to use this function
if you use cgetg.

long isclone(GEN z) is z a clone?
void setisclone(GEN z) sets the clone bit.

void unsetisclone(GEN z) clears the clone bit.
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Important remark. For the sake of efficiency, none of the codeword-handling macros check the
types of their arguments even when there are stringent restrictions on their use. It is trivial to
create invalid objects, or corrupt one of the “universal constants” (e.g. setting the sign of gen_0 to
1), and they usually provide negligible savings. Use higher level functions whenever possible.

Remark. The clone bit is there so that gunclone can check it is deleting an object which was
allocated by gclone. Miscellaneous vector entries are often cloned by gp so that a GP statement
like v[1] = x does not involve copying the whole of v: the component v[1] is deleted if its clone
bit is set, and is replaced by a clone of x. Don’t set/unset yourself the clone bit unless you know
what you are doing: in particular never set the clone bit of a vector component when the said
vector is scheduled to be uncloned. Hackish code may abuse the clone bit to tag objects for reasons
unrelated to the above instead of using proper data structures. Don’t do that.

4.5.1 Type t_INT (integer). this type has a second codeword z[1] which contains the following
information:
the sign of z: coded as 1, 0 or —1 if z > 0, z = 0, z < 0 respectively.

the effective length of z, i.e. the total number of significant longwords. This means the following:
apart from the integer 0, every integer is “normalized”, meaning that the most significant mantissa
longword is nonzero. However, the integer may have been created with a longer length. Hence the
“length” which is in z[0] can be larger than the “effective length” which is in z[1].

This information is handled using the following macros:

long signe(GEN z) returns the sign of z.

void setsigne(GEN z, long s) sets the sign of z to s.

long lgefint(GEN z) returns the effective length of z.

void setlgefint(GEN z, long 1) sets the effective length of z to 1.

The integer 0 can be recognized either by its sign being 0, or by its effective length being equal
to 2. Now assume that z # 0, and let

n
|z| = g 2 B", where z, # 0 and B = 2BITS-IN-LONG
i=0

With these notations, n is 1gefint(z) - 3, and the mantissa of z may be manipulated via the
following interface:

GEN int_MSW(GEN z) returns a pointer to the most significant word of z, z,.
GEN int_LSW(GEN z) returns a pointer to the least significant word of z, z.

GEN int_W(GEN z, long i) returns the i-th significant word of z, z;. Accessing the i-th significant
word for ¢ > n yields unpredictable results.

GEN int_W_1g(GEN z, 1long i, long 1lz) returns the i-th significant word of z, z;, assuming
lgefint(z) is 1z (= n + 3). Accessing the i-th significant word for i > n yields unpredictable
results.

GEN int_precW(GEN z) returns the previous (less significant) word of z, z;_; assuming z points to
Zi.
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GEN int_nextW(GEN z) returns the next (more significant) word of z, z;;; assuming z points to
Zg.

Unnormalized integers, such that z, is possibly 0, are explicitly forbidden. To enforce this,
one may write an arbitrary mantissa then call

void int_normalize(GEN z, long knownO)

normalizes in place a nonnegative integer (such that z, is possibly 0), assuming at least the first
knownO words are zero.

For instance a binary and could be implemented in the following way:

GEN AND(GEN x, GEN y) {
long i, 1x, ly, lout;
long *xp, *yp, *outp; /* mantissa pointers */
GEN out;

if (!signe(x) || !signe(y)) return gen_O;
1x = lgefint(x); xp = int_LSW(x);
ly = 1gefint(y); yp = int_LSW(y); lout = min(1x,ly); /* > 2 */

out = cgeti(lout); out[1l] = evalsigne(1l) | evallgefint(lout);
outp = int_LSW(out) ;
for (i=2; i < lout; i++)

{
*xoutp = (kxp) & (*yp);
outp = int_nextW(outp);
Xp = int_nextW(xp);
yp = int_nextW(yp);

}

if ( '*int_MSW(out) ) out = int_normalize(out, 1);
return out;

}

This low-level interface is mandatory in order to write portable code since PARI can be compiled
using various multiprecision kernels, for instance the native one or GNU MP, with incompatible
internal structures (for one thing, the mantissa is oriented in different directions).

4.5.2 Type t_REAL (real number). this type has a second codeword z[1] which also encodes
its sign, obtained or set using the same functions as for a t_INT, and a binary exponent. This
exponent is handled using the following macros:

long expo(GEN z) returns the exponent of z. This is defined even when z is equal to zero.
void setexpo(GEN z, long e) sets the exponent of z to e.

Note the functions:

long gexpo(GEN z) which tries to return an exponent for z, even if z is not a real number.

long gsigne(GEN z) which returns a sign for z, even when z is a real number of type t_INT,
t_FRAC or t_REAL, an infinity (t_INFINITY) or a t_QUAD of positive discriminant.

The real zero is characterized by having its sign equal to 0. If z is not equal to 0, then it is
represented as 2°M, where e is the exponent, and M € [1,2[ is the mantissa of z, whose digits are
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stored in z[2], ..., z[1lg(z) — 1]. For historical reasons, the prec parameter attached to floating point
functions is measured in BITS_IN_LONG-bit words and is equal to the length of x: yes, this includes
the two code words and depends on sizeof (long). For clarity we advise to use bit_accuracy,
which computes the true length of the mantissa in bits, and convert between bits and prec using
the prec2nbits and nbits2prec macros. But keep in mind that the accuracy of t_REAL actually
increases by increments of BITS_IN_LONGbits.

More precisely, let m be the integer (z[2],..., z[1g(z)-1]) in base 2"BITS_IN_LONG; here,

z[2] is the most significant longword and is normalized, i.e. its most significant bit is 1. Then we
have M = m/2bit,accuracy(lg(z))—l—expo(z)'

GEN mantissa_real(GEN z, long *e) returns the mantissa m of z, and sets *e to the exponent
bit_accuracy(lg(z)) — 1 — expo(z), so that z = m/2°.

Thus, the real number 3.5 to accuracy bit_accuracy(1lg(z)) is represented as z[0] (encoding
type = t_REAL, 1g(z)), z[1] (encoding sign = 1, expo = 1), z[2] = 0xe0000000, z[3] = ... =
z[1lg(z) — 1] = 0xO0.

4.5.3 Type t_INTMOD. z[1] points to the modulus, and z[2] at the number representing the class
z. Both are separate GEN objects, and both must be t_INTs, satisfying the inequality 0 < z[2] < z[1].

4.5.4 Type t_FRAC (rational number). z[1] points to the numerator n, and z[2] to the
denominator d. Both must be of type t_INT such that n # 0, d > 0 and (n,d) = 1.
4.5.5 Type t_FFELT (finite field element). (Experimental)

Components of this type should normally not be accessed directly. Instead, finite field elements
should be created using ffgen.

The second codeword z[1] determines the storage format of the element, among

e t_FF_FpXQ: A=z[2] and T=z[3] are FpX, p=z[4] is a t_INT, where p is a prime number, T’
is irreducible modulo p, and deg A < degT'. This represents the element A (mod T') in F,[X]/T.

e t_FF_Flxq: A=z[2] and T=z[3] are F1lx, 1=z[4] is a t_INT, where [ is a prime number, T’
is irreducible modulo I, and deg A < deg T This represents the element A (mod T') in F;[X]/T.

e t_FF_F2xq: A=z[2] and T=z[3] are F2x, 1=z[4] is the t_INT 2, T is irreducible modulo 2,
and deg A < degT'. This represents the element A (mod T) in Fy[X]/T.

4.5.6 Type t_COMPLEX (complex number). z[1] points to the real part, and z[2] to the
imaginary part. The components z[1] and z[2] must be of type t_INT, t_REAL or t_FRAC. For
historical reasons t_INTMOD and t_PADIC are also allowed (the latter for p = 2 or congruent to 3
mod 4 only), but one should rather use the more general t_POLMOD construction.
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4.5.7 Type t_PADIC (p-adic numbers). this type has a second codeword z[1] which contains
the following information: the p-adic precision (the exponent of p modulo which the p-adic unit
corresponding to z is defined if z is not 0), i.e. one less than the number of significant p-adic digits,
and the exponent of z. This information can be handled using the following functions:

long precp(GEN z) returns the p-adic precision of z. This is 0 if z = 0.
void setprecp(GEN z, long 1) sets the p-adic precision of z to 1.

long valp(GEN z) returns the p-adic valuation of z (i.e. the exponent). This is defined even if z
is equal to 0.

void setvalp(GEN z, long e) sets the p-adic valuation of z to e.

In addition to this codeword, z[2] points to the prime p, z[3] points to pP**°P(#) and z[4]
points to at_INT representing the p-adic unit attached to z modulo z[3] (and to zero if z is zero).
To summarize, if z # 0, we have the equality:

z = pP®)  (z[4] + O(z[3])), where z[3] = O(pPreP®).

4.5.8 Type t_QUAD (quadratic number). z[1] points to the canonical polynomial P defining
the quadratic field (as output by quadpoly), z[2] to the “real part” and z[3] to the “imaginary
part”. The latter are of type t_INT, t_FRAC, t_INTMOD, or t_PADIC and are to be taken as the
coefficients of z with respect to the canonical basis (1, X') of Q[X]/(P(X)). Exact complex numbers
may be implemented as quadratics, but t_COMPLEX is in general more versatile (t _REAL components
are allowed) and more efficient.

Operations involving a t_QUAD and t_COMPLEX are implemented by converting the t_QUAD
to a t_REAL (or t_COMPLEX with t_REAL components) to the accuracy of the t_COMPLEX. As a
consequence, operations between t_QUAD and exzact t_COMPLEXs are not allowed.

4.5.9 Type t_POLMOD (polmod). as for t_INTMODs, z[1] points to the modulus, and z[2]
to a polynomial representing the class of z. Both must be of type t_POL in the same variable,
satisfying the inequality deg z[2] < degz[1]. However, z[2] is allowed to be a simplification of such
a polynomial, e.g. a scalar. This is tricky considering the hierarchical structure of the variables; in
particular, a polynomial in variable of lesser priority (see Section 4.6) than the modulus variable is
valid, since it is considered as the constant term of a polynomial of degree 0 in the correct variable.
On the other hand a variable of greater priority is not acceptable.

4.5.10 Type t_POL (polynomial). this type has a second codeword. It contains a “sign”: 0 if
the polynomial is equal to 0, and 1 if not (see however the important remark below) and a variable
number (e.g. 0 for z, 1 for y, etc...).

These data can be handled with the following macros: signe and setsigne as for t _INT and t_REAL,
long varn(GEN z) returns the variable number of the object z,
void setvarn(GEN z, long v) sets the variable number of z to v.

The variable numbers encode the relative priorities of variables, we will give more details in
Section 4.6. Note also the function long gvar (GEN z) which tries to return a variable number for
z, even if z is not a polynomial or power series. The variable number of a scalar type is set by
definition equal to NO_VARIABLE, which has lower priority than any other variable number.
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The components z[2], z[3],...z[1g(z)-1] point to the coefficients of the polynomial in
ascending order, with z[2] being the constant term and so on.

For a t_POL of nonzero sign, degpol, leading_coeff, constant_coeff, return its degree, and
a pointer to the leading, resp. constant, coefficient with respect to the main variable. Note that no
copy is made on the PARI stack so the returned value is not safe for a basic gerepile call. Applied
to any other type than t_POL, the result is unspecified. Those three functions are still defined when
the sign is 0, see Section 5.2.7 and Section 10.6.

long degree(GEN x) returns the degree of x with respect to its main variable even when x is not
a polynomial (a rational function for instance). By convention, the degree of a zero polynomial
is —1.

Important remark. The leading coefficient of a t_POL may be equal to zero:

e it is not allowed to be an exact rational 0, such as gen_0;

e an exact nonrational 0, like Mod (0,2), is possible for constant polynomials, i.e. of length 3
and no other coefficient: this carries information about the base ring for the polynomial;

e an inexact 0, like 0.E-38 or 0(375), is always possible. Inexact zeroes do not correspond
to an actual 0, but to a very small coefficient according to some metric; we keep them to give
information on how much cancellation occurred in previous computations.

A polynomial disobeying any of these rules is an invalid unnormalized object. We advise not
to use low-level constructions to build a t_POL coefficient by coefficient, such as

GEN T = cgetg(4, t_POL);
T[1] = evalvarn(0);
gel(T, 2) = x;

gel(T, 3) = y;

But if you do and it is not clear whether the result will be normalized, call

GEN normalizepol(GEN x) applied to an unnormalized t_POL x (with all coefficients correctly set
except that leading term(x) might be zero), normalizes x correctly in place and returns x. This
functions sets signe (to 0 or 1) properly.

Caveat. A consequence of the remark above is that zero polynomials are characterized by the
fact that their sign is 0. It is in general incorrect to check whether 1g(x) is 2 or degpol(x) < 0,
although both tests are valid when the coefficient types are under control: for instance, when they
are guaranteed to be t_INTs or t_FRACs. The same remark applies to t_SERs.

4.5.11 Type t_SER (power series). This type also has a second codeword, which encodes a
“sign”, i.e. 0 if the power series is 0, and 1 if not, a variable number as for polynomials, and an
exponent. This information can be handled with the following functions: signe, setsigne, varn,
setvarn as for polynomials, and valp, setvalp for the exponent as for p-adic numbers. Beware:
do not use expo and setexpo on power series.

The coefficients z[2], z[3],...z[1g(z)-1] point to the coefficients of z in ascending order. As
for polynomials (see remark there), the sign of a t_SER is 0 if and only all its coefficients are equal
to 0. (The leading coefficient cannot be an integer 0.) A series whose coefficients are integers equal
to zero is represented as O(z™) (zeroser(vz,n)). A series whose coefficients are exact zeroes, but
not all of them integers (e.g. an t_INTMOD such as Mod(0,2)) is represented as z x z"~! + O(z"),
where z is the 0 of the base ring, as per Rg_get_0.
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Note that the exponent of a power series can be negative, i.e. we are then dealing with a
Laurent series (with a finite number of negative terms).

4.5.12 Type t_RFRAC (rational function). z[1] points to the numerator n, and z[2] on the
denominator d. The denominator must be of type t_POL, with variable of higher priority than the
numerator. The numerator n is not an exact 0 and (n,d) = 1 (see gred_rfac2).

4.5.13 Type t_QFB (binary quadratic form). z[1], z[2], z[3] point to the three coefficients
of the form, and z[4] point to the form discriminant. All four are of type t_INT.

4.5.14 Type t_VEC and t_COL (vector). z[1], z[2],...z[1g(z)-1] point to the components of
the vector.

4.5.15 Type t_MAT (matrix). z[1], z[2],...z[1g(z)-1] point to the column vectors of z,
i.e. they must be of type t_COL and of the same length.

4.5.16 Type t_VECSMALL (vector of small integers). z[1], z[2],...z[1g(z)-1] are ordinary
signed long integers. This type is used instead of a t_VEC of t_INTs for efficiency reasons, for
instance to implement efficiently permutations, polynomial arithmetic and linear algebra over small
finite fields, etc.

4.5.17 Type t_STR (character string).

char * GSTR(z) (= (z+1)) points to the first character of the (NULL-terminated) string.

4.5.18 Type t_ERROR (error context). This type holds error messages, as well as details about
the error, as returned by the exception handling system. The second codeword z[1] contains the

error type (an int, as passed to pari_err). The subsequent words z[2],...z[1g(z)-1] are GENs
containing additional data, depending on the error type.

4.5.19 Type t_CLOSURE (closure). This type holds GP functions and closures, in compiled form.
The internal detail of this type is subject to change each time the GP language evolves. Hence
we do not describe it here and refer to the Developer’s Guide. However functions to create or to
evaluate t_CLOSUREs are documented in Section 12.1.

long closure_arity(GEN C) returns the arity of the t_CLOSURE.

long closure_is_variadic(GEN C) returns 1 if the closure C is variadic, O else.

4.5.20 Type t_INFINITY (infinity).

This type has a single t_INT component, which is either 1 or —1, corresponding to +oo and
—o00 respectively.

GEN mkmoo () returns —oo

GEN mkoo () returns oo

long inf_get_sign(GEN x) returns 1 if x is 400, and —1 if x is —oo.

4.5.21 Type t_LIST (list). this type was introduced for specific gp use and is rather inefficient

compared to a straightforward linked list implementation (it requires more memory, as well as many
unnecessary copies). Hence we do not describe it here and refer to the Developer’s Guide.
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Implementation note. For the types including an exponent (or a valuation), we actually store a
biased nonnegative exponent (bit-ORing the biased exponent to the codeword), obtained by adding
a constant to the true exponent: either HIGHEXPOBIT (for t_REAL) or HIGHVALPBIT (for t_PADIC
and t_SER). Of course, this is encapsulated by the exponent/valuation-handling macros and needs
not concern the library user.

4.6 PARI variables.

4.6.1 Multivariate objects.

We now consider variables and formal computations. As we have seen in Section 4.5, the codewords
for types t_POL and t_SER encode a “variable number”. This is an integer, ranging from 0 to
MAXVARN. Relative priorities may be ascertained using

int varncmp(long v, long w)
which is > 0, = 0, < 0 whenever v has lower, resp. same, resp. higher priority than w.

The way an object is considered in formal computations depends entirely on its “principal
variable number” which is given by the function

long gvar(GEN z)

which returns a variable number for z, even if z is not a polynomial or power series. The variable
number of a scalar type is set by definition equal to NO_VARIABLE which has lower priority than any
valid variable number. The variable number of a recursive type which is not a polynomial or power
series is the variable number with highest priority among its components. But for polynomials and
power series only the “outermost” number counts (we directly access varn(z) in the codewords):
the representation is not symmetrical at all.

Under gp, one needs not worry too much since the interpreter defines the variables as it sees
them* and do the right thing with the polynomials produced.

But in library mode, they are tricky objects if you intend to build polynomials yourself (and
not just let PARI functions produce them, which is less efficient). For instance, it does not make
sense to have a variable number occur in the components of a polynomial whose main variable has
a lower priority, even though PARI cannot prevent you from doing it.

4.6.2 Creating variables. A basic difficulty is to “create” a variable. Some initializations are
needed before you can use a given integer v as a variable number.

Initially, this is done for 0 and 1 (the variables x and y under gp), and 2,...,9 (printed as t2,
...t9), with decreasing priority.

* The first time a given identifier is read by the GP parser a new variable is created, and it is
assigned a strictly lower priority than any variable in use at this point. On startup, before any user
input has taken place, 'x’ is defined in this way and has initially maximal priority (and variable
number 0).
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4.6.2.1 User variables. When the program starts, x (number 0) and y (number 1) are the only
available variables, numbers 2 to 9 (decreasing priority) are reserved for building polynomials with
predictable priorities.

To define further ones, you may use
GEN varhigher(const char *s)
GEN varlower (const char *s)

to recover a monomial of degree 1 in a new variable, which is guaranteed to have higer
(resp. lower) priority than all existing ones at the time of the function call. The variable is printed
as s, but is not part of GP’s interpreter: it is not a symbol bound to a value.

On the other hand

long fetch_user_var(char #*s): inspects the user variable whose name is the string pointed to
by s, creating it if needed, and returns its variable number.

long v
GEN gy

fetch_user_var("y");
pol_x(v);

The function raises an exception if the name is already in use for an installed or built-in function,
or an alias. This function is mostly useless since it returns a variable with unpredictable priority.
Don’t use it to create new variables.

Caveat. You can use gp_read_str (see Section 4.7.1) to execute a GP command and create GP
variables on the fly as needed:

GEN gy = gp_read_str("’y"); /* returns pol_x(v), for some v */
long v = varn(gy);

But please note the quote ’y in the above. Using gp_read_str ("y") might work, but is dangerous,
especially when programming functions to be used under gp. The latter reads the value of y,
as currently known by the gp interpreter, possibly creating it in the process. But if y has been
modified by previous gp commands (e.g. y = 1), then the value of gy is not what you expected it
to be and corresponds instead to the current value of the gp variable (e.g. gen_1).

GEN fetch_var_value(long v) returns a shallow copy of the current value of the variable num-
bered v. Returns NULL if that variable number is unknown to the interpreter, e.g. it is a user
variable. Note that this may not be the same as pol_x(v) if assignments have been performed in
the interpreter.

4.6.2.2 Temporary variables. You can create temporary variables using
long fetch_var() returns a new variable with lower priority than any variable currently in use.

long fetch_var_higher () returns a new variable with higher priority than any variable currently
in use.

After the statement v = fetch_var(), you can use pol_1(v) and pol_x(v). The variables created
in this way have no identifier assigned to them though, and are printed as tnumber. You can assign
a name to a temporary variable, after creating it, by calling the function

void name_var(long n, char *s)

after which the output machinery will use the name s to represent the variable number n. The
GP parser will not recognize it by that name, however, and calling this on a variable known to gp
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raises an error. Temporary variables are meant to be used as free variables to build polynomials
and power series, and you should never assign values or functions to them as you would do with
variables under gp. For that, you need a user variable.

All objects created by fetch_var are on the heap and not on the stack, thus they are not
subject to standard garbage collecting (they are not destroyed by a gerepile or set_avma(ltop)
statement). When you do not need a variable number anymore, you can delete it using

long delete_var()

which deletes the latest temporary variable created and returns the variable number of the previous
one (or simply returns 0 if none remain). Of course you should make sure that the deleted variable
does not appear anywhere in the objects you use later on. Here is an example:

long first = fetch_var();
fetch_var();
fetch_var(); /* prepare three variables for internal use */

long ni

long n2

/* delete all variables before leaving */
do { num = delete_var(); } while (num && num <= first);

The (dangerous) statement
while (delete_var()) /* empty */;

removes all temporary variables in use.

4.6.3 Comparing variables.

Let us go back to varncmp. There is an interesting corner case, when one of the compared
variables (from gvar, say) is NO_VARIABLE. In this case, varncmp declares it has lower priority than
any other variable; of course, comparing NO_VARIABLE with itself yields 0 (same priority);

In addition to varncmp we have

long varnmax(long v, long w) given two variable numbers (possibly NO_VARIABLE), returns the
variable with the highest priority. This function always returns a valid variable number unless it is
comparing NO_VARIABLE to itself.

long varnmin(long x, long y) given two variable numbers (possibly NO_VARIABLE), returns the

variable with the lowest priority. Note that when comparing a true variable with NO_VARIABLE, this
function returns NO_VARIABLE, which is not a valid variable number.
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4.7 Input and output.

Two important aspects have not yet been explained which are specific to library mode: input and
output of PARI objects.
4.7.1 Input.

For input, PARI provides several powerful high level functions which enable you to input your
objects as if you were under gp. In fact, it is essentially the GP syntactical parser.

There are two similar functions available to parse a string:
GEN gp_read_str(const char *s)
GEN gp_read_str_multiline(const char *s, char *last)

Both functions read the whole string s. The function gp_read_str ignores newlines: it assumes
that the input is one expression and returns the result of this expression.

The function gp_read_str multiline processes the text in the same way as the GP command
read: newlines are significant and can be used to separate expressions. The return value is that of
the last nonempty expression evaluated.

In gp_read_str multiline, if last is not NULL, then *last receives the last character from
the filtered input: this can be used to check if the last character was a semi-colon (to hide the
output in interactive usage). If (and only if) the input contains no statements, then *last is set
to 0.

For both functions, gp’s metacommands are recognized.
Two variants allow to specify a default precision while evaluating the string:

GEN gp_read_str_prec(const char *s, long prec) As gp_read str, but set the precision to
prec words while evaluating s.

GEN gp_read_str_bitprec(const char *s, long bitprec) As gp_read_str, but set the preci-
sion to bitprec bits while evaluating s.

Note. The obsolete form
GEN readseq(char *t)

still exists for backward compatibility (assumes filtered input, without spaces or comments).
Don’t use it.

To read a GEN from a file, you can use the simpler interface
GEN gp_read_stream(FILE *file)

which reads a character string of arbitrary length from the stream file (up to the first complete
expression sequence), applies gp_read_str to it, and returns the resulting GEN. This way, you do
not have to worry about allocating buffers to hold the string. To interactively input an expression,
use gp-read_stream(stdin). Return NULL when there are no more expressions to read (we reached

EOF).
Finally, you can read in a whole file, as in GP’s read statement

GEN gp_read_file(char *name)
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As usual, the return value is that of the last nonempty expression evaluated. There is one technical
exception: if name is a binary file (from writebin) containing more than one object, a t_VEC
containing them all is returned. This is because binary objects bypass the parser, hence reading
them has no useful side effect.

4.7.2 Output to screen or file, output to string.

General output functions return nothing but print a character string as a side effect. Low level
routines are available to write on PARI output stream pari_outfile (stdout by default):

void pari_putc(char c): write character c to the output stream.
void pari_puts(char *s): write s to the output stream.

void pari_flush(): flush output stream; most streams are buffered by default, this command
makes sure that all characters output so are actually written.

void pari_printf(const char *fmt, ...): the most versatile such function. fmt is a character
string similar to the one printf uses. In there, % characters have a special meaning, and describe
how to print the remaining operands. In addition to the standard format types (see the GP function
printf), you can use the length modifier P (for PARI of course!) to specify that an argument is a
GEN. For instance, the following are valid conversions for a GEN argument

%Ps convert to char* (will print an arbitrary GEN)
%P.10s  convert to char*, truncated to 10 chars

%P .2f convert to floating point format with 2 decimals
%P4d convert to integer, field width at least 4

pari_printf("x[%d] = %Ps is not invertible!\n", i, gel(x,i));

Here i is an int, x a GEN which is not a leaf (presumably a vector, or a polynomial) and this would
insert the value of its i-th GEN component: gel(x,i).

Simple but useful variants to pari_printf are

void output(GEN x) prints x in raw format, followed by a newline and a buffer flush. This is more
or less equivalent to

pari_printf ("/%Ps\n", x);
pari_flush();

void outmat(GEN x) as above except if x is a t_MAT, in which case a multi-line display is used
to display the matrix. This is prettier for small dimensions, but quickly becomes unreadable and
cannot be pasted and reused for input. If all entries of x are small integers, you may use the
recursive features of %Pd and obtain the same (or better) effect with

pari_printf ("/%Pd\n", x);
pari_flush();

A variant like "%5Pd" would improve alignment by imposing 5 chars for each coefficient. Similarly
if all entries are to be converted to floats, a format like "%5.1P£f" could be useful.

These functions write on (PARI’s idea of) standard output, and must be used if you want your
functions to interact nicely with gp. In most programs, this is not a concern and it is more flexible
to write to an explicit FILE#*, or to recover a character string:

void pari_fprintf(FILE *file, const char *fmt, ...) writes the remaining arguments to
stream file according to the format specification fmt.
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char* pari_sprintf (const char *fmt, ...) produces a string from the remaining arguments,
according to the PARI format fmt (see printf). This is the libpari equivalent of strprintf, and
returns a malloc’ed string, which must be freed by the caller. Note that contrary to the analogous
sprintf in the 1libc you do not provide a buffer (leading to all kinds of buffer overflow concerns);
the function provided is actually closer to the GNU extension asprintf, although the latter has a
different interface.

Simple variants of pari_sprintf convert a GEN to a malloc’ed ASCII string, which you must
still free after use:

char* GENtostr(GEN x), using the current default output format (prettymat by default).
char* GENtoTeXstr(GEN x), suitable for inclusion in a TEX file.
Note that we have va_list analogs of the functions of printf type seen so far:
void pari_vprintf(const char *fmt, va_list ap)
void pari_vfprintf(FILE *file, const char *fmt, va_list ap)

char* pari_vsprintf(const char *fmt, va_list ap)

4.7.3 Errors.

If you want your functions to issue error messages, you can use the general error handling routine
pari_err. The basic syntax is

pari_err(e_MISC, "error message");

This prints the corresponding error message and exit the program (in library mode; go back to the
gp prompt otherwise). You can also use it in the more versatile guise

pari_err(e_MISC, format, ...);

where format describes the format to use to write the remaining operands, as in the pari_printf
function. For instance:

pari_err(e_MISC, "x[%d] = %Ps is not invertible!", i, gel(x,i));

The simple syntax seen above is just a special case with a constant format and no remaining
arguments. The general syntax is

void pari_err(numerr, ...)

where numerr is a codeword which specifies the error class and what to do with the remaining
arguments and what message to print. For instance, if x is a GEN with internal type t_STR, say,
pari_err(e_TYPE, "extgcd", x) prints the message:

*%*  incorrect type in extgcd (t_STR),

See Section 11.4 for details. In the libpari code itself, the general-purpose e MISC is used sparingly:
it is so flexible that the corresponding error contexts (t_ERROR) become hard to use reliably. Other
more rigid error types are generally more useful: for instance the error context attached to the
e_TYPE exception above is precisely documented and contains "extgcd" and x (not only its type)
as readily available components.

40



4.7.4 Warnings.
To issue a warning, use

void pari_warn(warnerr, ...) In that case, of course, we do not abort the computation, just
print the requested message and go on. The basic example is

pari_warn(warner, "Strategy 1 failed. Trying strategy 2")

which is the exact equivalent of pari_err(e MISC,...) except that you certainly do not want to
stop the program at this point, just inform the user that something important has occurred; in
particular, this output would be suitably highlighted under gp, whereas a simple printf would
not.

The valid warning keywords are warner (general), warnprec (increasing precision), warnmem
(garbage collecting) and warnfile (error in file operation), used as follows:

pari_warn(warnprec, "bnfinit", newprec);
pari_warn(warnmem, "bnfinit");
1 1 n n n 3 n . 1 n 1 n
-— b b b
pari_warn(warnfile, "close afile"); /* error when closing "afile" */

4.7.5 Debugging output.

For debugging output, you can use the standard output functions, output and pari_printf
mainly. Corresponding to the gp metacommand \x, you can also output the hexadecimal tree
attached to an object:

void dbgGEN(GEN x, long nb = -1), displays the recursive structure of x. If nb = —1, the full
structure is printed, otherwise the leaves (nonrecursive components) are truncated to nb words.

The function output is vital under debuggers, since none of them knows how to print PARI objects
by default. Seasoned PARI developers add the following gdb macro to their .gdbinit:

define oo

call output ((GEN)$arg0)
end
define xx

call dbgGEN($arg0,-1)
end

Typing i x at a breakpoint in gdb then prints the value of the GEN x (provided the optimizer has
not put it into a register, but it is rarely a good idea to debug optimized code).

The global variables DEBUGLEVEL and DEBUGMEM (corresponding to the default debug
and debugmem) are used throughout the PARI code to govern the amount of diagnostic and
debugging output, depending on their values. You can use them to debug your own functions,
especially if you install the latter under gp. Note that DEBUGLEVEL is redefined in each code
module, attaching it to a particular debug domain (see setdebug).

void setalldebug(long L) sels all DEBUGLEVEL incarnations (all debug domains) to L.

void dbg_pari_heap(void) print debugging statements about the PARI stack, heap, and number
of variables used. Corresponds to \s under gp.
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4.7.6 Timers and timing output.

To handle timings in a reentrant way, PARI defines a dedicated data type, pari_timer, together
with the following methods:

void timer_start(pari_timer *T) start (or reset) a timer.

long timer_delay(pari_timer *T) returns the number of milliseconds elapsed since the timer
was last reset. Resets the timer as a side effect. Assume T was started by timer_start.

long timer_get(pari_timer *T) returns the number of milliseconds elapsed since the timer was
last reset. Does not reset the timer. Assume 7" was started by timer_start.

void walltimer_start(pari_timer *T) start a timer, as if it had been started at the Unix epoch
(see getwalltime).

long walltimer_delay(pari_timer *T) returns the number of milliseconds elapsed since the
timer was last checked. Assume T was started by walltimer _start.

long walltimer_get(pari_timer *T) returns the number of milliseconds elapsed since the timer
was last reset. Does not reset the timer. Assume 7" was started by walltimer_start.

long timer_printf(pari_timer *T, char *format, ...) This diagnostics function is equivalent
to the following code

err_printf ("Time ")
. prints remaining arguments according to format
err_printf(": %1d", timer_delay(T));

Resets the timer as a side effect.
They are used as follows:

pari_timer T;

timer_start(&T); /* initialize timer */

printf ("Total time: %ldms\n", timer_delay(&T));
or

pari_timer T;
timer_start (&T);
for (i = 1; i < 10; i++) {

timer_printf (&T, "for i = %1ld (L[i] = %Ps)", i, gel(L,i));
}

The following functions provided the same functionality, in a nonreentrant way, and are now
deprecated.

long timer(void)
long timer2(void)
void msgtimer(const char *format, ...)

The following function implements gp’s timer and should not be used in libpari programs:
long gettime(void) equivalent to timer_delay(T') attached to a private timer 7'
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4.8 Iterators, Numerical integration, Sums, Products.

4.8.1 Iterators. Since it is easier to program directly simple loops in library mode, some GP
iterators are mainly useful for GP programming. Here are the others:

e fordiv is a trivial iteration over a list produced by divisors.

e forell, forgfvec and forsubgroup are currently not implemented as an iterator but as a
procedure with callbacks.

void forell(void *E, long fun(void*, GEN), GEN a, GEN b, long flag) goes through the
same curves as forell(ell,a,b,,flag), calling fun(E, ell) for each curve ell, stopping if fun
returns a nonzero value.

void forqfvec(void *E, long (*fun)(void *, GEN, GEN, double), GEN q, GEN b)
: Evaluate fun(E,U,v,m) on all v such that ¢(Uv) < b, where U is a t_MAT, v is a t_VECSMALL and
m = q(v) is a C double. The function fun must return 0, unless forgfvec should stop, in which
case, it should return 1.

void forqfvecl(void *E, long (*fun)(void *, GEN), GEN q, GEN b): Evaluate fun(E,v)
on all v such that g(v) < b, where v is a t_COL. The function fun must return 0, unless forgfvec
should stop, in which case, it should return 1.

void forsubgroup(void *E, long fun(void*, GEN), GEN G, GEN B) goes through the same
subgroups as forsubgroup(d = G, B,), calling fun(E, H) for each subgroup H, stopping if fun
returns a nonzero value.

e forprime and forprimestep, iterators over primes and primes in arithmetic progressions,
for which we refer you to the next subsection.

e forcomposite, we provide an iterator over composite integers:

int forcomposite_init(forcomposite_t *T, GEN a, GEN b) initialize an iterator 1" over com-
posite integers in [a,b]; over composites > a if b = NULL. We must have a > 0. Return 0 if the
range is known to be empty from the start (as if b < a or b < 0), and return 1 otherwise.

GEN forcomposite_next(forcomposite_t *T) returns the next composite in the range, assuming
that T' was initialized by forcomposite_init.

e forvec, for which we provide a convenient iterator. To initialize the analog of forvec(X =
v, ..., flag), call

int forvec_init(forvec_t *T, GEN v, long flag) initialize an iterator 7" over the vectors
generated by forvec(X = v, ..., flag). Thisreturns 0 if this vector list is empty, and 1 otherwise.

GEN forvec_next(forvec_t *T) returns the next element in the forvec sequence, or NULL if we
are done. The return value must be used immediately or copied since the next call to the iterator
destroys it: the relevant vector is updated in place. The iterator works hard to not use up PARI
stack, and is more efficient when all lower bounds in the initialization vector v are integers. In that
case, the cost is linear in the number of tuples enumerated, and you can expect to run over more
than 10° tuples per minute. If speed is critical and all integers involved would fit in C' longs, write
a simple direct backtracking algorithm yourself.

e forpart is a variant of forvec which iterates over partitions. See the documentation of the
forpart GP function for details. This function is available as a loop with callbacks:
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void forpart(void *data, long (*call) (voidx*, GEN), long k, GEN a, GEN n)
It is also available as an iterator:

void forpart_init(forpart_t *T, 1long k, GEN a, GEN n) initializes an iterator over the
partitions of k, with length restricted by n, and components restricted by a, either of which can be
set to NULL to run without restriction.

GEN forpart_next(forpart_t *T) returns the next partition, or NULL when all partitions have
been exhausted.

GEN forpart_prev(forpart_t *T) returns the previous partition, or NULL when all partitions
have been exhausted.

In both cases, the partition must be used or copied before the next call since it is returned
from a state array which will be modified in place. You may not mix calls to forpart_next and
forpart_prev: the first one called determines the ordering used to iterate over the partitions; you
can not go back since the forpart_t structure is used in incompatible ways.

e forperm to loop over permutations of k. See the documentation of the forperm GP function
for details. This function is available as an iterator:

void forperm_init(forperm_t *T, GEN k) initializes an iterator over the permutations of k
(t_INT, t_VEC or t_VECSMALL).

GEN forperm_next(forperm_t *T) returns the next permutation as a t_VECSMALL or NULL whell
all permutations have been exhausted. The permutation must be used or copied before the next
call since it is returned from a state array which will be modified in place.

e forsubset to loop over subsets. See the documentation of the forsubset GP function for
details. This function is available as two iterators:

void forallsubset_init(forsubset_t *T, long n)
void forksubset_init(forsubset_t *T, long n, long k)
It is also available in generic form:

void forsubset_init(forsubset_t *T, GEN nk) where nk is either a t_INT n or a t_VEC with
two integral components [n, k].

In all three cases, GEN forsubset_next(forsubset_t *T) returns the next subset as a
t_VECSMALL or NULL when all subsets have been exhausted.
4.8.2 Iterating over primes.

The library provides a high-level iterator, which stores its (private) data in a struct for-
prime_t and runs over arbitrary ranges of primes, without ever overflowing.

The iterator has two flavors, one providing the successive primes as ulongs, the other as GEN.
They are initialized as follows, where we expect to run over primes > a and < b:

int u_forprime_init(forprime_t *T, ulong a, ulong b) for the ulong variant, where b =
ULONG_MAX means we will run through all primes representable in a ulong type.

int forprime_init(forprime_t *T, GEN a, GEN b) for the GEN variant, where b = NULL means
+-00.
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int forprimestep_init(forprime_t *T, GEN a, GEN b, GEN q) initialize an iterator 71" over
primes in an arithmetic progression, p > a and p < b (where b = NULL means +00). The argument
q is either a t_INT (p =a (mod ¢)) or a t_INTMOD Mod(c,N) and we restrict to that congruence
class.

All variants return 1 on success, and 0 if the iterator would run over an empty interval (if
a > b, for instance). They allocate the forprime_t data structure on the PARI stack.

The successive primes are then obtained using

GEN forprime_next(forprime_t *T), returns NULL if no more primes are available in the interval
and the next suitable prime as a t_INT otherwise.

ulong u_forprime_next(forprime_t *T), returns 0 if no more primes are available in the interval
and fitting in an ulong and the next suitable prime otherwise.

These two functions leave alone the PARI stack, and write their state information in the
preallocated forprime_t struct. The typical usage is thus:

forprime_t T;

GEN p;

pari_sp av = avma, av2;
forprime_init(&T, gen_2, stoi(1000));
av2 = avma;

while ( (p = forprime_next(&T)) )

{

if ( prime_is_OK(p) ) break;
set_avma(av2); /* delete garbage accumulated in this iteration */

}

set_avma(av); /* delete all */

Of course, the final set_avma(av) could be replaced by a gerepile call. Beware that swapping
the av2 = avma and forprime_init call would be incorrect: the first set_avma(av2) would delete
the forprime_t structure!

4.8.3 Parallel iterators.

Theses iterators loops over the values of a t_CLOSURE taken at some data, where the evaluations
are done in parallel.

e parfor. To initialize the analog of parfor(i = a, b, ...), call

void parfor_init(parfor_t *T, GEN a, GEN b, GEN code) initialize an iterator over the
evaluation of code on the integers between a and b.

GEN parfor_next(parfor_t *T) returns a t_VEC [i,code(i)] where ¢ is one of the integers and
code (i) is the evaluation, NULL when all data have been exhausted. Once it happens, parfor next
must not be called anymore with the same initialization.

void parfor_stop(parfor_t *T) needs to be called when leaving the iterator before parfor next
returned NULL.

The following returns an integer 1 < ¢ < N such that fun(i) is not zero, or NULL.
GEN
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parfirst(GEN fun, GEN N)
{
parfor_t T;
GEN e;
parfor_init(&T, gen_1, N, fun);
while ((e = parfor_next(&T)))
{
GEN i = gel(e,1), funi = gel(e,2);
if (!gequalO(funi))
{ /* found: stop the iterator and return the index */
parfor_stop(&T) ;

return i;
}
}
return NULL; /* not found */
}
e parforeach. To initialize the analog of parforeach(Vv, X, ...), call

void parforeach_init(parforeach_t *T, GEN V, GEN code) initialize an iterator over the
evaluation of code on the components of V.

GEN parforeach_next(parforeach_t *T) returns a t_VEC [V[i],code(V[i])] where V[i] is one
of the components of V' and code (V[i]) is the evaluation, NULL when all data have been exhausted.
Once it happens, parforprime next must not be called anymore with the same initialization.

void parforeach_stop(parforeach_t *T) needs to be called when leaving the iterator before
parforeach next returned NULL.

e parforprime. To initialize the analog of parforprime(p = a, b, ...), call

void parforprime_init(parforprime_t *T, GEN a, GEN b, GEN code) initialize an iterator
over the evaluation of code on the prime numbers between a and b.

e parforprimestep. To initialize the analog of parforprimestep(p = a, b, q, ...), call

void parforprimestep_init(parforprime_t *T, GEN a, GEN b, GEN g, GEN code) initialize
an iterator over the evaluation of code on the prime numbers between a and b in the congruence
class defined by gq.

GEN parforprime_next(parforprime_t *T) returns a t_VEC [p,code(p)] where p is one of the
prime numbers and code(p) is the evaluation, NULL when all data have been exhausted. Once it
happens, parforprime next must not be called anymore with the same initialization.

void parforprime_stop(parforprime_t *T) needs to be called when leaving the iterator before
parforprime next returned NULL.

e parforvec. To initialize the analog of parforvec(X = V, ..., flag), call

void parforvec_init(parforvec_t *T, GEN V, GEN code, long flag) initialize an iterator
over the evaluation of code on the vectors specified by V and flag, see forvec for detail.

GEN parforvec_next(parforvec_t *T) returns a t_VEC [v,code(v)] where v is one of the vec-
tors and code(v) is the evaluation, NULL when all data have been exhausted. Once it happens,
parforvec_next must not be called anymore with the same initialization.
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void parforvec_stop(parforvec_t *T) needs to be called when leaving the iterator before par-
forvec_next returned NULL.
4.8.4 Numerical analysis.

Numerical routines code a function (to be integrated, summed, zeroed, etc.) with two param-
eters named

void *E;
GEN (*eval) (void*, GEN)

The second is meant to contain all auxiliary data needed by your function. The first is such
that eval(x, E) returns your function evaluated at x. For instance, one may code the family of
functions f; : ¥ — (x +t)? via

GEN fun(void *t, GEN x) { return gsqr(gadd(x, (GEN)t)); 1}
One can then integrate f; between a and b with the call
intnum((void*)stoi(1), &fun, a, b, NULL, prec);

Since you can set E to a pointer to any struct (typecast to void*) the above mechanism handles
arbitrary functions. For simple functions without extra parameters, you may set E = NULL and
ignore that argument in your function definition.

4.9 Catching exceptions.

4.9.1 Basic use.

PARI provides a mechanism to trap exceptions generated via pari_err using the pari_CATCH
construction. The basic usage is as follows

pari_CATCH(err_code) {
recovery branch

}

pari_TRY {
main branch

}

pari_ENDCATCH

This fragment executes the main branch, then the recovery branch if exception err_code is thrown,
e.g. e TYPE. See Section 11.4 for the description of all error classes. The special error code
CATCH_ALL is available to catch all errors.

One can replace the pari_TRY keyword by pari_RETRY, in which case once the recovery branch
is run, we run the main branch again, still catching the same exceptions.
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Restrictions.

e Such constructs can be nested without adverse effect, the innermost handler catching the
exception.

o It is walid to leave either branch using pari_err.

e It is inwvalid to use C flow control instructions (break, continue, return) to directly leave
either branch without seeing the pari_ENDCATCH keyword. This would leave an invalid structure
in the exception handler stack, and the next exception would crash.

e In order to leave using break, continue or return, one must precede the keyword by a call
to

void pari_CATCH_reset() disable the current handler, allowing to leave without adverse effect.

4.9.2 Advanced use.
In the recovery branch, the exception context can be examined via the following helper routines:

GEN pari_err_last() returns the exception context, as a t_ERROR. The exception F returned by
pari_err_last can be rethrown, using

pari_err(0, E);
long err_get_num(GEN E) returns the error symbolic name. E.g e TYPE.
GEN err_get_compo(GEN E, long i) error i-th component, as documented in Section 11.4.
For instance

pari_CATCH(CATCH_ALL) { /* catch everything */
GEN x, E = pari_err_last();
long code = err_get_num(E);
if (code != e_INV) pari_err(0, E); /* unexpected error, rethrow */
x = err_get_compo(E, 2);
/* e_INV has two components, 1: function name 2: noninvertible x */
if (typ(x) !'= t_INTMOD) pari_err(0, E); /* unexpected type, rethrow */
pari_CATCH_reset();
return x; /* leave ! */

} pari_TRY {
main branch

}
pari_ENDCATCH
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4.10 A complete program.

Now that the preliminaries are out of the way, the best way to learn how to use the library mode is
to study a detailed example. We want to write a program which computes the ged of two integers,
together with the Bezout coefficients. We shall use the standard quadratic algorithm which is not
optimal but is not too far from the one used in the PARI function bezout.

Let x,y two integers and initially <iw ‘zy> = <(1) (1)>, so that
c  ly

() 6)-6)
te ty ) \y y)
To apply the ordinary FEuclidean algorithm to the right hand side, multiply the system from the

left by <(1) —1q)’ with ¢ = floor(x/y). Iterate until y = 0 in the right hand side, then the first

line of the system reads
Sz + s,y = ged(z, y).

In practice, there is no need to update s, and ¢, since ged(x,y) and s, are enough to recover s,.
The following program is now straightforward. A couple of new functions appear in there, whose
description can be found in the technical reference manual in Chapter 5, but whose meaning should
be clear from their name and the context.

This program can be found in examples/extgcd.c together with a proper Makefile. You
may ignore the first comment

/*
GP;install("extgcd", "GG&&", "gcdex", "./libextgcd.so");
x/

which instruments the program so that gp2c-run extgcd.c can import the extged() routine into
an instance of the gp interpreter (under the name gcdex). See the gp2c manual for details.

49



#include <pari/pari.h>

/*

GP;install("extgcd", "GG&&", "gcdex", "./libextgcd.so");
x/

/* return d = gcd(a,b), sets u, v such that au + bv = gcd(a,b) */
GEN
extgcd(GEN A, GEN B, GEN *U, GEN *V)
{
pari_sp av = avma;
GEN ux = gen_1, vx = gen_0, a = A, b = B;

if (typ(a) != t_INT) pari_err_TYPE("extgcd",a);
if (typ(b) != t_INT) pari_err_TYPE("extgcd",Db);
if (signe(a) < 0) { a = negi(a); ux = negi(ux); }
while (!gequalO(Db))
{

GEN r, q = dvmdii(a, b, &r), v = vx;

vx = subii(ux, mulii(q, vx));
ux = v; a =>b; b =r;
}
*U = ux;
*V = diviiexact( subii(a, mulii(A,ux)), B );
gerepileall(av, 3, &a, U, V); return a;
}
int
main()
{
GEN x, y, d, u, v;
pari_init(1000000,2);
printf("x = "); x = gp_read_stream(stdin);
printf("y = "); y = gp_read_stream(stdin);
d = extgcd(x, y, &u, &v);
pari_printf("gcd = %Ps\nu = %Ps\nv = /Ps\n", 4, u, v);
pari_close();
return O;

¥

For simplicity, the inner loop does not include any garbage collection, hence memory use is quadratic
in the size of the inputs instead of linear. Here is a better version of that loop:

pari_sp av = avma;
while (!gequalO(b))

{
GEN r, q = dvmdii(a, b, &r), v = vx;

vx = subii(ux, mulii(q, vx));
ux = v; a =>b; b =r;
if (gc_needed(av,1))
gerepileall(av, 4, &a, &b, &ux, &vx);
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Chapter 5:
Technical Reference Guide: the basics

In the following chapters, we describe all public low-level functions of the PARI library. These
include specialized functions for handling all the PARI types. Simple higher level functions, such
as arithmetic or transcendental functions, are described in Chapter 3 of the GP user’s manual; we
will eventually see more general or flexible versions in the chapters to come. A general introduction
to the major concepts of PARI programming can be found in Chapter 4, which you should really
read first.

We shall now study specialized functions, more efficient than the library wrappers, but sloppier
on argument checking and damage control; besides speed, their main advantage is to give finer
control about the inner workings of generic routines, offering more options to the programmer.

Important advice. Generic routines eventually call lower level functions. Optimize your algo-
rithms first, not overhead and conversion costs between PARI routines. For generic operations, use
generic routines first; do not waste time looking for the most specialized one available unless you
identify a genuine bottleneck, or you need some special behavior the generic routine does not offer.
The PARI source code is part of the documentation; look for inspiration there.

The type long denotes a BITS_IN_LONG-bit signed long integer (32 or 64 bits). The type ulong
is defined as unsigned long. The word stack always refer to the PARI stack, allocated through
an initial pari_init call. Refer to Chapters 1-2 and 4 for general background.

We shall often refer to the notion of shallow function, which means that some components of
the result may point to components of the input, which is more efficient than a deep copy (full
recursive copy of the object tree). Such outputs are not suitable for gerepileupto and particular
care must be taken when garbage collecting objects which have been input to shallow functions:
corresponding outputs also become invalid and should no longer be accessed.

A function is not stack clean if it leaves intermediate data on the stack besides its output, for
efficiency reasons.

5.1 Initializing the library.

The following functions enable you to start using the PARI functions in a program, and cleanup
without exiting the whole program.
5.1.1 General purpose.

void pari_init(size_t size, ulong maxprime) initialize the library, with a stack of size bytes
and a prime table up to the maximum of maxprime and 2'6. Unless otherwise mentioned, no PARI
function will function properly before such an initialization.

void pari_close(void) stop using the library (assuming it was initialized with pari_init) and
frees all allocated objects.
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5.1.2 Technical functions.

void pari_init_opts(size_t size, ulong maxprime, ulong opts) as pari_init, more flexi-
ble. opts is a mask of flags among the following:

INIT_JMPm: install PARI error handler. When an exception is raised, the program is terminated
with exit (1).

INIT_SIGm: install PARI signal handler.

INIT DFTm: initialize the GP_DATA environment structure. This one must be enabled once. If
you close pari, then restart it, you need not reinitialize GP_DATA; if you do not, then old values are
restored.

INIT noPRIMEm: do not compute the prime table (ignore the maxprime argument). The user
must call pari_init_primes later.

INIT noIMTm: (technical, see pari mt_init in the Developer’s Guide for detail). Do not call
pari_mt_init to initialize the multi-thread engine. If this flag is set, pari mt_init () will need to
be called manually. See examples/pari-mt.c for an example.

INIT noINTGMPm: do not install PARI-specific GMP memory functions. This option is ignored
when the GMP library is not in use. You may install PARI-specific GMP memory functions later
by calling

void pari_kernel_init(void)
and restore the previous values using
void pari_kernel_close(void)

This option should not be used without a thorough understanding of the problem you are trying
to solve. The GMP memory functions are global variables used by the GMP library. If your program
is linked with two libraries that require these variables to be set to different values, conflict ensues.
To avoid a conflict, the proper solution is to record their values with mp_get memory_functions
and to call mp_set_memory_functions to restore the expected values each time the code switches
from using one library to the other. Here is an example:

void *(*pari_alloc_ptr) (size_t);

void *(*pari_realloc_ptr) (void *, size_t, size_t);
void (*pari_free_ptr) (void *, size_t);

void *(*otherlib_alloc_ptr) (size_t);

void *(*otherlib_realloc_ptr) (void *, size_t, size_t);
void (*otherlib_free_ptr) (void *, size_t);

void init(void)
{
pari_init (8000000, 500000);
mp_get_memory_functions(&pari_alloc_ptr,&pari_realloc_ptr,
&pari_free_ptr);
otherlib_init();
mp_get_memory_functions(&otherlib_alloc_ptr,&otherlib_realloc_ptr,
&otherlib_free_ptr);
3
void function_that_use_pari(void)

{

54



mp_set_memory_functions(pari_alloc_ptr,pari_realloc_ptr,
pari_free_ptr);
/*use PARI functionsx*/
}
void function_that_use_otherlib(void)
{
mp_set_memory_functions(otherlib_alloc_ptr,otherlib_realloc_ptr,
otherlib_free_ptr);
/*use OTHERLIB functions*/
b

void pari_close_opts(ulong init_opts) as pari_close, for a library initialized with a mask
of options using pari_init_opts. opts is a mask of flags among

INIT_SIGm: restore SIG_DFL default action for signals tampered with by PARI signal handler.
INIT DFTm: frees the GP_DATA environment structure.

INIT noIMTm: (technical, see parimt_init in the Developer’s Guide for detail). Do not call
pari_mt_close to close the multi-thread engine. INIT noINTGMPm: do not restore GMP memory
functions.

void pari_sig_init(void (*f)(int)) install the signal handler f (see signal(2)): the signals
SIGBUS, SIGFPE, SIGINT, SIGBREAK, SIGPIPE and SIGSEGV are concerned.

void pari_init_primes(ulong maxprime) Initialize the PARI primes. This function is called
by pari_init(...,maxprime). It is provided for users calling pari_init opts with the flag
INIT noPRIMEm.

void pari_sighandler(int signum) the actual signal handler that PARI uses. This can be used
as argument to pari_sig init or signal(2).

void pari_stackcheck_init(void *stackbase) controls the system stack exhaustion checking
code in the GP interpreter. This should be used when the system stack base address change or
when the address seen by pari_init is too far from the base address. If stackbase is NULL, disable
the check, else set the base address to stackbase. It is normally used this way

int thread_start (...)
{

long first_item_on_the_stack;

pari_stackcheck_init(&first_item_on_the_stack);

}

int pari_daemon(void) forks a PARI daemon, detaching from the main process group. The
function returns 1 in the parent, and 0 in the forked son.

void paristack_setsize(size_t rsize, size_t vsize) sets the default parisize to rsize
and the default parisizemax to vsize, and reallocate the stack to match these value, destroying
its content. Generally used just after pari_init.

void paristack_resize(ulong newsize) changes the current stack size to newsize (double it if
newsize is 0). The new size is clipped to be at least the current stack size and at most parisizemax.
The stack content is not affected by this operation.
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void parivstack_reset(void) resets the current stack to its default size parisize. This is used
to recover memory after a computation that enlarged the stack. This function destroys the content
of the enlarged stack (between the old and the new bottom of the stack). Before calling this
function, you must ensure that avma lies within the new smaller stack.

void paristack_newrsize(ulong newsize) (does not return). Library version of
default(parisize, "newsize")

Set the default parisize to newsize, or double parisize if newsize is equal to 0, then call
cb_pari_err_recover(-1).

void parivstack_resize(ulong newsize) (does not return). Library version of
default(parisizemax, "newsize")

Set the default parisizemax to newsize and call cb_pari_err recover(-1).

5.1.3 Notions specific to the GP interpreter.

An entree is the generic object attached to an identifier (a name) in GP’s interpreter, be it a
built-in or user function, or a variable. For a function, it has at least the following fields:

char *name: the name under which the interpreter knows us.
void *value: a pointer to the C function to call.

long menu: a small integer > 1 (to which group of function help do we belong, for the ?n help
menu).

char *code: the prototype code.
char xhelp: the help text for the function.

A routine in GP is described to the analyzer by an entree structure. Built-in PARI routines
are grouped in modules, which are arrays of entree structs, the last of which satisfy name = NULL
(sentinel). There are currently four modules in PARI/GP:

e general functions (functions_basic, known to libpari),
e gp-specific functions (functions_gp),

and two modules of obsolete functions. The function pari_init initializes the interpreter and
declares all symbols in functions basic. You may declare further functions on a case by case
basis or as a whole module using

void pari_add_function(entree *ep) adds a single routine to the table of symbols in the inter-
preter. It assumes pari_init has been called.

void pari_add_module(entree *mod) adds all the routines in module mod to the table of symbols
in the interpreter. It assumes pari_init has been called.

For instance, gp implements a number of private routines, which it adds to the default set via the
calls

pari_add_module(functions_gp);

A GP default is likewise attached to a helper routine, that is run when the value is con-
sulted, or changed by defaultO or setdefault. Such routines are grouped in the module func-
tions_default.

56



void pari_add_defaults_module(entree *mod) adds all the defaults in module mod to the in-
terpreter. It assumes that pari_init has been called. From this point on, all defaults in module
mod are known to setdefault and friends.

5.1.4 Public callbacks.

The gp calculator associates elaborate functions (for instance the break loop handler) to the
following callbacks, and so can you:

void (*cb_pari_ask_confirm) (const char *s) initialized to NULL. Called with argument s
whenever PARI wants confirmation for action s, for instance in secure mode.

void (*cb_pari_init_histfile) (void) initialized to NULL. Called when the histfile default is
changed. The intent is for that callback to read the file content, append it to history in memory,
then dump the expanded history to the new histfile.

int (*cb_pari_is_interactive) (void); initialized to NULL.

void (*cb_pari_quit) (long) initialized to a no-op. Called when gp must evaluate the quit
command.

void (*cb_pari_start_output) (void) initialized to NULL.

int (*cb_pari_handle_exception) (long) initialized to NULL. If not NULL, this routine is called
with argument —1 on SIGINT, and argument err on error err. If it returns a nonzero value, the
error or signal handler returns, in effect further ignoring the error or signal, otherwise it raises a
fatal error. A possible simple-minded handler, used by the gp interpreter, is

int gp_handle_exception(long err) if the breakloop default is enabled (set to 1) and
cb_pari_break_loop is not NULL, we call this routine with err argument and return the result.

int (*cb_pari_err_handle) (GEN) If not NULL, this routine is called with a t_ERROR argument
from pari_err. If it returns a nonzero value, the error returns, in effect further ignoring the error,
otherwise it raises a fatal error.

The default behavior is to print a descriptive error message (display the error), then return 0,
thereby raising a fatal error. This differs from cb_pari_handle_exception in that the function is
not called on SIGINT (which do not generate a t_ERROR), only from pari_err. Use cb_pari_sigint
if you need to handle SIGINT as well.

The following function can be used by cb_pari_err_handle to display the error message.

const char* closure_func_err() return a statically allocated string holding the name of the
function that triggered the error. Return NULL if the error was not caused by a function.

int (*cb_pari_break_loop) (int) initialized to NULL.

void (*cb_pari_sigint) (void). Function called when we receive SIGINT. By default, raises
pari_err(e_MISC, "user interrupt");

A possible simple-minded variant, used by the gp interpreter, is

void gp_sigint_fun(void)

void (*cb_pari_pre_recover) (long) initialized to NULL. If not NULL, this routine is called just
before PARI cleans up from an error. It is not required to return. The error number is passed as
argument.
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void (*cb_pari_err_recover) (long) initialized to pari_exit (). This callback must not return.
It is called after PARI has cleaned-up from an error. The error number is passed as argument,
unless the PARI stack has been destroyed, in which case it is called with argument —1.

int (*cb_pari_whatnow) (PariOUT #*out, const char *s, int flag) initialized to NULL. If not
NULL, must check whether s existed in older versions of pari (the gp callback checks against pari-
1.39.15). All output must be done via out methods.

e flag = 0: should print verbosely the answer, including help text if available.

e flag = 1: must return 0 if the function did not change, and a nonzero result otherwise. May
print a help message.
5.1.5 Configuration variables.

pari_library_path: If set, It should be a path to the libpari library. It is used by the function
gpinstall to locate the PARI library when searching for symbols. This should only be useful on
Windows.
5.1.6 Utility functions.

void pari_ask_confirm(const char *s) raise an error if the callback cb_pari_ask_confirm is
NULL. Otherwise calls

cb_pari_ask_confirm(s);

charx gp_filter(const char *s) pre-processor for the GP parser: filter out whitespace and GP
comments from s. The returned string is allocated on the PARI stack and must not be freed.

GEN pari_compile_str(const char *s) low-level form of compile_str: assumes that s does not
contain spaces or GP comments and returns the closure attached to the GP expression s. Note
that GP metacommands are not recognized.

int gp_meta(const char *s, int ismain) low-level component of gp_read_str: assumes that
s does not contain spaces or GP comments and try to interpret s as a GP metacommand (e.g.
starting by \ or 7). If successful, execute the metacommand and return 1; otherwise return 0. The
ismain parameter modifies the way \r commands are handled: if nonzero, act as if the file contents
were entered via standard input (i.e. call switchin and divert pari_infile); otherwise, simply
call gp_read_file.

void pari_hit_return(void) wait for the use to enter \n via standard input.
void gp_load_gprc(void) read and execute the user’s GPRC file.

void pari_center(const char *s) print s, centered.

void pari_print_version(void) print verbose version information.

long pari_community(void) return the index of the support section n the help.

const charx gp_format_time(long t) format a delay of ¢ ms suitable for gp output, with timer
set. The string is allocated in the PARI stack via stack malloc.

const char* gp_format_prompt(const char *p) format a prompt p suitable for gp prompting
(includes colors and protecting ANSI escape sequences for readline).

void pari_alarm(long s) set an alarm after s seconds (raise an e_ALARM exception).
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void gp_help(const char *s, long flag) print help for s, depending on the value of flag:
e h_REGULAR, basic help (?);
e h_LONG, extended help (77);
e h_APROPOS, a propos help (77).

const char ** gphelp_keyword_list(void) return a NULL-terminated array a strings, contain-
ing keywords known to gphelp besides GP functions (e.g. modulus or operator). Used by the
online help system and the contextual completion engine.

void gp_echo_and_log(const char *p, const char *s) given a prompt p and attached input
command s, update logfile and possibly print on standard output if echo is set and we are not in
interactive mode. The callback cb_pari_is_interactive must be set to a sensible value.

void gp_alarm_handler(int sig) the SIGALRM handler set by the gp interpreter.

void print_fun_list(char **1list, long n) print all elements of 1ist in columns, pausing (hit
return) every n lines. 1ist is NULL terminated.

5.1.7 Saving and restoring the GP context.

void gp_context_save(struct gp_context* rec) save the current GP context.

void gp_context_restore(struct gp_context* rec) restore a GP context. The new context
must be an ancestor of the current context.

5.1.8 GP history.
These functions allow to control the GP history (the % operator).

void pari_add_hist(GEN x, long t, long r) adds x as the last history entry; ¢ (resp. r) is the
cpu (resp. real) time used to compute it.

GEN pari_get_hist(long p), if p > 0 returns entry of index p (i.e. %p), else returns entry of index
n + p where n is the index of the last entry (used for %, %¢, % ¢, etc.).

long pari_get_histtime(long p) as pari_get_hist, returning the cpu time used to compute
the history entry, instead of the entry itself.

long pari_get_histrtime(long p) as pari_get_hist, returning the real time used to compute
the history entry, instead of the entry itself.

GEN pari_histtime(long p) return the vector [cpu, reall where cpu and real are as above.

ulong pari_nb_hist(void) return the index of the last entry.
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5.2 Handling GENs.

Almost all these functions are either macros or inlined. Unless mentioned otherwise, they do not
evaluate their arguments twice. Most of them are specific to a set of types, although no consistency
checks are made: e.g. one may access the sign of a t_PADIC, but the result is meaningless.

5.2.1 Allocation.

GEN cgetg(long 1, long t) allocates (the root of) a GEN of type ¢t and length . Sets z[0].

GEN cgeti(long 1) allocates a t_INT of length / (including the 2 codewords). Sets z[0] only.

GEN cgetr(long 1) allocates a t_REAL of length [ (including the 2 codewords). Sets z[0] only.

GEN cgetc(long prec) allocates a t_COMPLEX whose real and imaginary parts are t_REALs of
length prec.

GEN cgetg_copy(GEN x, long *1x) fast version of cgetg: allocate a GEN with the same type and
length as x, setting *1x to 1g(x) as a side-effect. (Only sets the first codeword.) This is a little
faster than cgetg since we may reuse the bitmask in z[0] instead of recomputing it, and we do not
need to check that the length does not overflow the possibilities of the implementation (since an
object with that length already exists). Note that cgetg with arguments known at compile time,
as in

cgetg(3, t_INTMOD)
will be even faster since the compiler will directly perform all computations and checks.

GEN vectrunc_init(long 1) perform cgetg(l,t_VEC), then set the length to 1 and return the
result. This is used to implement vectors whose final length is easily bounded at creation time,
that we intend to fill gradually using:

void vectrunc_append(GEN x, GEN y) assuming x was allocated using vectrunc_init, appends
y as the last element of x, which grows in the process. The function is shallow: we append y, not
a copy; it is equivalent to

long 1x = 1g(x); gel(x,1lx) = y; setlg(x, 1lx+1);

Beware that the maximal size of x (the [ argument to vectrunc_init) is unknown, hence unchecked,
and stack corruption will occur if we append more than [ — 1 elements to x. Use the safer (but
slower) shallowconcat when [ is not easy to bound in advance.

An other possibility is simply to allocate using cgetg(1l, t) then fill the components as they
become available: this time the downside is that we do not obtain a correct GEN until the vector is
complete. Almost no PARI function will be able to operate on it.

void vectrunc_append_batch(GEN x, GEN y) successively apply
vectrunc_append(x, gel(y, 1))
for all elements of the vector y.
GEN coltrunc_init(long 1) as vectrunc_init but perform cgetg(1l,t_COL).
GEN vecsmalltrunc_init(long 1)

void vecsmalltrunc_append(GEN x, long t) analog to the above for a t_VECSMALL container.
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5.2.2 Length conversions.

These routines convert a nonnegative length to different units. Their behavior is undefined at
negative integers.

long ndec2nlong(long x) converts a number of decimal digits to a number of words. Returns
1+ floor(x x BITS_IN_LONG log, 10).

long ndec2prec(long x) converts a number of decimal digits to a number of codewords. This is
equal to 2 + ndec2nlong(x).

long ndec2nbits(long x) convers a number of decimal digits to a number of bits.
long prec2ndec(long x) converts a number of codewords to a number of decimal digits.

long nbits2nlong(long x) converts a number of bits to a number of words. Returns the smallest
word count containing x bits, i.e ceil(z/BITS_IN_LONG).

long nbits2ndec(long x) converts a number of bits to a number of decimal digits.

long nbits2lg(long x) converts a number of bits to a length in code words. Currently an alias
for nbits2nlong.

long nbits2prec(long x) converts a number of bits to a number of codewords. This is equal to
2 + nbits2nlong(x).

long nbits2extraprec(long x) converts a number of bits to the mantissa length of a t_REAL in
codewords. This is currently an alias to nbits2nlong(x).

long nchar2nlong(long x) converts a number of bytes to number of words. Returns the smallest
word count containing x bytes, i.e ceil(z/sizeof(long)).

long prec2nbits(long x) converts a t_REAL length into a number of significant bits; returns
(z — 2)BITS_IN_LONG.

double prec2nbits_mul(long x, double y) returns prec2nbits(z) X y.

long bit_accuracy(long x) converts a length into a number of significant bits; currently an alias
for prec2nbits.

double bit_accuracy_mul(long x, double y) returns bit_accuracy(z) X y.
long realprec(GEN x) length of a t_REAL in words; currently an alias for 1g.
long bit_prec(GEN x) length of a t_REAL in bits.

long precdbl(long prec) given a length in words corresponding to a t_REAL precision, return
the length corresponding to doubling the precision. Due to the presence of 2 code words, this is
2(prec — 2) + 2.
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5.2.3 Read type-dependent information.

long typ(GEN x) returns the type number of x. The header files included through pari.h define
symbolic constants for the GEN types: t_INT etc. Never use their actual numerical values. E.g to
determine whether x is a t_INT, simply check

if (typ(x) == t_INT) { }

The types are internally ordered and this simplifies the implementation of commutative binary
operations (e.g addition, gcd). Avoid using the ordering directly, as it may change in the future;
use type grouping functions instead (Section 5.2.6).

const char* type_name(long t) given a type number t this routine returns a string containing
its symbolic name. E.g type_name (t_INT) returns "t_INT". The return value is read-only.

long 1g(GEN x) returns the length of x in BITS_IN_LONG-bit words.
long lgefint (GEN x) returns the effective length of the t_INT x in BITS_IN_LONG-bit words.

long signe(GEN x) returns the sign (—1, 0 or 1) of x. Can be used for t_INT, t_REAL, t_POL and
t_SER (for the last two types, only 0 or 1 are possible).

long gsigne(GEN x) returns the sign of a real number x, valid for t_INT, t_REAL as signe, but
also for t_FRAC and t_QUAD of positive discriminants. Raise a type error if typ(x) is not among
those.

long expi(GEN x) returns the binary exponent of the real number equal to the t_INT x. This is
a special case of gexpo.

long expo(GEN x) returns the binary exponent of the t_REAL x.
long mpexpo(GEN x) returns the binary exponent of the t_INT or t_REAL x.

long gexpo(GEN x) same as expo, but also valid when x is not a t_REAL (returns the largest
exponent found among the components of x). When x is an exact 0, this returns ~-HIGHEXPOBIT,
which is lower than any valid exponent.

long gexpo_safe(GEN x) same as gexpo, but returns a value strictly less than -HIGHEXPOBIT
when the exponent is not defined (e.g. for a t_PADIC or t_INTMOD component).

long valp(GEN x) returns the p-adic valuation (for a t_PADIC) or X-adic valuation (for a t_SER,
taken with respect to the main variable) of x.

long precp(GEN x) returns the precision of the t_PADIC x.
long varn(GEN x) returns the variable number of the t_POL or t_SER x (between 0 and MAXVARN).

long gvar(GEN x) returns the main variable number when any variable at all occurs in the com-
posite object x (the smallest variable number which occurs), and NO_VARIABLE otherwise.

long gvar2(GEN x) returns the variable number for the ring over which = is defined, e.g. if
x € Z[a][b] return (the variable number for) a. Return NO_VARIABLE if = has no variable or is not
defined over a polynomial ring.

long degpol(GEN x) is a simple macro returning 1g(x) - 3. This is the degree of the t_POL x
with respect to its main variable, if its leading coefficient is nonzero (a rational 0 is impossible,
but an inexact 0 is allowed, as well as an exact modular 0, e.g. Mod (0,2)). If 2 has no coefficients
(rational 0 polynomial), its length is 2 and we return the expected —1.
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long 1lgpol(GEN x) is equal to degpol(x) + 1. Used to loop over the coefficients of a t_POL in
the following situation:

GEN xd = x + 2;
long i, 1 = lgpol(x);
for (i = 0; i < 1; i++) foo( xd[i] ).

long precision(GEN x) If x is of type t_REAL, returns the precision of x, namely
e if x is not zero: the length of x in BITS_IN_LONG-bit words;

e if x is numerically equal to 0, of exponent e: the absolute accuracy nbits2prec(e) if e < 0
and LOWDEFAULTPREC if e > 0.

If x is of type t_COMPLEX, returns the minimum of the precisions of the real and imaginary
part. Otherwise, returns 0 (which stands for infinite precision). In all cases, the precision is either
0 or can be used as a prec parameter in transcendental functions.

long lgcols(GEN x) is equal to 1g(gel(x,1)). This is the length of the columns of a t_MAT with
at least one column.

long nbrows(GEN x) is equal to 1g(gel(x,1))-1. This is the number of rows of a t_MAT with at
least one column.

long gprecision(GEN x) as precision for scalars. Returns the lowest precision encountered
among the components otherwise.

long sizedigit(GEN x) returns O if x is exactly 0. Otherwise, returns gexpo(x) multiplied by
log,,(2). This gives a crude estimate for the maximal number of decimal digits of the components
of x.

5.2.4 Eval type-dependent information. These routines convert type-dependent information
to bitmask to fill the codewords of GEN objects (see Section 4.5). E.g for a t_REAL z:
z[1] = evalsigne(-1) | evalexpo(2)
Compatible components of a codeword for a given type can be OR-ed as above.
ulong evaltyp(long x) convert type x to bitmask (first codeword of all GENs)

long evallg(long x) convert length x to bitmask (first codeword of all GENs). Raise overflow
error if x is so large that the corresponding length cannot be represented

long _evallg(long x) as evallg without the overflow check.

ulong evalvarn(long x) convert variable number x to bitmask (second codeword of t_POL and
t_SER)

long evalsigne(long x) convert sign x (in —1,0,1) to bitmask (second codeword of t_INT,
t_REAL, t_POL, t_SER)

long evalprecp(long x) convert p-adic (X-adic) precision x to bitmask (second codeword of
t_PADIC, t_SER). Raise overflow error if x is so large that the corresponding precision cannot be
represented.

long _evalprecp(long x) same as evalprecp without the overflow check.
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long evalvalp(long x) convert p-adic (X-adic) valuation x to bitmask (second codeword of
t_PADIC, t_SER). Raise overflow error if x is so large that the corresponding valuation cannot
be represented.

long _evalvalp(long x) same as evalvalp without the overflow check.

long evalexpo(long x) convert exponent x to bitmask (second codeword of t_REAL). Raise over-
flow error if x is so large that the corresponding exponent cannot be represented

long _evalexpo(long x) same as evalexpo without the overflow check.

long evallgefint(long x) convert effective length x to bitmask (second codeword t_INT). This
should be less or equal than the length of the t_INT, hence there is no overflow check for the
effective length.

5.2.5 Set type-dependent information. Use these functions and macros with extreme care since
usually the corresponding information is set otherwise, and the components and further codeword
fields (which are left unchanged) may not be compatible with the new information.

void settyp(GEN x, long s) sets the type number of x to s.

void setlg(GEN x, long s) sets the length of x to s. This is an efficient way of truncating
vectors, matrices or polynomials.

void setlgefint(GEN x, long s) sets the effective length of the t_INT x to s. The number s
must be less than or equal to the length of x.

void setsigne(GEN x, long s) sets the sign of x to s. If x is a t_INT or t_REAL, s must be equal
to —1, 0 or 1, and if x is a t_POL or t_SER, s must be equal to 0 or 1. No sanity check is made; in
particular, setting the sign of a 0 t_INT to +1 creates an invalid object.

void togglesign(GEN x) sets the sign s of x to —s, in place.

void togglesign_safe(GEN *x) sets the s sign of *x to —s, in place, unless *x is one of the integer
universal constants in which case replace *x by its negation (e.g. replace gen_1 by gen m1).

void setabssign(GEN x) sets the sign s of x to |s|, in place.

void affectsign(GEN x, GEN y) shortcut for setsigne(y, signe(x)). No sanity check is made;
in particular, setting the sign of a 0 t_INT to +1 creates an invalid object.

void affectsign_safe(GEN x, GEN *y) sets the sign of *y to that of x, in place, unless *y is one
of the integer universal constants in which case replace *y by its negation if needed (e.g. replace
gen_1 by gen m1 if x is negative). No other sanity check is made; in particular, setting the sign of
a 0 t_INT to £1 creates an invalid object.

void normalize_frac(GEN z) assuming z is of the form mkfrac(a,b) with b # 0, make sure that
b > 0 by changing the sign of @ in place if needed (use togglesign).

void setexpo(GEN x, long s) sets the binary exponent of the t_REAL x to s. The value s must
be a 24-bit signed number.

void setvalp(GEN x, long s) sets the p-adic or X-adic valuation of x to s, if x is a t_PADIC or
a t_SER, respectively.

void setprecp(GEN x, long s) sets the p-adic precision of the t_PADIC x to s.

void setvarn(GEN x, long s) sets the variable number of the t_POL or t_SER x to s (where
0 < s < MAXVARN).
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5.2.6 Type groups. In the following functions, t denotes the type of a GEN. They used to be
implemented as macros, which could evaluate their argument twice; no longer: it is not inefficient
to write

is_intreal_t (typ(x))

int is_recursive_t(long t) true iff t is a recursive type (the nonrecursive types are t_INT,
t_REAL, t_STR, t_VECSMALL). Somewhat contrary to intuition, t_LIST is also nonrecursive, ; see
the Developer’s guide for details.

int is_intreal_t(long t) true iff t is t_INT or t_REAL.

int is_rational_t(long t) true iff t is t_INT or t_FRAC.

int is_real_t(long t) true iff t is t_INT or t_REAL or t_FRAC.
int is_qgfb_t(long t) true iff t is t_QFB.

int is_vec_t(long t) true iff t is t_VEC or t_COL.

int is_matvec_t(long t) true iff t is t_MAT, t_VEC or t_COL.

int is_scalar_t(long t) true iff t is a scalar, i.e a t_INT, a t_REAL, a t_INTMOD, a t_FRAC, a
t_COMPLEX, a t_PADIC, a t_QUAD, or a t_POLMOD.

int is_extscalar_t(long t) true iff t is a scalar (see is_scalar_t) or t is t_POL.

int is_const_t(long t) true iff t is a scalar which is not t_POLMOD.

int is_noncalc_t(long t) true if generic operations (gadd, gmul) do not make sense for ¢: cor-
responds to types t_LIST, t_STR, t_VECSMALL, t_CLOSURE

5.2.7 Accessors and components. The first two functions return GEN components as copies on
the stack:

GEN compo(GEN x, long n) creates a copy of the n-th true component (i.e. not counting the
codewords) of the object x.

GEN truecoeff(GEN x, long n) creates a copy of the coefficient of degree n of x if x is a scalar,
t_POL or t_SER, and otherwise of the n-th component of x.
On the contrary, the following routines return the address of a GEN component. No copy is made

on the stack:

GEN constant_coeff (GEN x) returns the address of the constant coefficient of t_POL x. By con-
vention, a 0 polynomial (whose sign is 0) has gen_0 constant term.

GEN leading_coeff (GEN x) returns the address of the leading coefficient of t_POL x, i.e. the
coefficient of largest index stored in the array representing z. This may be an inexact 0. By
convention, return gen 0 if the coefficient array is empty.

GEN gel(GEN x, long i) returns the address of the x[i] entry of x. (el stands for element.)

GEN gcoeff (GEN x, long i, long j) returns the address of the x[i,j] entry of t_MAT x, i.e. the
coefficient at row i and column j.

GEN gmael(GEN x, long i, long j) returns the address of the x[i] [j] entry of x. (mael stands
for multidimensional array element.)

GEN gmael2(GEN A, long x1, long x2) is an alias for gmael. Similar macros gmael3, gmael4,
gmaelb are available.
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5.3 Global numerical constants.

These are defined in the various public PARI headers.

5.3.1 Constants related to word size.

long BITS_IN_LONG = 2TWOPOTBITS-IN-LONG. nymber of bits in a long (32 or 64).
long BITS_IN_HALFULONG: BITS_IN_LONG divided by 2.

long LONG_MAX: the largest positive long.

ulong ULONG_MAX: the largest ulong.

long DEFAULTPREC: the length (1g) of a t_REAL with 64 bits of accuracy
long MEDDEFAULTPREC: the length (1g) of a t_REAL with 128 bits of accuracy
long BIGDEFAULTPREC: the length (1g) of a t_REAL with 192 bits of accuracy
ulong HIGHBIT: the largest power of 2 fitting in an ulong.

ulong LOWMASK: bitmask yielding the least significant bits.

ulong HIGHMASK: bitmask yielding the most significant bits.

The last two are used to implement the following convenience macros, returning half the bits of
their operand:

ulong LOWWORD(ulong a) returns least significant bits.
ulong HIGHWORD(ulong a) returns most significant bits.
Finally

long divsBIL(long n) returns the Euclidean quotient of n by BITS_IN_.LONG (with nonnegative
remainder).

long remsBIL(n) returns the (nonnegative) Euclidean remainder of n by BITS_IN_LONG
long dvmdsBIL(long n, long *r)

ulong dvmduBIL(ulong n, ulong *r) sets r to remsBIL(n) and returns divsBIL(n).

5.3.2 Masks used to implement the GEN type.
These constants are used by higher level macros, like typ or 1g:

EXPOnumBITS, LGnumBITS, SIGNnumBITS, TYPnumBITS, VALPnumBITS, VARNnumBITS: number of bits
used to encode expo, 1g, signe, typ, valp, varn.

PRECPSHIFT, SIGNSHIFT, TYPSHIFT, VARNSHIFT: shifts used to recover or encode precp, varn, typ,
signe

CLONEBIT, EXPOBITS, LGBITS, PRECPBITS, SIGNBITS, TYPBITS, VALPBITS, VARNBITS: bitmasks used
to extract isclone, expo, 1g, precp, signe, typ, valp, varn from GEN codewords.

MAXVARN: the largest possible variable number.

NO_VARIABLE: sentinel returned by gvar(x) when x does not contain any polynomial; has a lower
priority than any valid variable number.

HIGHEXPOBIT: a power of 2, one more that the largest possible exponent for a t_REAL.
HIGHVALPBIT: a power of 2, one more that the largest possible valuation for a t_PADIC or a t_SER.
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5.3.3 log 2, =.
These are double approximations to useful constants:
M_PI: 7.
M_LN2: log 2.
L0G10_2: log2/log 10.
L0G2_10: log 10/ log 2.

5.4 Iterating over small primes, low-level interface.

One of the methods used by the high-level prime iterator (see Section 4.8.2), is a precomputed
table. Its direct use is deprecated, but documented here.

After pari_init(size, maxprime), a “prime table” is initialized with the successive differ-
ences of primes up to (possibly just a little beyond) maxprime. The prime table occupies roughly
maxprime/log(maxprime) bytes in memory, so be sensible when choosing maxprime; it is 500000 by
default under gp and there is no real benefit in choosing a much larger value: the high-level itera-
tor provide fast access to primes up to the square of maxprime. In any case, the implementation
requires that maxprime < 2BITS-IN-LONC _ 9048 whatever memory is available.

PARI currently guarantees that the first 6547 primes, up to and including 65557, are present
in the table, even if you set maxprime to zero. in the pari_init call.

Some convenience functions:
ulong maxprime() the largest prime computable using our prime table.

ulong maxprimeN() the index N of the largest prime computable using the prime table. lLe.,
pN = maxprime().

void maxprime_check(ulong B) raise an error if maxprime() is < B.
After the following initializations (the names p and ptr are arbitrary of course)
byteptr ptr = diffptr;
ulong p = O;

calling the macro NEXT_PRIME_VIADIFF_CHECK(p, ptr) repeatedly will assign the successive prime
numbers to p. Overrunning the prime table boundary will raise the error e_MAXPRIME, which just
prints the error message:

*** not enough precomputed primes, need primelimit ~c

(for some numerical value ¢), then the macro aborts the computation. The alternative macro
NEXT_PRIME_VIADIFF operates in the same way, but will omit that check, and is slightly faster. It
should be used in the following way:

byteptr ptr = diffptr;
ulong p = O;
if (maxprime() < goal) pari_err_MAXPRIME(goal); /* not enough primes */

while (p <= goal) /* run through all primes up to goal */

{
NEXT_PRIME_VIADIFF(p, ptr);
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}

Here, we use the general error handling function pari_err (see Section 4.7.3), with the codeword
e _MAXPRIME, raising the “not enough primes” error. This could be rewritten as

maxprime_check(goal) ;
while (p <= goal) /* run through all primes up to goal */
{

NEXT_PRIME_VIADIFF(p, ptr);
}

bytepr initprimes(ulong maxprime, long *L, ulong *lastp) computes a (malloc’ed) “prime
table”, in fact a table of all prime differences for p < maxprime (and possibly a little beyond). Set
L to the table length (argument to malloc), and lastp to the last prime in the table.

void initprimetable(ulong maxprime) computes a prime table (of all prime differences for p <
maxprime) and assign it to the global variable diffptr. Don’t change diffptr directly, call this
function instead. This calls initprimes and updates internal data recording the table size.

ulong init_primepointer_geq(ulong a, byteptr *pd) returns the smallest prime p > a, and
sets *pd to the proper offset of diffptr so that NEXT_PRIME VIADIFF(p, *pd) correctly returns
unextprime(p + 1).

ulong init_primepointer_gt(ulong a, byteptr *pd) returns the smallest prime p > a.
ulong init_primepointer_leq(ulong a, byteptr *pd) returns the largest prime p < a.

ulong init_primepointer_lt(ulong a, byteptr *pd) returns the largest prime p < a.

5.5 Handling the PARI stack.

5.5.1 Allocating memory on the stack.

GEN cgetg(long n, long t) allocates memory on the stack for an object of length n and type t,
and initializes its first codeword.

GEN cgeti(long n) allocates memory on the stack for a t_INT of length n, and initializes its first
codeword. Identical to cgetg(n,t_INT).

GEN cgetr(long n) allocates memory on the stack for a t_REAL of length n, and initializes its first
codeword. Identical to cgetg(n,t_REAL).

GEN cgetc(long n) allocates memory on the stack for a t_COMPLEX, whose real and imaginary
parts are t_REALs of length n.

GEN cgetp(GEN x) creates space sufficient to hold the t_PADIC x, and sets the prime p and the
p-adic precision to those of x, but does not copy (the p-adic unit or zero representative and the
modulus of) x.

GEN new_chunk(size_t n) allocates a GEN with n components, without filling the required code
words. This is the low-level constructor underlying cgetg, which calls new_chunk then sets the first
code word. It works by simply returning the address ((GEN)avma) - n, after checking that it is
larger than (GEN)bot.
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void new_chunk_resize(size_t x) this function is called by new_chunk when the PARI stack
overflows. There is no need to call it manually. It will either extend the stack or report an e_STACK
error.

charx stack_malloc(size_t n) allocates memory on the stack for n chars (not n GENs). This
is faster than using malloc, and easier to use in most situations when temporary storage is
needed. In particular there is no need to free individually all variables thus allocated: a sim-
ple set_avma(oldavma) might be enough. On the other hand, beware that this is not permanent
independent storage, but part of the stack. The memory is aligned on sizeof (long) bytes bound-
aries.

char* stack_malloc_align(size_t n, long k) as stackmalloc, but the memory is aligned on
k bytes boundaries. The numberk must be a multiple of the sizeof (long).

char* stack_calloc(size_t n) as stackmalloc, setting the memory to zero.

char* stack_calloc_align(size_t n, long k) as stackmalloc_align, setting the memory to
Z€eTo.

Objects allocated through these last three functions cannot be gerepile’d, since they are not yet
valid GENs: their codewords must be filled first.

GEN cgetalloc(long t, size_t 1), same as cgetg(t, 1), except that the result is allocated
using pari_malloc instead of the PARI stack. The resulting GEN is now impervious to garbage
collecting routines, but should be freed using pari_free.

5.5.2 Stack-independent binary objects.

GENbin* copy_bin(GEN x) copies z into a malloc’ed structure suitable for stack-independent
binary transmission or storage. The object obtained is architecture independent provided,
sizeof (long) remains the same on all PARI instances involved, as well as the multiprecision
kernel (either native or GMP).

GENbin* copy_bin_canon(GEN x) as copy_bin, ensuring furthermore that the binary object is
independent of the multiprecision kernel. Slower than copy_bin.

GEN bin_copy(GENbin *p) assuming p was created by copy_bin(x) (not necessarily by the same
PARI instance: transmission or external storage may be involved), restores « on the PARI stack.

The routine bin_copy transparently encapsulate the following functions:

GEN GENbinbase(GENbin #*p) the GEN data actually stored in p. All addresses are stored as offsets
with respect to a common reference point, so the resulting GEN is unusable unless it is a nonrecursive
type; private low-level routines must be called first to restore absolute addresses.

void shiftaddress(GEN x, long dec) converts relative addresses to absolute ones.

void shiftaddress_canon(GEN x, long dec) converts relative addresses to absolute ones, and
converts leaves from a canonical form to the one specific to the multiprecision kernel in use. The
GENbin type stores whether leaves are stored in canonical form, so bin_copy can call the right
variant.

Objects containing closures are harder to e.g. copy and save to disk, since closures contain pointers
to libpari functions that will not be valid in another gp instance: there is little chance for them to
be loaded at the exact same address in memory. Such objects must be saved along with a linking
table.
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GEN copybin_unlink(GEN C) returns a linking table allowing to safely store and transmit
t_CLOSURE objects in C'. If C = NULL return a linking table corresponding to the content of
all gp variables. C' may then be dumped to disk in binary form, for instance.

void bincopy_relink(GEN C, GEN V) given a binary object C', as dumped by writebin and read
back into a session, and a linking table V|, restore all closures contained in C' (function pointers are
translated to their current value).

5.5.3 Garbage collection. See Section 4.3 for a detailed explanation and many examples.

void set_avma(ulong av) reset avma to av. You may think of this as a simple avma = av state-
ment, but PARI developpers modify this statement in special code branches to detect garbage
collecting issues (by invalidating the PARI stack below av).

ulong get_avma(void) return avma. Useful for languages that do not provide access to TLS
variables.

GEN gc_NULL(pari_sp av) reset avma to av and return NULL.
The following 6 functions reset avma to av and return x:

int gc_bool(pari_sp av, int x)

double gc_double(pari_sp av, double x)

int gc_int(pari_sp av, int x)

long gc_long(pari_sp av, long x)

ulong gc_ulong(pari_sp av, ulong x) This allows for instance to return gc_ulong(av,
itou(z)), whereas

pari_sp av = avma;
GEN z = ...
set_avma(av) ;
return itou(z);

should be frowned upon since set_avma(av) conceptually destroys everything from the refer-
ence point on, including z.

GEN gc_const(pari_sp av, GEN x) assumes that x is either not on the stack (clone, universal
constant such as gen_0) or was defined before av.

GEN gc_all(pari_sp av, int n, ...). Assumesthat 1 < n < 10; This is similar to gerepileall,
expecting n further GEN* arguments: the stack is cleaned and the corresponding GEN are copied to
the stack starting from av (in this order: the first argument comes first), and the first such GEN is
returned. To be used in the following scenario:

GEN £(..., GEN *py)
{

pari_sp av = avma;

GEN x= ..., y= ...

*py = y; return gc_all(av, 2, &x, py);
b

This function returns =, and the user also recovers y as a side effect. Not that we can later use
cgiv(y) to recover the memory used by y while still keeping x.
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void cgiv(GEN x) frees object x, assuming it is the last created on the stack.
GEN gerepile(pari_sp p, pari_sp q, GEN x) general garbage collector for the stack.

void gerepileall(pari_sp av, int n, ...) cleans up the stack from av on (i.e from avma
to av), preserving the n objects which follow in the argument list (of type GEN*). For instance,
gerepileall(av, 2, &x, &y) preserves x and y.

void gerepileallsp(pari_sp av, pari_sp ltop, int n, ...) cleans up the stack between
av and 1ltop, updating the n elements which follow n in the argument list (of type GEN*). Check
that the elements of g have no component between av and ltop, and assumes that no garbage is
present between avma and ltop. Analogous to (but faster than) gerepileall otherwise.

GEN gerepilecopy(pari_sp av, GEN x) cleans up the stack from av on, preserving the object
x. Special case of gerepileall (case n = 1), except that the routine returns the preserved GEN
instead of updating its address through a pointer.

void gerepilemany(pari_sp av, GEN* g[], int n) alternative interface to gerepileall. The
preserved GENs are the elements of the array g of length n: g[0], g[1], ..., gln-1]1. Obsolete: no
more efficient than gerepileall, error-prone, and clumsy (need to declare an extra GEN *g).

void gerepilemanysp(pari_sp av, pari_sp ltop, GEN* g[], int n) alternative interface to
gerepileallsp. Obsolete.

void gerepilecoeffs(pari_sp av, GEN x, int n) cleans up the stack from av on, preserving
x[0], ..., x[n-1] (which are GENs).

void gerepilecoeffssp(pari_sp av, pari_sp ltop, GEN x, int n) cleans up the stack from av
to 1top, preserving x[0], ..., x[n-1] (which are GENs). Same assumptions as in gerepilemanysp,
of which this is a variant. For instance

z = cgetg(3, t_COMPLEX);

av = avma; garbage(); ltop = avma;
z[1] fun1();

z[2] = fun2Q);

gerepilecoeffssp(av, ltop, z + 1, 2);
return z;

cleans up the garbage between av and ltop, and connects z and its two components. This is
marginally more efficient than the standard

av = avma; garbage(); ltop = avma;

z = cgetg(3, t_COMPLEX);

z[1] = fun1();

z[2] fun2(); return gerepile(av, ltop, z);

GEN gerepileupto(pari_sp av, GEN q) analogous to (but faster than) gerepilecopy. Assumes
that q is connected and that its root was created before any component. If q is not on the stack,
this is equivalent to set_avma(av); in particular, sentinels which are not even proper GENs such as
q = NULL are allowed.

GEN gerepileuptoint(pari_sp av, GEN q) analogous to (but faster than) gerepileupto. As-
sumes further that q is a t_INT. The length and effective length of the resulting t_INT are equal.

GEN gerepileuptoleaf (pari_sp av, GEN q) analogous to (but faster than) gerepileupto. As-
sumes further that q is a leaf, i.e a nonrecursive type (is_recursive t(typ(q)) is nonzero).
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Contrary to gerepileuptoint and gerepileupto, gerepileuptoleaf leaves length and effective
length of a t_INT unchanged.

5.5.4 Garbage collection: advanced use.

void stackdummy(pari_sp av, pari_sp ltop) inhibits the memory area between av included
and 1top excluded with respect to gerepile, in order to avoid a call to gerepile(av, ltop,...).
The stack space is not reclaimed though.

More precisely, this routine assumes that av is recorded earlier than 1top, then marks the
specified stack segment as a nonrecursive type of the correct length. Thus gerepile will not inspect
the zone, at most copy it. To be used in the following situation:

av0 = avma; z = cgetg(t_VEC, 3);
gel(z,1) = HUGE(); av = avma; garbage(); ltop = avma;
gel(z,2) HUGE() ; stackdummy(av, ltop);

Compared to the orthodox

gel(z,2) = gerepile(av, ltop, gel(z,2));
or even more wasteful

z = gerepilecopy(av0, z);

we temporarily lose (av—1top) words but save a costly gerepile. In principle, a garbage collection
higher up the call chain should reclaim this later anyway.

Without the stackdummy, if the [av,1ltop| zone is arbitrary (not even valid GENs as could
happen after direct truncation via setlg), we would leave dangerous data in the middle of z, which
would be a problem for a later

gerepile(..., ... , 2z);

And even if it were made of valid GENs, inhibiting the area makes sure gerepile will not inspect
their components, saving time.

Another natural use in low-level routines is to “shorten” an existing GEN z to its first n — 1
components:

setlg(z, n);
stackdummy ((pari_sp) (z + 1g(z)), (pari_sp)(z + n));

or to its last n components:

long L = 1g(z) - n, tz = typ(z);
stackdummy ((pari_sp)(z + L), (pari_sp)z);
z += L; z[0] = evaltyp(tz) | evallg(L);

The first scenario (safe shortening an existing GEN) is in fact so common, that we provide a
function for this:

void fix1g(GEN z, long ly) a safe variant of setlg(z, ly). If 1y is larger than 1g(z) do
nothing. Otherwise, shorten z in place, using stackdummy to avoid later gerepile problems.

GEN gcopy_avma(GEN x, pari_sp *AVMA) return a copy of x as from gcopy, except that we
pretend that initially avma is *AVMA, and that *AVMA is updated accordingly (so that the total size
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of = is the difference between the two successive values of *AVMA). It is not necessary for *AVMA to
initially point on the stack: gclone is implemented using this mechanism.

GEN icopy_avma(GEN x, pari_sp av) analogous to gcopy_avma but simpler: assume x is a t_INT
and return a copy allocated as if initially we had avma equal to av. There is no need to pass a
pointer and update the value of the second argument: the new (fictitious) avma is just the return
value (typecast to pari_sp).

5.5.5 Debugging the PARI stack.

int chk_gerepileupto(GEN x) returns 1 if x is suitable for gerepileupto, and 0 otherwise. In
the latter case, print a warning explaining the problem.

void dbg_gerepile(pari_sp ltop) outputs the list of all objects on the stack between avma and
ltop, i.e. the ones that would be inspected in a call to gerepile(...,1top,...).

void dbg_gerepileupto(GEN q) outputs the list of all objects on the stack that would be inspected
in a call to gerepileupto(...,q).

5.5.6 Copies.

GEN gcopy(GEN x) creates a new copy of x on the stack.

GEN gcopy_lg(GEN x, long 1) creates a new copy of z on the stack, pretending that 1g(x) is [,
which must be less than or equal to 1g(x). If equal, the function is equivalent to gcopy (x).

int isonstack(GEN x) true iff x belongs to the stack.

void copyifstack(GEN x, GEN y) sets y = gcopy(x) if x belongs to the stack, and y = x oth-
erwise. This macro evaluates its arguments once, contrary to

y = isonstack(x)? gcopy(x): x;

void icopyifstack(GEN x, GEN y) as copyifstack assuming x is a t_INT.

5.5.7 Simplify.
GEN simplify(GEN x) you should not need that function in library mode. One rather uses:

GEN simplify_shallow(GEN x) shallow, faster, version of simplify.

5.6 The PARI heap.

5.6.1 Introduction.

It is implemented as a doubly-linked list of malloc’ed blocks of memory, equipped with refer-
ence counts. Each block has type GEN but need not be a valid GEN: it is a chunk of data preceded
by a hidden header (meaning that we allocate x and return = + headersize). A clone, created by
gclone, is a block which is a valid GEN and whose clone bit is set.
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5.6.2 Public interface.
GEN newblock(size_t n) allocates a block of n words (not bytes).
void killblock(GEN x) deletes the block x created by newblock. Fatal error if  not a block.

GEN gclone(GEN x) creates a new permanent copy of x on the heap (allocated using newblock).
The clone bit of the result is set.

GEN gcloneref (GEN x) if x is not a clone, clone it and return the result; otherwise, increase the
clone reference count and return x.

void gunclone(GEN x) deletes a clone. Deletion at first only decreases the reference count by 1.
If the count remains positive, no further action is taken; if the count becomes zero, then the clone
is actually deleted. In the current implementation, this is an alias for killblock, but it is cleaner
to kill clones (valid GENs) using this function, and other blocks using killblock.

void guncloneNULL(GEN x) same as gunclone, first checking whether x is NULL (and doing nothing
in this case).

void gunclone_deep(GEN x) is only useful in the context of the GP interpreter which may replace
arbitrary components of container types (t_VEC, t_COL, t_MAT, t_LIST) by clones. If z is such a
container, the function recursively deletes all clones among the components of z, then unclones z.
Useless in library mode: simply use gunclone.

void guncloneNULL_deep(GEN x) same as gunclone_deep, first checking whether x is NULL (and
doing nothing in this case).

void traverseheap(void(*f) (GEN, void *), void *data) this applies f(x, data) to each
object x on the PARI heap, most recent first. Mostly for debugging purposes.

GEN getheap() a simple wrapper around traverseheap. Returns a two-component row vector
giving the number of objects on the heap and the amount of memory they occupy in long words.

GEN cgetg_block(long x, long y) as cgetg(x,y), creating the return value as a block, not on
the PARI stack.

GEN cgetr_block(long prec) as cgetr(prec), creating the return value as a block, not on the
PARI stack.

5.6.3 Implementation note. The hidden block header is manipulated using the following private
functions:

voidx bl_base(GEN x) returns the pointer that was actually allocated by malloc (can be freed).

long bl_refc(GEN x) the reference count of x: the number of pointers to this block. Decremented
in killblock, incremented by the private function void gclone_refc(GEN x); block is freed when
the reference count reaches 0.

long bl_num(GEN x) the index of this block in the list of all blocks allocated so far (including freed
blocks). Uniquely identifies a block until 2BIT8-IN-LONG hlocks have been allocated and this wraps
around.

GEN bl_next(GEN x) the block after x in the linked list of blocks (NULL if = is the last block
allocated not yet killed).

GEN bl_prev(GEN x) the block allocated before x (never NULL).

We documented the last four routines as functions for clarity (and type checking) but they are
actually macros yielding valid lvalues. It is allowed to write bl_refc(x)++ for instance.
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5.7 Handling user and temp variables.

Low-level implementation of user / temporary variables is liable to change. We describe it
nevertheless for completeness. Currently variables are implemented by a single array of values di-
vided in 3 zones: 0-nvar (user variables), max_avail-MAXVARN (temporary variables), and nvar+1-
max_avail-1 (pool of free variable numbers).

5.7.1 Low-level.

void pari_var_init(): a small part of pari_init. Resets variable counters nvar and max_avail,
notwithstanding existing variables! In effect, this even deletes x. Don’t use it.

void pari_var_close(void) attached destructor, called by pari_close.
long pari_var_next(): returns nvar, the number of the next user variable we can create.

long pari_var_next_temp() returns max_avail, the number of the next temp variable we can
create.

long pari_var_create(entree *ep) low-level initialization of an EpVAR. Return the attached
(new) variable number.

GEN vars_sort_inplace(GEN z) given a t_VECSMALL z of variable numbers, sort z in place ac-
cording to variable priorities (highest priority comes first).

GEN vars_to_RgXV(GEN h) given a t_VECSMALL z of variable numbers, return the t_VEC of
pol_x(z[t]).
5.7.2 User variables.

long fetch_user_var(char *s) returns a user variable whose name is s, creating it is needed
(and using an existing variable otherwise). Returns its variable number.

GEN fetch_var_value(long v) returns a shallow copy of the current value of the variable num-
bered v. Return NULL for a temporary variable.

entree* is_entry(const char *s) returns the entreex attached to an identifier s (variable or
function), from the interpreter hashtables. Return NULL is the identifier is unknown.

5.7.3 Temporary variables.

long fetch_var(void) returns the number of a new temporary variable (decreasing max_avail).

long delete_var(void) delete latest temp variable created and return the number of previous
one.

void name_var(long n, char *s) rename temporary variable number n to s; mostly useful for
nicer printout. Error when trying to rename a user variable.
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5.8 Adding functions to PARI.

5.8.1 Nota Bene. As mentioned in the COPYING file, modified versions of the PARI package can
be distributed under the conditions of the GNU General Public License. If you do modify PARI,
however, it is certainly for a good reason, and we would like to know about it, so that everyone can
benefit from your changes. There is then a good chance that your improvements are incorporated
into the next release.

We classify changes to PARI into four rough classes, where changes of the first three types
are almost certain to be accepted. The first type includes all improvements to the documentation,
in a broad sense. This includes correcting typos or inaccuracies of course, but also items which
are not really covered in this document, e.g. if you happen to write a tutorial, or pieces of code
exemplifying fine points unduly omitted in the present manual.

The second type is to expand or modify the configuration routines and skeleton files (the Con-
figure script and anything in the config/ subdirectory) so that compilation is possible (or easier,
or more efficient) on an operating system previously not catered for. This includes discovering and
removing idiosyncrasies in the code that would hinder its portability.

The third type is to modify existing (mathematical) code, either to correct bugs, to add new
functionality to existing functions, or to improve their efficiency.

Finally the last type is to add new functions to PARI. We explain here how to do this, so that
in particular the new function can be called from gp.

5.8.2 Coding guidelines. Code your function in a file of its own, using as a guide other functions
in the PARI sources. One important thing to remember is to clean the stack before exiting your
main function, since otherwise successive calls to the function clutters the stack with unnecessary
garbage, and stack overflow occurs sooner. Also, if it returns a GEN and you want it to be accessible
to gp, you have to make sure this GEN is suitable for gerepileupto (see Section 4.3).

If error messages or warnings are to be generated in your function, use pari_err and pari_warn
respectively. Recall that pari_err does not return but ends with a longjmp statement. As well,
instead of explicit printf / fprintf statements, use the following encapsulated variants:

void pari_putc(char c): write character c to the output stream.
void pari_puts(char *s): write s to the output stream.

void pari_printf (const char *fmt, ...): write following arguments to the output stream,
according to the conversion specifications in format fmt (see printf).

void err_printf(const char *fmt, ...): as pari_printf, writing to PARI’s current error
stream.

void err_flush(void) flush error stream.

Declare all public functions in an appropriate header file, if you want to access them from C.
The other functions should be declared static in your file.

Your function is now ready to be used in library mode after compilation and creation of the
library. If possible, compile it as a shared library (see the Makefile coming with the extgcd
example in the distribution). It is however still inaccessible from gp.
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5.8.3 GP prototypes, parser codes. A GP prototype is a character string describing all the
GP parser needs to know about the function prototype. It contains a sequence of the following
atoms:

e Return type: GEN by default (must be valid for gerepileupto), otherwise the following can
appear as the first char of the code string:
i return int
return long
return ulong
return void
return a GEN which is not gerepile-safe.

8 9 £

The m code is used for member functions, to avoid unnecessary copies. A copy opcode is
generated by the compiler if the result needs to be kept safe for later use.

e Mandatory arguments, appearing in the same order as the input arguments they describe:

G GEN

& *GEN

L long (we implicitly typecast int to long)

U ulong

v loop variable

n variable, expects a variable number (a long, not an *entree)

W a GEN which is a lvalue to be modified in place (for t_LIST)

r raw input (treated as a string without quotes). Quoted args are copied as strings
Stops at first unquoted >)’ or ’,’. Special chars can be quoted using ’\’
Example: aa"b\n) "c yields the string "aab\n)c"

s expanded string. Example: Pi"x"2 yields "3.142x2"

Unquoted components can be of any PARI type, converted to string following
current output format

I closure whose value is ignored, as in for loops,

to be processed by void closure_evalvoid(GEN C)
E closure whose value is used, as in sum loops,

to be processed by void closure_evalgen(GEN C)
J implicit function of arity 1, as in parsum loops,

to be processed by void closure_callgenl(GEN C)

A closure is a GP function in compiled (bytecode) form. It can be efficiently evaluated using the
closure_evalzxz functions.

e Automatic arguments:

f Fake *1ong. C function requires a pointer but we do not use the resulting long
current real precision in bits
current real precision in words
series precision (default seriesprecision, global variable precdl for the library)
lexical context (internal, for eval, see localvars read str)

Q 'vo o

e Syntax requirements, used by functions like for, sum, etc.:
= separator = required at this point (between two arguments)

e Optional arguments and default values:
Ex any number of expressions, possibly 0 (see E)
s* any number of strings, possibly 0 (see s)
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Dxzxr argument can be omitted and has a default value

The Ex code reads all remaining arguments in closure context and passes them as a single
t_VEC. The s* code reads all remaining arguments in string context and passes the list of strings
as a single t_VEC. The automatic concatenation rules in string context are implemented so that
adjacent strings are read as different arguments, as if they had been comma-separated. For instance,
if the remaining argument sequence is: "xx" 1, "yy", the s* atom sends [a, b, c], where a, b,
c are GENs of type t_STR (content "xx"), t_INT (equal to 1) and t_STR (content "yy").

The format to indicate a default value (atom starts with a D) is “Dwalue, type,”, where type
is the code for any mandatory atom (previous group), value is any valid GP expression which is
converted according to type, and the ending comma is mandatory. For instance DO,L, stands for
“this optional argument is converted to a long, and is O by default”. So if the user-given argument
reads 1 + 3 at this point, 4L is sent to the function; and OL if the argument is omitted. The
following special notations are available:

DG optional GEN, send NULL if argument omitted.

D& optional *GEN, send NULL if argument omitted.
The argument must be prefixed by &.

DI, DE optional closure, send NULL if argument omitted.

DP optional long, send precdl if argument omitted.
DV optional *entree, send NULL if argument omitted.
Dn optional variable number, —1 if omitted.

Dr optional raw string, send NULL if argument omitted.
Ds optional char *, send NULL if argument omitted.

Hardcoded limit. C functions using more than 20 arguments are not supported. Use vectors if
you really need that many parameters.

When the function is called under gp, the prototype is scanned and each time an atom cor-
responding to a mandatory argument is met, a user-given argument is read (gp outputs an error
message it the argument was missing). Each time an optional atom is met, a default value is in-
serted if the user omits the argument. The “automatic” atoms fill in the argument list transparently,
supplying the current value of the corresponding variable (or a dummy pointer).

For instance, here is how you would code the following prototypes, which do not involve default
values:

GEN f(GEN x, GEN y, long prec) ----> "GGp"
void f(GEN x, GEN y, long prec) ----> "vGGp"
void f(GEN x, long y, long prec) ----> "vGLp"
long f(GEN x) -—==> "1G"
int f(long x) ———=> "iL"

If you want more examples, gp gives you easy access to the parser codes attached to all GP functions:
just type \h function. You can then compare with the C prototypes as they stand in paridecl.h.
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Remark. If you need to implement complicated control statements (probably for some improved
summation functions), you need to know how the parser implements closures and lexicals and how
the evaluator lets you deal with them, in particular the push_lex and pop_lex functions. Check
their descriptions and adapt the source code in language/sumiter.c and language/intnum.c.

5.8.4 Integration with gp as a shared module.

In this section we assume that your Operating System is supported by install. You have
written a function in C following the guidelines is Section 5.8.2; in case the function returns a GEN,
it must satisfy gerepileupto assumptions (see Section 4.3).

You then succeeded in building it as part of a shared library and want to finally tell gp about
your function. First, find a name for it. It does not have to match the one used in library mode,
but consistency is nice. It has to be a valid GP identifier, i.e. use only alphabetic characters, digits
and the underscore character (_), the first character being alphabetic.

Then figure out the correct parser code corresponding to the function prototype (as explained
in Section 5.8.3) and write a GP script like the following:

install(libname, code, gpname, library)
addhelp(gpname, "some help text")

The addhelp part is not mandatory, but very useful if you want others to use your module. 1libname
is how the function is named in the library, usually the same name as one visible from C.

Read that file from your gp session, for instance from your preferences file (or gprc), and that’s
it. You can now use the new function gpname under gp, and we would very much like to hear about
it!

Example. A complete description could look like this:

{
install(bnfinitO, "GDO,L,DGp", ClassGroupInit, "libpari.so");
addhelp(ClassGroupInit, "ClassGroupInit(P,{flag=0},{data=[]1}):
compute the necessary data for ...");
X

which means we have a function ClassGroupInit under gp, which calls the library function bn-
finit0 . The function has one mandatory argument, and possibly two more (two D’ in the code),
plus the current real precision. More precisely, the first argument is a GEN, the second one is con-
verted to a long using itos (0 is passed if it is omitted), and the third one is also a GEN, but we pass
NULL if no argument was supplied by the user. This matches the C prototype (from paridecl.h):

GEN bnfinitO(GEN P, long flag, GEN data, long prec)

This function is in fact coded in basemath/buch2.c, and is in this case completely identical to
the GP function bnfinit but gp does not need to know about this, only that it can be found
somewhere in the shared library libpari.so.
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Important note. You see in this example that it is the function’s responsibility to correctly
interpret its operands: data = NULL is interpreted by the function as an empty vector. Note that
since NULL is never a valid GEN pointer, this trick always enables you to distinguish between a
default value and actual input: the user could explicitly supply an empty vector!

5.8.5 Library interface for install.

There is a corresponding library interface for this install functionality, letting you expand
the GP parser/evaluator available in the library with new functions from your C source code.
Functions such as gp_read_str may then evaluate a GP expression sequence involving calls to
these new function!

entree * install(void *f, const char *gpname, const char *code)

where £ is the (address of the) function (cast to void*), gpname is the name by which you want to
access your function from within your GP expressions, and code is as above.

5.8.6 Integration by patching gp.

If install is not available, and installing Linux or a BSD operating system is not an option
(why?), you have to hardcode your function in the gp binary. Here is what needs to be done:

e Fetch the complete sources of the PARI distribution.

e Drop the function source code module in an appropriate directory (a priori src/modules),
and declare all public functions in src/headers/paridecl.h.

e Choose a help section and add a file src/functions/section/gpname containing the follow-
ing, keeping the notation above:

Function: gpname

Section: section
C-Name: libname
Prototype: code

Help: some help text

(If the help text does not fit on a single line, continuation lines must start by a whitespace character.)
Two GP2C-related fields (Description and Wrapper) are also available to improve the code GP2C
generates when compiling scripts involving your function. See the GP2C documentation for details.

e Launch Configure, which should pick up your C files and build an appropriate Makefile.
At this point you can recompile gp, which will first rebuild the functions database.

Example. We reuse the ClassGroupInit / bnfinitO from the preceding section. Since the C
source code is already part of PARI, we only need to add a file

functions/number fields/ClassGroupInit
containing the following:

Function: ClassGrouplnit

Section: number_fields

C-Name: bnfinitO

Prototype: GDO,L,DGp

Help: ClassGroupInit(P,{flag=0},{tech=[]}): this routine does ...

and recompile gp.
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5.9 Globals related to PARI configuration.

5.9.1 PARI version numbers.

paricfg_version_code encodes in a single long, the Major and minor version numbers as well as
the patchlevel.

long PARI_VERSION(long M, long m, long p) produces the version code attached to release
M.m.p. Each code identifies a unique PARI release, and corresponds to the natural total order on
the set of releases (bigger code number means more recent release).

PARI_VERSION_SHIFT is the number of bits used to store each of the integers M, m, p in the version
code.

paricfg_vcsversion is a version string related to the revision control system used to handle your
sources, if any. For instance git-commit hash if compiled from a git repository.

The two character strings paricfg_version and paricfg_buildinfo, correspond to the
first two lines printed by gp just before the Copyright message. The character string par-
icfg_compiledate is the date of compilation which appears on the next line. The character
string paricfg_mt_engine is the name of the threading engine on the next line.

In the string paricfg buildinfo, the substring "%s" needs to be substituted by the output
of the function pari kernel version.

const char * pari_kernel_version(void)
GEN pari_version() returns the version number as a PARI object, a t_VEC with three t_INT and
one t_STR components.
5.9.2 Miscellaneous.
paricfg_datadir: character string. The location of PARI’s datadir.

paricfg_gphelp: character string. The name of an external help command for ?? (such as
the gphelp script)
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Chapter 6:
Arithmetic kernel: Level 0 and 1

6.1 Level 0 kernel (operations on ulongs).

6.1.1 Micro-kernel. The Level 0 kernel simulates basic operations of the 68020 processor on
which PARI was originally implemented. They need “global” ulong variables overflow (which will
contain only 0 or 1) and hiremainder to function properly. A routine using one of these lowest-
level functions where the description mentions either hiremainder or overflow must declare the
corresponding

LOCAL_HIREMAINDER; /* provides ’hiremainder’ */
LOCAL_QOVERFLOW; /* provides ’overflow’ */

in a declaration block. Variables hiremainder and overflow then become available in the enclosing
block. For instance a loop over the powers of an ulong p protected from overflows could read

while (pk < lim)
{
LOCAL_HIREMAINDER;

pk = mulll(pk, p); if (hiremainder) break;
}

For most architectures, the functions mentioned below are really chunks of inlined assembler code,
and the above ‘global’ variables are actually local register values.

ulong addll(ulong x, ulong y) adds x and y, returns the lower BITS_IN_LONG bits and puts the
carry bit into overflow.

ulong addllx(ulong x, ulong y) adds overflow to the sum of the x and y, returns the lower
BITS_IN_LONG bits and puts the carry bit into overflow.

ulong subll(ulong x, ulong y) subtracts x and y, returns the lower BITS_IN_LONG bits and put
the carry (borrow) bit into overflow.

ulong subllx(ulong x, ulong y) subtracts overflow from the difference of x and y, returns the
lower BITS_IN_LONG bits and puts the carry (borrow) bit into overflow.

int bfffo(ulong x) returns the number of leading zero bits in x. That is, the number of bit
positions by which it would have to be shifted left until its leftmost bit first becomes equal to 1,
which can be between 0 and BITS_IN_LONG — 1 for nonzero x. When x is 0, the result is undefined.

ulong mulll(ulong x, ulong y) multiplies x by y, returns the lower BITS_IN_LONG bits and
stores the high-order BITS_IN_LONG bits into hiremainder.

ulong addmul(ulong x, ulong y) adds hiremainder to the product of x and y, returns the lower
BITS_IN_LONG bits and stores the high-order BITS_IN_LONG bits into hiremainder.
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ulong divll(ulong x, ulong y) returns the quotient of (hiremainder * 2BITS-IN-LONG) 4 y Ty v

and stores the remainder into hiremainder. An error occurs if the quotient cannot be represented
by an ulong, i.e. if initially hiremainder > y.

long hammingl (ulong x)) returns the Hamming weight of x, i.e. the number of nonzero bits in
its binary expansion.

Obsolete routines. Those functions are awkward and no longer used; they are only provided for
backward compatibility:

ulong shiftl(ulong x, ulong y) returns z shifted left by y bits, i.e. x << y, where we assume
that 0 <y < BITS_IN_LONG. The global variable hiremainder receives the bits that were shifted
out, i.e.  >> (BITS_IN_LONG — y).

ulong shiftlr(ulong x, ulong y) returns z shifted right by y bits, i.e. x >> y, where we assume
that 0 <y < BITS_IN_LONG. The global variable hiremainder receives the bits that were shifted
out, i.e. z << (BITS_IN_LONG — y).

6.1.2 Modular kernel. The following routines are not part of the level 0 kernel per se, but
implement modular operations on words in terms of the above. They are written so that no
overflow may occur. Let m > 1 be the modulus; all operands representing classes modulo m are
assumed to belong to [0,m — 1]. The result may be wrong for a number of reasons otherwise: it
may not be reduced, overflow can occur, etc.

int odd(ulong x) returns 1 if z is odd, and 0 otherwise.

int both_odd(ulong x, ulong y) returns 1 if z and y are both odd, and 0 otherwise.

ulong invmod2BIL(ulong x) returns the smallest positive representative of x=! mod 2BITS-IN-LONG

assuming z is odd.

)

ulong F1l_add(ulong x, ulong y, ulong m) returns the smallest nonnegative representative of
x 4+ y modulo m.

ulong Fl_neg(ulong x, ulong m) returns the smallest nonnegative representative of —x modulo
m.

ulong F1l_sub(ulong x, ulong y, ulong m) returns the smallest nonnegative representative of
x — y modulo m.

long Fl_center(ulong x, ulong m, ulong mo2) returns the representative in | — m/2,m/2] of
z modulo m. Assume 0 < z < m and mo2 = m >> 1.

ulong F1l_mul(ulong x, ulong y, ulong m) returns the smallest nonnegative representative of
xy modulo m.

ulong F1l_double(ulong x, ulong m) returns 2x modulo m.
ulong Fl_triple(ulong x, ulong m) returns 3z modulo m.

ulong Fl_halve(ulong x, ulong m) returns z such that 2z = x modulo m assuming such z
exists.

ulong Fl_sqr(ulong x, ulong m) returns the smallest nonnegative representative of 22 modulo
m.

ulong F1_inv(ulong x, ulong m) returns the smallest positive representative of x=! modulo m.
If = is not invertible mod m, raise an exception.
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ulong F1l_invsafe(ulong x, ulong m) returns the smallest positive representative of z~! modulo
m. If z is not invertible mod m, return 0 (which is ambiguous if m = 1).

ulong Fl_invgen(ulong x, ulong m, ulong *pg) set *pg to g = ged(z,m) and return w in
(Z/mZ)* such that zu = g modulo m. We have g = 1 if and only if x is invertible, and in this case
u 18 its inverse.

ulong Fl_div(ulong x, ulong y, ulong m) returns the smallest nonnegative representative of
2y~! modulo m. If y is not invertible mod m, raise an exception.

ulong F1l_powu(ulong x, ulong n, ulong m) returns the smallest nonnegative representative of
2™ modulo m.

GEN F1_powers(ulong x, long n, ulong p) returns [x°,...,x?] modulo m, as a t_VECSMALL.

ulong F1l_sqrt(ulong x, ulong p) returns the square root of x modulo p (smallest nonnegative
representative). Assumes p to be prime, and x to be a square modulo p.

ulong F1_sqrtl(ulong x, ulong 1, ulong p) returns a l-the root of x modulo p. Assumes p to
be prime and p =1 (mod ), and x to be a I-th power modulo p.

ulong F1l_sqrtn(ulong a, ulong n, ulong p, ulong *zn) returns ULONG_MAX if @ is not an n-th
power residue mod p. Otherwise, returns an n-th root of a; if zn is not NULL set it to a primitive
m-th root of 1, m = ged(p—1,n) allowing to compute all m solutions in F,, of the equation 2" = a.

ulong F1l_log(ulong a, ulong g, ulong ord, ulong p) Let g such that ¢°"¢ =1 (mod p).

Return an integer e such that a® =g (mod p). If e does not exist, the result is undefined.

ulong Fl_order(ulong a, ulong o, ulong p) returns the order of the Fp a. It is assumed that
o is a multiple of the order of a, 0 being allowed (no nontrivial information).

ulong random_F1(ulong p) returns a pseudo-random integer uniformly distributed in 0,1, ...p—1.

ulong nonsquare_F1l(ulong p) return a quadratic nonresidue modulo p, assuming p is an odd
prime. If p is 3 mod 4, return p — 1, else return the smallest (prime) nonresidue.

ulong pgener_Fl(ulong p) returns the smallest primitive root modulo p, assuming p is prime.

ulong pgener_Z1(ulong p) returns the smallest primitive root modulo p*, k > 1, assuming p is
an odd prime.

ulong pgener_F1l_local(ulong p, GEN L), see gener Fp_local, L is an Flv.

ulong factorial_F1l(long n, ulong p) return n! mod p.

6.1.3 Modular kernel with “precomputed inverse”.

This is based on an algorithm by T. Grandlund and N. Moller in “Improved division by
invariant integers” http://gmplib.org/ tege/division-paper.pdf.

In the following, we set B = BITS_IN_LONG.

ulong get_F1l_red(ulong p) returns a pseudoinverse pi for p. Namely an integer 0 < pi < B
such that, given 0 < z < B? (by two long words), we can compute the Euclidean quotient and
remainder of z modulo p by performing 2 multiplications and some additions. Precisely, once we
set ¢ = 2Fp for the unique k such that B/2 < ¢ < B, the pseudoinverse pi is equal to the Euclidean
quotient of B2 — ¢B + B — 1 by ¢. In particular (pi + B)/B? is very close to 1/q.
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Note that this algorithm is generally less efficient than ordinary quotient and remainders (div1l
or even / and %) when 0 < x < B and p < BY/2 are small. High level functions below allow setting
pi = 0 to cater for this possibility and avoid calling get_F1_red for arguments where the standard
algorithm is preferable.

ulong divll_pre(ulong x, ulong p, ulong pi) as divll, where pi is the pseudoinverse of p.

ulong remll_pre(ulong ul, ulong u0, ulong p, ulong pi) returns the Euclidean remainder
of 4128 + ug modulo p, assuming pi is the pseudoinverse of p. This function is faster if u; < p.

ulong remlll_pre(ulong u2, ulong ul, ulong u0, ulong p, ulong pi) returns the Kuclidean
remainder of 15228 + u128 4 1y modulo p, assuming pi is the pseudoinverse of p.

ulong F1_sqr_pre(ulong x, ulong p, ulong pi) returns z? modulo p, assuming pi is the
pseudoinverse of p.

ulong Fl_mul_pre(ulong x, ulong y, ulong p, ulong pi) returns xy modulo p, assuming p:
is the pseudoinverse of p.

ulong F1l_addmul_pre(ulong a, ulong b, ulong c, ulong p, ulong pi) returns a4+ bc modulo
p, assuming pi is the pseudoinverse of p.

ulong Fl_addmulmul_pre(ulong a, wulong b, wulong c, ulong d, ulong p, ulong pi)
returns ab 4+ cd modulo p, assuming pi is the pseudoinverse of p.

ulong Fl_powu_pre(ulong x, ulong n, ulong p, ulong pi) returns x™ modulo p, assuming
pi is the pseudoinverse of p, or 0 in which case we either use ordinary divisions if p < B/2 is small
and call get_F1_red ourselves otherwise.

GEN Fl_powers_pre(ulong x, long n, ulong p, ulong pi) returns the vector (t_VECSMALL)
(..., 2"), assuming pi is the pseudoinverse of p, or 0 in which case we either use ordinary
divisions if p < B'/? is small and call get_F1_red ourselves otherwise.

ulong Fl_log_pre(ulong a, ulong g, ulong ord, ulong p, ulong pi) as Fl_log, assuming
pi is the pseudoinverse of p, or 0 in which case we either use ordinary divisions if p < B/2 is small
and call get_F1_red ourselves otherwise.

ulong Fl_sqrt_pre(ulong x, ulong p, ulong pi) returns a square root of x modulo p, see
F1_sqrt. We assume pi is the pseudoinverse of p, or 0 in which case we either use ordinary divisions
if p < B/? is small and call get_F1_red ourselves otherwise.

ulong Fl_sqrtl_pre(ulong x, ulong 1, ulong p, ulong pi) returns a l-the root of x modulo
p, assuming p prime, p = 1 (mod /), and x to be a I-th power modulo p. We assume pi is the
pseudoinverse of p, or 0 in which case we either use ordinary divisions if p < B'/? is small and call
get_F1_red ourselves otherwise.

ulong F1l_sqrtn_pre(ulong x, ulong n, ulong p, ulong pi, ulong *zn) See Fl_sqrtn,
assuming pi is the pseudoinverse of p, or 0 in which case we either use ordinary divisions if p < B'/?
is small and call get_F1_red ourselves otherwise.

ulong F1_2gener_pre(ulong p, ulong pi) return a generator of the 2-Sylow subgroup of F},
to be used in F1_sqrt_pre_i. We assume pi is the pseudoinverse of p, or 0 in which case we either
use ordinary divisions if p < B'/? is small and call get_F1_red ourselves otherwise.

ulong Fl_sqrt_pre_i(ulong x, ulong s2, ulong p, ulong pi) as Fl_sqrt_pre where s2 is
the element returned by F1_2gener pre. We assume pi is the pseudoinverse of p, or 0 in which
case we either use ordinary divisions if p < B'/? is small and call get_F1_red ourselves otherwise.
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6.1.4 Switching between Fl_xxx and standard operators.

Even though the F1_xxx routines are efficient, they are slower than ordinary long operations,
using the standard +, %, etc. operators. The following macro is used to choose in a portable way
the most efficient functions for given operands:

int SMALL_ULONG (ulong p) true if 2p? < 2BITS-IN-LONG ' Tp that case, it is possible to use ordinary
operators efficiently. If p < 2BITS-IN-LONG © one may still use the F1_xxx routines. Otherwise, one
must use generic routines. For instance, the scalar product of the GENs x and y mod p could be
computed as follows.

long i, 1 = 1g(x);
if (lgefint(p) > 3)
{ /* arbitrary */
GEN s = gen_0;
for (i = 1; 1 < 1; i++) s = addii(s, mulii(gel(x,i), gel(y,1)));
return modii(s, p).
}
else
{
ulong s = 0, pp = itou(p);
x = ZV_to_Flv(x, pp);
y = ZV_to_Flv(y, pp);
if (SMALL_ULONG (pp))
{ /* very small */
for (i =1; i < 1; i++)
{
s += x[i] * y[i];
if (s & HIGHBIT) s %= pp;
}
s %= PpP;
}
else
{ /* small */
for (i = 1; i < 1; i++)
s = Fl_add(s, Fl_mul(x[i]l, y[il, pp), pp);
}
return utoi(s);

}

In effect, we have three versions of the same code: very small, small, and arbitrary inputs. The
very small and arbitrary variants use lazy reduction and reduce only when it becomes necessary:
when overflow might occur (very small), and at the very end (very small, arbitrary).
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6.2 Level 1 kernel (operations on longs, integers and reals).

Note. Some functions consist of an elementary operation, immediately followed by an assignment
statement. They will be introduced as in the following example:

GEN gadd[z] (GEN x, GEN y[, GEN z]) followed by the explicit description of the function

GEN gadd(GEN x, GEN y)

which creates its result on the stack, returning a GEN pointer to it, and the parts in brackets indicate
that there exists also a function

void gaddz(GEN x, GEN y, GEN z)

which assigns its result to the pre-existing object z, leaving the stack unchanged. These assignment
variants are kept for backward compatibility but are inefficient: don’t use them.

6.2.1 Creation.

GEN cgeti(long n) allocates memory on the PARI stack for a t_INT of length n, and initializes
its first codeword. Identical to cgetg(n,t_INT).

GEN cgetipos(long n) allocates memory on the PARI stack for a t_INT of length n, and initializes
its two codewords. The sign of n is set to 1.

GEN cgetineg(long n) allocates memory on the PARI stack for a negative t_INT of length n, and
initializes its two codewords. The sign of n is set to —1.

GEN cgetr(long n) allocates memory on the PARI stack for a t_REAL of length n, and initializes
its first codeword. Identical to cgetg(n,t_REAL).

GEN cgetc(long n) allocates memory on the PARI stack for a t_COMPLEX, whose real and imagi-
nary parts are t_REALs of length n.

GEN real_1(long prec) create a t_REAL equal to 1 to prec words of accuracy.
GEN real_1_bit(long bitprec) create a t_REAL equal to 1 to bitprec bits of accuracy.
GEN real_ml1(long prec) create a t_REAL equal to —1 to prec words of accuracy.
GEN real_O_bit(long bit) create a t_REAL equal to 0 with exponent —bit.
GEN real_O(long prec) is a shorthand for
real_O_bit( -prec2nbits(prec) )
GEN int2n(long n) creates a t_INT equal to 1<<n (i.e 2" if n > 0, and 0 otherwise).
GEN int2u(ulong n) creates a t_INT equal to 2".
GEN int2uml(long n) creates a t_INT equal to 2" — 1.
GEN real2n(long n, long prec) create a t_REAL equal to 2" to prec words of accuracy.
GEN real_m2n(long n, long prec) create a t_REAL equal to —2" to prec words of accuracy.

GEN strtoi(char *s) convert the character string s to a nonnegative t_INT. Decimal numbers,
hexadecimal numbers prefixed by 0x and binary numbers prefixed by Ob are allowed. The string s
consists exclusively of digits: no leading sign, no whitespace. Leading zeroes are discarded.

GEN strtor(char *s, long prec) convert the character string s to a nonnegative t_REAL of
precision prec. The string s consists exclusively of digits and optional decimal point and exponent
(e or E): no leading sign, no whitespace. Leading zeroes are discarded.
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6.2.2 Assignment. In this section, the z argument in the z-functions must be of type t_INT
or t_REAL.

void mpaff (GEN x, GEN z) assigns x into z (where x and z are t_INT or t_REAL). Assumes that
1g(z) > 2.

void affii(GEN x, GEN z) assigns the t_INT x into the t_INT z.

void affir(GEN x, GEN z) assigns the t_INT x into the t_REAL z. Assumes that 1g(z) > 2.
void affiz(GEN x, GEN z) assigns t_INT x into t_INT or t_REAL z. Assumes that 1g(z) > 2.
void affsi(long s, GEN z) assigns the long s into the t_INT z. Assumes that 1g(z) > 2.
void affsr(long s, GEN z) assigns the long s into the t_REAL z. Assumes that 1g(z) > 2.

void affsz(long s, GEN z) assigns the long s into the t_INT or t_REAL z. Assumes that
1g(z) > 2.

void affui(ulong u, GEN z) assigns the ulong u into the t_INT z. Assumes that 1g(z) > 2.
void affur(ulong u, GEN z) assigns the ulong u into the t_REAL z. Assumes that 1g(z) > 2.
void affrr(GEN x, GEN z) assigns the t_REAL x into the t_REAL z.

void affgr(GEN x, GEN z) assigns the scalar x into the t_REAL z, if possible.

The function affrs and affri do not exist. So don’t use them.

void affrr_fix1g(GEN y, GEN z) a variant of affrr. First shorten z so that it is no longer than
y, then assigns y to z. This is used in the following scenario: room is reserved for the result but,
due to cancellation, fewer words of accuracy are available than had been anticipated; instead of
appending meaningless Os to the mantissa, we store what was actually computed.

Note that shortening z is not quite straightforward, since setlg(z, ly) would leave garbage
on the stack, which gerepile might later inspect. It is done using

void fixlg(GEN z, long ly) see stackdummy and the examples that follow.

6.2.3 Copy.

GEN icopy(GEN x) copy relevant words of the t_INT x on the stack: the length and effective length
of the copy are equal.

GEN rcopy(GEN x) copy the t_REAL x on the stack.

GEN leafcopy(GEN x) copy the leaf x on the stack (works in particular for t_INTs and t_REALS).
Contrary to icopy, leafcopy preserves the original length of a t_INT. The obsolete form GEN
mpcopy (GEN x) is still provided for backward compatibility.

This function also works on recursive types, copying them as if they were leaves, i.e. making
a shallow copy in that case: the components of the copy point to the same data as the component
of the source; see also shallowcopy.

GEN leafcopy_avma(GEN x, pari_sp av) analogous to gcopy_avma but simpler: assume z is a
leaf and return a copy allocated as if initially we had avma equal to av. There is no need to pass a
pointer and update the value of the second argument: the new (fictitious) avma is just the return
value (typecast to pari_sp).

GEN icopyspec(GEN x, long nx) copy the nx words x[2], ..., x[nx+1] to make up a new t_INT.
Set the sign to 1.
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6.2.4 Conversions.

GEN itor(GEN x, long prec) converts the t_INT x to a t_REAL of length prec and return the
latter. Assumes that prec > 2.

long itos(GEN x) converts the t_INT x to a long if possible, otherwise raise an exception. We
consider the conversion to be possible if and only if |z| < LONGMAX, i.e. |z| < 29 on a 64-bit
architecture. Since the range is symmetric, the output of itos can safely be negated.

long itos_or_O(GEN x) converts the t_INT x to a long if possible, otherwise return 0.
int is_bigint(GEN n) true if itos(n) would give an error.

ulong itou(GEN x) converts the t_INT |x| to an ulong if possible, otherwise raise an exception.
The conversion is possible if and only if 1gefint(z) < 3.

long itou_or_O(GEN x) converts the t_INT |x| to an ulong if possible, otherwise return 0.
GEN stoi(long s) creates the t_INT corresponding to the long s.

GEN stor(long s, long prec) converts the long s into a t_REAL of length prec and return the
latter. Assumes that prec > 2.

GEN utoi(ulong s) converts the ulong s into a t_INT and return the latter.
GEN utoipos(ulong s) converts the nonzero ulong s into a t_INT and return the latter.
GEN utoineg(ulong s) converts the nonzero ulong s into the t_INT —s and return the latter.

GEN utor(ulong s, long prec) converts the ulong s into a t_REAL of length prec and return
the latter. Assumes that prec > 2.

GEN rtor(GEN x, long prec) converts the t_REAL x to a t_REAL of length prec and return the
latter. If prec < 1g(x), round properly. If prec > 1g(x), pad with zeroes. Assumes that prec > 2.

The following function is also available as a special case of mkintn:

GEN uu32toi(ulong a, ulong b) returns the GEN equal to 232a + b, assuming that a,b < 232.

This does not depend on sizeof (long): the behavior is as above on both 32 and 64-bit machines.

GEN uu32toineg(ulong a, ulong b) returns the GEN equal to —(232a+b), assuming that a,b < 232
and that one of a or b is positive. This does not depend on sizeof (long): the behavior is as above
on both 32 and 64-bit machines.

GEN uutoi(ulong a, ulong b) returns the GEN equal to 2BITS-IN-LONG4 4 )

GEN uutoineg(ulong a, ulong b) returns the GEN equal to —(2BTTS-IN-LONGy 4 p),
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6.2.5 Integer parts. The following four functions implement the conversion from t_REAL to t_INT
using standard rounding modes. Contrary to usual semantics (complement the mantissa with an
infinite number of 0), they will raise an error precision loss in truncation if the t_REAL represents
a range containing more than one integer.

GEN ceilr(GEN x) smallest integer larger or equal to the t_REAL x (i.e. the ceil function).
GEN floorr(GEN x) largest integer smaller or equal to the t_REAL x (i.e. the floor function).
GEN roundr (GEN x) rounds the t_REAL x to the nearest integer (towards +oo in case of tie).
GEN truncr(GEN x) truncates the t_REAL x (not the same as floorr if x is negative).

The following four function are analogous, but can also treat the trivial case when the argument
is a t_INT:

GEN mpceil (GEN x) as ceilr except that x may be a t_INT.

GEN mpfloor(GEN x) as floorr except that x may be a t_INT.
GEN mpround(GEN x) as roundr except that x may be a t_INT.
GEN mptrunc(GEN x) as truncr except that x may be a t_INT.

GEN diviiround(GEN x, GEN y) if x and y are t_INTs, returns the quotient x/y of x and vy,
rounded to the nearest integer. If x/y falls exactly halfway between two consecutive integers, then
it is rounded towards +o0o (as for roundr).

GEN ceil_safe(GEN x), x being a real number (not necessarily a t_REAL) returns the smallest
integer which is larger than any possible incarnation of x. (Recall that a t_REAL represents an
interval of possible values.) Note that gceil raises an exception if the input accuracy is too low
compared to its magnitude.

GEN floor_safe(GEN x), x being a real number (not necessarily a t_REAL) returns the largest
integer which is smaller than any possible incarnation of x. (Recall that a t_REAL represents an
interval of possible values.) Note that gfloor raises an exception if the input accuracy is too low
compared to its magnitude.

GEN trunc_safe(GEN x), x being a real number (not necessarily a t_REAL) returns the integer
with the largest absolute value, which is closer to 0 than any possible incarnation of x. (Recall that
a t_REAL represents an interval of possible values.)

GEN roundr_safe(GEN x) rounds the t_REAL x to the nearest integer (towards +00). Complement
the mantissa with an infinite number of 0 before rounding, hence never raise an exception.

6.2.6 2-adic valuations and shifts.

long vals(long s) 2-adic valuation of the long s. Returns —1 if s is equal to 0.

long vali(GEN x) 2-adic valuation of the t_INT x. Returns —1 if x is equal to 0.

GEN mpshift(GEN x, long n) shifts the t_INT or t_REAL x by n. If n is positive, this is a left
shift, i.e. multiplication by 2*. If n is negative, it is a right shift by —n, which amounts to the
truncation of the quotient of x by 27.

GEN shifti(GEN x, long n) shifts the t_INT z by n.
GEN shiftr(GEN x, long n) shifts the t_REAL x by n.
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void shiftr_inplace(GEN x, long n) shifts the t_REAL x by n, in place.

GEN trunc2nr(GEN x, long n) given a t_REAL z, returns truncr(shiftr(x,n)), but faster,
without leaving garbage on the stack and never raising a precision loss in truncation error. Called
by gtrunc2n.

GEN mantissa2nr (GEN x, long n) given a t_REAL z, returns the mantissa of 22" (disregards the
exponent of x). Equivalent to

trunc2nr(x, n-expo(x)+bit_prec(x)-1)
GEN mantissa_real(GEN z, long *e) returns the mantissa m of z, and sets *e to the exponent

bit_accuracy(lg(z)) — 1 — expo(z), so that z = m/2°.

Low-level. In the following two functions, s(ource) and ¢(arget) need not be valid GENs (in practice,
they usually point to some part of a t_REAL mantissa): they are considered as arrays of words
representing some mantissa, and we shift globally s by n > 0 bits, storing the result in t. We
assume that m < M and only access s[m], s[m + 1],...s[M] (read) and likewise for ¢ (write); we
may have s = t but more general overlaps are not allowed. The word f is concatenated to s to
supply extra bits.

void shift_left(GEN t, GEN s, long m, long M, ulong f, ulong n) shifts the mantissa
sim],s[m +1],...s[M], f

left by n bits.

void shift_right(GEN t, GEN s, long m, long M, ulong f, ulong n) shifts the mantissa
f,slm], sjm +1],...s[M]

right by n bits.

6.2.7 From t_INT to bits or digits in base 2* and back.

GEN binary_zv(GEN x) given a t_INT x, return a t_VECSMALL of bits, from most significant to
least significant.

GEN binary_2k(GEN x, long k) given a t_INT zx, and k£ > 0, return a t_VEC of digits of = in base
2% as t_INTs, from most significant to least significant.

GEN binary_2k_nv(GEN x, long k) given a t_INT =z, and 0 < k < BITS_IN_LONG, return a
t_VECSMALL of digits of 2 in base 2, as ulongs, from most significant to least significant.

GEN bits_to_int(GEN x, long 1) given a vector x of [ bits (as a t_VECSMALL or even a pointer
to a part of a larger vector, so not a proper GEN), return the integer Zizl z[i]2'77, as a t_INT.
ulong bits_to_u(GEN v, long 1) same as bits_to_int, where [ < BITS_IN_LONG, so we can
return an ulong.

GEN fromdigitsu(GEN x, GEN B) given a t_VECSMALL z of length [ and a t_INT B, return the
integer 22:1 x[i]B*~! as a t_INT, where the x[i] are seen as unsigned integers.

GEN fromdigits_2k(GEN x, long k) converse of binary_2k; given a t_VEC x of length [ and a
positive long k, where each x[i] is a t_INT with 0 < z[i] < 2¥, return the integer 22:1 x[i] 209
as a t_INT.

GEN nv_fromdigits_2k(GEN x, long k) as fromdigits_2k, but with = being a t_VECSMALL and

each z[i] being a ulong with 0 < x[i] < 2min{kBITS-INLONG} ' Here k& may be any positive long, and
the z[i] are regarded as k-bit integers by truncating or extending with zeroes.
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6.2.8 Integer valuation. For integers = and p, such that « # 0 and |p| > 1, we define v,(z) to be
the largest integer exponent e such that p® divides x. If p is prime, this is the ordinary valuation
of x at p.

long Z_pvalrem(GEN x, GEN p, GEN *r) applied to t_INTs x # 0 and p, |p| > 1, returns
e := vp(z) The quotient x/p® is returned in *r. If |p| is a prime, *r is the prime-to-p part of x.

long Z_pval(GEN x, GEN p) as Z_pvalrem but only returns v,(z).
long Z_lvalrem(GEN x, ulong p, GEN *r) as Z_pvalrem, except that p is an ulong (p > 1).

long Z_lvalrem_stop(GEN *x, ulong p, int *stop) assume z > 0; returns e := v,(z) and
replaces x by z/p°. Set stop to 1 if the new value of = is < p? (and 0 otherwise). To be used when
trial dividing x by successive primes: the stop condition is cheaply tested while testing whether p
divides z (is the quotient less than p?), and allows to decide that n is prime if no prime < p divides
n. Not memory-clean.

long Z_1val(GEN x, ulong p) as Z_pval, except that p is an ulong (p > 1).

long u_lvalrem(ulong x, ulong p, ulong *r) as Z_pvalrem, except the inputs/outputs are
now ulongs.

long u_lvalrem_stop(ulong *n, ulong p, int *stop) as Z_pvalrem_stop.

long u_pvalrem(ulong x, GEN p, ulong *r) as Z_pvalrem, except x and r are now ulongs.
long u_lval(ulong x, ulong p) as Z_pval, except the inputs are now ulongs.

long u_pval(ulong x, GEN p) as Z_pval, except x is now an ulong.

long z_lval(long x, ulong p) as u_lval, for signed x.

long z_lvalrem(long x, ulong p) as u_lvalrem, for signed x.

long z_pval(long x, GEN p) as Z_pval, except x is now a long.

long z_pvalrem(long x, GEN p) as Z_pvalrem, except x is now a long.

long factorial_lval(ulong n, ulong p) returns v,(n!), assuming p is prime.

The following convenience functions generalize Z_pval and its variants to “containers” (ZV and
ZX):

long ZV_pvalrem(GEN x, GEN p, GEN *r) x being a ZV (a vector of t_INTs), return the min v
of the valuations of its components and set *r to x/p". Infinite loop if x is the zero vector. This
function is not stack clean.

long ZV_pval(GEN x, GEN p) as ZV_pvalrem but only returns the “valuation”.

int ZV_Z_dvd(GEN x, GEN p) returns 1 if p divides all components of x and 0 otherwise. Faster
than testing ZV_pval(x,p) >= 1.

long ZV_lvalrem(GEN x, ulong p, GEN *px) as ZV_pvalrem, except that p is an ulong (p > 1).
This function is not stack-clean.

long ZV_1val(GEN x, ulong p) as ZV_pval, except that p is an ulong (p > 1).

long ZX_pvalrem(GEN x, GEN p, GEN *r) as ZV_pvalrem, for a ZX = (a t_POL with t_INT
coefficients). This function is not stack-clean.

long ZX_pval(GEN x, GEN p) as ZV_pval for a ZX .

93



long ZX_lvalrem(GEN x, ulong p, GEN *px) as ZV_lvalrem, a ZX x. This function is not
stack-clean.

long ZX_1val(GEN x, ulong p) as ZX_pval, except that p is an ulong (p > 1).

6.2.9 Generic unary operators. Let “op” be a unary operation among
e neg: negation (—z).
e abs: absolute value (|z]).
e sqr: square (22).

The names and prototypes of the low-level functions corresponding to op are as follows. The result
is of the same type as x.

GEN opi(GEN x) creates the result of op applied to the t_INT x.

GEN opr(GEN x) creates the result of op applied to the t_REAL x.

GEN mpop (GEN x) creates the result of op applied to the t_INT or t_REAL x.
Complete list of available functions:

GEN absi(GEN x), GEN absr(GEN x), GEN mpabs(GEN x)

GEN negi(GEN x), GEN negr(GEN x), GEN mpneg(GEN x)

GEN sqri(GEN x), GEN sqrr(GEN x), GEN mpsqr (GEN x)

GEN absi_shallow(GEN x) z being a t_INT, returns a shallow copy of |z|, in particular returns z
itself when x > 0, and negi (x) otherwise.

GEN mpabs_shallow(GEN x) x being a t_INT or a t_REAL, returns a shallow copy of |z|, in partic-
ular returns z itself when x > 0, and mpneg(z) otherwise.

Some miscellaneous routines:

GEN sqrs(long x) returns z2.

GEN sqru(ulong x) returns z?.

6.2.10 Comparison operators.

int cmpss(long s, long t) compares the long s to the t_long t.

int cmpuu(ulong u, ulong v) compares the ulong u to the t_ulong v.
long minss(long x, long y)

ulong minuu(ulong x, ulong y)

double mindd(double x, double y) returns the min of x and y.

long maxss(long x, long y)

ulong maxuu(ulong x, ulong y)

double maxdd(double x, double y) returns the max of x and y.

int mpcmp(GEN x, GEN y) compares the t_INT or t_REAL x to the t_INT or t_REAL y. The result
is the sign of x — y.
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int cmpii(GEN x, GEN y) compares the t_INT x to the t_INT y.
int cmpir(GEN x, GEN y) compares the t_INT x to the t_REAL y.
int cmpis(GEN x, long s) compares the t_INT x to the long s.
int cmpiu(GEN x, ulong s) compares the t_INT x to the ulong s.
int cmpsi(long s, GEN x) compares the long s to the t_INT x.
int cmpui(ulong s, GEN x) compares the ulong s to the t_INT x.
int cmpsr(long s, GEN x) compares the long s to the t_REAL x.
int cmpri(GEN x, GEN y) compares the t_REAL x to the t_INT y.
int cmprr(GEN x, GEN y) compares the t_REAL x to the t_REAL y.
int cmprs(GEN x, long s) compares the t_REAL x to the long s.
int equalii(GEN x, GEN y) compares the t_INTs x and y. The result is 1 if x =y, 0 otherwise.

int equalrr(GEN x, GEN y) compares the t_REALs x and y. The result is 1 if x = y, 0 otherwise.
Equality is decided according to the following rules: all real zeroes are equal, and different from a
nonzero real; two nonzero reals are equal if all their digits coincide up to the length of the shortest
of the two, and the remaining words in the mantissa of the longest are all 0.

int equalis(GEN x, long s) compare the t_INT x and the long s. The result is 1ifx =1y, 0
otherwise.

int equalsi(long s, GEN x)

int equaliu(GEN x, ulong s) compare the t_INT x and the ulong s. The resultis 1 if x =y, 0
otherwise.

int equalui(ulong s, GEN x)
The remaining comparison operators disregard the sign of their operands

int absequaliu(GEN x, ulong u) compare the absolute value of the t_INT x and the ulong s.
The result is 1 if |x| =y, 0 otherwise. This is marginally more efficient than equalis even when x
is known to be nonnegative.

int absequalui(ulong u, GEN x)

int abscmpiu(GEN x, ulong u) compare the absolute value of the t_INT x and the ulong u.
int abscmpui(ulong u, GEN x)

int abscmpii(GEN x, GEN y) compares the t_INTs x and y. The result is the sign of |x| — |y|.

int absequalii(GEN x, GEN y) compares the t_INTs x and y. The result is 1 if |x| = |y, O
otherwise.

int abscmprr(GEN x, GEN y) compares the t_REALs x and y. The result is the sign of |x| — |y|.

int absrnz_equal2n(GEN x) tests whether a nonzero t_REAL x is equal to £2¢ for some integer
e.

int absrnz_equall(GEN x) tests whether a nonzero t_REAL x is equal to +1.
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6.2.11 Generic binary operators. The operators in this section have arguments of C-type GEN,
long, and ulong, and only t_INT and t_REAL GENs are allowed. We say an argument is a real type
if it is a t_REAL GEN, and an integer type otherwise. The result is always a t_REAL unless both x
and y are integer types.

Let “op” be a binary operation among
e add: addition (x + y).

e sub: subtraction (x - y).

e mul: multiplication (x * y).

e div: division (x / y). In the case where x and y are both integer types, the result is the
FEuclidean quotient, where the remainder has the same sign as the dividend x. It is the ordinary
division otherwise. A division-by-0 error occurs if y is equal to 0.

The last two generic operations are defined only when arguments have integer types; and the
result is a t_INT:

e rem: remainder (“x % y”). The result is the Euclidean remainder corresponding to div, i.e.
its sign is that of the dividend x.

e mod: true remainder (x % y). The result is the true Euclidean remainder, i.e. nonnegative
and less than the absolute value of y.

Important technical note. The rules given above fixing the output type (to t_REAL unless
both inputs are integer types) are subtly incompatible with the general rules obeyed by PARI’s
generic functions, such as gmul or gdiv for instance: the latter return a result containing as much
information as could be deduced from the inputs, so it is not true that if z is a t_INT and y a
t_REAL, then gmul(x,y) is always the same as mulir(x,y). The exception is z = 0, in that case
we can deduce that the result is an exact 0, so gmul returns gen_0, while mulir returns a t_REAL 0.
Specifically, the one resulting from the conversion of gen_0 to a t_REAL of precision precision(y),
multiplied by y; this determines the exponent of the real 0 we obtain.

The reason for the discrepancy between the two rules is that we use the two sets of functions
in different contexts: generic functions allow to write high-level code forgetting about types, letting
PARI return results which are sensible and as simple as possible; type specific functions are used
in kernel programming, where we do care about types and need to maintain strict consistency: it is
much easier to compute the types of results when they are determined from the types of the inputs
only (without taking into account further arithmetic properties, like being nonzero).

The names and prototypes of the low-level functions corresponding to op are as follows. In this
section, the z argument in the z-functions must be of type t_INT when no r or mp appears in the
argument code (no t_REAL operand is involved, only integer types), and of type t_REAL otherwise.

GEN mpop[z] (GEN x, GEN y[, GEN z]) applies op to the t_INT or t_REAL x and y. The function
mpdivz does not exist (its semantic would change drastically depending on the type of the z
argument), and neither do mprem[z] nor mpmod [z] (specific to integers).

GEN opsilz] (long s, GEN x[, GEN z]) applies op to the long s and the t_INT x. These func-
tions always return the global constant gen 0 (not a copy) when the sign of the result is 0.

GEN opsrlz](long s, GEN x[, GEN z]) applies op to the long s and the t_REAL x.
GEN opss[z] (long s, long t[, GEN z]) applies op to the longs s and t. These functions always

return the global constant gen 0 (not a copy) when the sign of the result is 0.
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GEN opiilz] (GEN x, GEN y[, GEN z]) applies op to the t_INTs x and y. These functions always
return the global constant gen 0 (not a copy) when the sign of the result is 0.

GEN opir[z] (GEN x, GEN y[, GEN z]) applies op to the t_INT x and the t_REAL y.

GEN opis[z] (GEN x, long s[, GEN z]) applies op to the t_INT x and the long s. These func-
tions always return the global constant gen 0 (not a copy) when the sign of the result is 0.

GEN oprilz] (GEN x, GEN y[, GEN z]) applies op to the t_REAL x and the t_INT y.
GEN oprr[z] (GEN x, GEN y[, GEN z]) applies op to the t_REALs x and y.

GEN oprs[z] (GEN x, long s[, GEN z]) applies op to the t_REAL x and the long s.
Some miscellaneous routines:

long expu(ulong x) assuming x > 0, returns the binary exponent of the real number equal to z.
This is a special case of gexpo.

GEN adduu(ulong x, ulong y)

GEN addiu(GEN x, ulong y)

GEN addui(ulong x, GEN y) adds x and y.

GEN subuu(ulong x, ulong y)

GEN subiu(GEN x, ulong y)

GEN subui(ulong x, GEN y) subtracts x by y.
GEN muluu(ulong x, ulong y) multiplies x by y.

ulong umuluu_le(ulong x, ulong y, ulong n) multiplies x by y. Return xy if xy < n and 0
otherwise (in particular if zy does not fit in an ulong).

ulong umuluu_or_O(ulong x, ulong y) multiplies x by y. Return 0 if zy does not fit in an
ulong.

GEN mului(ulong x, GEN y) multiplies x by y.

GEN muluui(ulong x, ulong y, GEN z) return zyz.

GEN muliu(GEN x, ulong y) multiplies x by y.

void addumului(ulong a, ulong b, GEN x) return a + b|.X|.
GEN addmuliu(GEN x, GEN y, ulong u) returns x + yu.

GEN addmulii(GEN x, GEN y, GEN z) returns z + yz.

GEN addmulii_inplace(GEN x, GEN y, GEN z) returns = + yz, but returns z itself and not a
copy if yz = 0. Not suitable for gerepile or gerepileupto.

GEN addmuliu_inplace(GEN x, GEN y, ulong u) returns x + yu, but returns x itself and not a
copy if yu = 0. Not suitable for gerepile or gerepileupto.

GEN submuliu_inplace(GEN x, GEN y, ulong u) returns x — yu, but returns x itself and not a
copy if yu = 0. Not suitable for gerepile or gerepileupto.

GEN lincombii(GEN u, GEN v, GEN x, GEN y) returns ux + vy.
GEN mulsubii(GEN y, GEN z, GEN x) returns yz — x.
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GEN submulii(GEN x, GEN y, GEN z) returns z — yz.
GEN submuliu(GEN x, GEN y, ulong u) returns x — yu.
GEN mulu_interval(ulong a, ulong b) returns a(a + 1)---b, assuming that a < b.

GEN mulu_interval_step(ulong a, ulong b, ulong s) returns the product of all integers in
[a, b] congruent to a modulo s. Assume a < b and s > 0;

GEN muls_interval(long a, long b) returns a(a + 1)---b, assuming that a < b.
GEN invr (GEN x) returns the inverse of the nonzero t_REAL z.

GEN truedivii(GEN x, GEN y) returns the true Euclidean quotient (with nonnegative remainder
less than |y|).

GEN truedivis(GEN x, long y) returns the true Euclidean quotient (with nonnegative remainder
less than |y|).

GEN truedivsi(long x, GEN y) returns the true Euclidean quotient (with nonnegative remainder
less than |y|).

GEN centermodii(GEN x, GEN y, GEN y2), given t_INTs x, y, returns z congruent to x modulo y,
such that —y/2 < z < y/2. The function requires an extra argument y2, such that y2 = shifti(y,
-1). (In most cases, y is constant for many reductions and y2 need only be computed once.)

GEN remi2n(GEN x, long n) returns x mod 2".

GEN addii_sign(GEN x, long sx, GEN y, long sy) add the t_INTs x and y as if their signs
were sx and sy.

GEN addir_sign(GEN x, long sx, GEN y, long sy) add the t_INT x and the t_REAL y as if
their signs were sx and sy.

GEN addrr_sign(GEN x, long sx, GEN y, long sy) add the t_REALs z and y as if their signs
were sx and sy.

GEN addsi_sign(long x, GEN y, long sy) add z and the t_INT y as if its sign was sy.
GEN addui_sign(ulong x, GEN y, long sy) add z and the t_INT y as if its sign was sy.

6.2.12 Exact division and divisibility.

GEN diviiexact(GEN x, GEN y) returns the Euclidean quotient x/y, assuming y divides x. Uses
Jebelean algorithm (Jebelean-Krandick bidirectional exact division is not implemented).

GEN diviuexact(GEN x, ulong y) returns the Euclidean quotient x/y, assuming y divides x and
y is nonzero.

GEN diviuuexact(GEN x, ulong y, ulong z) returns the Euclidean quotient x/(yz), assuming
yz divides « and yz # 0.

The following routines return 1 (true) if y divides x, and 0 otherwise. All GEN are assumed to
be t_INTs:

int dvdii(GEN x, GEN y), int dvdis(GEN x, long y), int dvdiu(GEN x, ulong y),
int dvdsi(long x, GEN y), int dvdui(ulong x, GEN y).
The following routines return 1 (true) if y divides x, and in that case assign the quotient to z;

otherwise they return 0. All GEN are assumed to be t_INTs:
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int dvdiiz(GEN x, GEN y, GEN z), int dvdisz(GEN x, long y, GEN z).

int dvdiuz(GEN x, ulong y, GEN z) if y divides x, assigns the quotient |x|/y to z and returns
1 (true), otherwise returns 0 (false).

6.2.13 Division with integral operands and t_REAL result.

GEN rdivii(GEN x, GEN y, long prec), assuming x and y are both of type t_INT, return the
quotient z/y as a t_REAL of precision prec.

GEN rdiviiz(GEN x, GEN y, GEN z), assuming x and y are both of type t_INT, and z is a t_REAL,
assign the quotient z/y to z.

GEN rdivis(GEN x, long y, long prec), assuming x is of type t_INT, return the quotient x/y
as a t_REAL of precision prec.

GEN rdivsi(long x, GEN y, long prec), assuming y is of type t_INT, return the quotient x/y
as a t_REAL of precision prec.

GEN rdivss(long x, long y, long prec), return the quotient x/y as a t_REAL of precision prec.

6.2.14 Division with remainder. The following functions return two objects, unless specifically
asked for only one of them — a quotient and a remainder. The quotient is returned and the
remainder is returned through the variable whose address is passed as the r argument. The term
true Euclidean remainder refers to the nonnegative one (mod), and Euclidean remainder by itself to
the one with the same sign as the dividend (rem). All GENs, whether returned directly or through
a pointer, are created on the stack.

GEN dvmdii(GEN x, GEN y, GEN *r) returns the Euclidean quotient of the t_INT x by a t_INT y
and puts the remainder into *r. If r is equal to NULL, the remainder is not created, and if r is
equal to ONLY_REM, only the remainder is created and returned. In the generic case, the remainder
is created after the quotient and can be disposed of individually with a cgiv(r). The remainder is
always of the sign of the dividend x. If the remainder is 0 set r = gen_0.

void dvmdiiz(GEN x, GEN y, GEN z, GEN t) assigns the Euclidean quotient of the t_INTs x
and y into the t_INT z, and the Euclidean remainder into the t_INT t.

Analogous routines dvmdis[z], dvmdsi[z], dvmdss[z] are available, where s denotes a long ar-
gument. But the following routines are in general more flexible:

long sdivss_rem(long s, long t, long *r) computes the Euclidean quotient and remainder
of the longs s and t. Puts the remainder into *r, and returns the quotient. The remainder is of
the sign of the dividend s, and has strictly smaller absolute value than t.

long sdivsi_rem(long s, GEN x, long *r) computes the Euclidean quotient and remainder of
the long s by the t_INT x. As sdivss_rem otherwise.

long sdivsi(long s, GEN x) as sdivsi_rem, without remainder.

GEN divis_rem(GEN x, long s, long *r) computes the Euclidean quotient and remainder of
the t_INT x by the long s. As sdivss_rem otherwise.

GEN absdiviu_rem(GEN x, ulong s, ulong *r) computes the Euclidean quotient and remainder
of absolute value of the t_INT x by the ulong s. As sdivss_rem otherwise.

ulong uabsdiviu_rem(GEN n, ulong d, ulong *r) as absdiviu_rem, assuming that |n|/d fits
into an ulong.
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ulong uabsdivui_rem(ulong x, GEN y, ulong *rem) computes the Euclidean quotient and
remainder of = by |y|. As sdivss_rem otherwise.

ulong udivuu_rem(ulong x, wulong y, ulong *rem) computes the Euclidean quotient and
remainder of x by y. As sdivss_rem otherwise.

ulong ceildivuu(ulong x, ulong y) return the ceiling of z/y.

GEN divsi_rem(long s, GEN y, long *r) computes the FEuclidean quotient and remainder of
the long s by the GEN y. As sdivss_rem otherwise.

GEN divss_rem(long x, long y, long *r) computes the Euclidean quotient and remainder of
the long x by the long y. As sdivss_rem otherwise.

GEN truedvmdii(GEN x, GEN y, GEN *r), as dvmdii but with a nonnegative remainder.
GEN truedvmdis(GEN x, long y, GEN *z), as dvmdis but with a nonnegative remainder.

GEN truedvmdsi(long x, GEN y, GEN *z), as dvmdsi but with a nonnegative remainder.

6.2.15 Modulo to longs. The following variants of modii do not clutter the stack:

long smodis(GEN x, long y) computes the true Euclidean remainder of the t_INT x by the
long y. This is the nonnegative remainder, not the one whose sign is the sign of x as in the div
functions.

long smodss(long x, long y) computes the true Euclidean remainder of the long x by a long y.

ulong umodsu(long x, ulong y) computes the true Euclidean remainder of the long x by a
ulong y.

ulong umodiu(GEN x, ulong y) computes the true Euclidean remainder of the t_INT x by the
ulong y.

ulong umodui(ulong x, GEN y) computes the true Euclidean remainder of the ulong x by the
t_INT |yl.

The routine smodsi does not exist, since it would not always be defined: for a negative x, if
the quotient is +1, the result x + |y| would in general not fit into a long. Use either umodui or
modsi.

These functions directly access the binary data and are thus much faster than the generic
modulo functions:

int mpodd(GEN x) which is 1 if x is odd, and 0 otherwise.

ulong Mod2(GEN x)

ulong Mod4(GEN x)

ulong Mod8(GEN x)

ulong Mod16(GEN x)

ulong Mod32(GEN x)

ulong Mod64(GEN x) give the residue class of x modulo the corresponding power of 2.

ulong umodi2n(GEN x, long n) give the residue class of x modulo 2", 0 < n < BITS_ IN_LONG.
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The following functions assume that x # 0 and in fact disregard the sign of x. There are about
10% faster than the safer variants above:

long mod2(GEN x)
long mod4(GEN x)
long mod8(GEN x)
long mod16(GEN x)
long mod32(GEN x)

long mod64 (GEN x) give the residue class of |x| modulo the corresponding power of 2, for nonzero x.
As well,

ulong mod2BIL(GEN x) returns the least significant word of |z|, still assuming that x # 0.

6.2.16 Powering, Square root.

GEN powii(GEN x, GEN n), assumes z and n are t_INTs and returns z”.

GEN powuu(ulong x, ulong n), returns z".

GEN powiu(GEN x, ulong n), assumes x is a t_INT and returns x".

GEN powis(GEN x, long n), assumes x is a t_INT and returns z™ (possibly a t_FRAC if n < 0).

GEN powrs(GEN x, long n), assumes x is a t_REAL and returns z™. This is considered as a
sequence of mulrr, possibly empty: as such the result has type t_REAL, even if n = 0. Note that
the generic function gpowgs(x,0) would return gen_1, see the technical note in Section 6.2.11.

GEN powru(GEN x, ulong n), assumes z is a t_REAL and returns z" (always a t_REAL, even if
n =0).

GEN powersr(GEN e, long n). Given a t_REAL e, return the vector v of all e?, 0 < i < n, where
i—1

vli] =¢€'
GEN powrshalf(GEN x, long n), assumes x is a t_REAL and returns z"/? (always a t_REAL, even
if n=0).

GEN powruhalf (GEN x, ulong n), assumes z is a t_REAL and returns /2 (always a t_REAL, even
if n=0).

GEN powrfrac(GEN x, long n, long d), assumes z is a t_REAL and returns z"/¢ (always a
t_REAL, even if n = 0).

GEN powIs(long n) returns I™ € {1,I,—1,—1I} (t_INT for even n, t_COMPLEX otherwise).

ulong upowuu(ulong x, ulong n), returns x” when < 2BITS-IN-LONG “and ( otherwise (overflow).

ulong upowers(ulong x, long n), returns [1,z,...,2"| as a t_VECSMALL. Assume there is no
overflow.

GEN sqrtremi(GEN N, GEN *r), returns the integer square root S of the nonnegative t_INT N
(rounded towards 0) and puts the remainder R into *r. Precisely, N = S + R with 0 < R < 285.
If r is equal to NULL, the remainder is not created. In the generic case, the remainder is created
after the quotient and can be disposed of individually with cgiv(R). If the remainder is 0 set R =
gen 0.
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Uses a divide and conquer algorithm (discrete variant of Newton iteration) due to Paul Zim-
mermann (“Karatsuba Square Root”, INRIA Research Report 3805 (1999)).

GEN sqrti(GEN N), returns the integer square root S of the nonnegative t_INT N (rounded towards
0). This is identical to sqrtremi (N, NULL).

long logintall(GEN B, GEN y, GEN *ptq) returns the floor e of log, B, where B > 0 and y > 1
are integers. If ptq is not NULL, set it to y°. (Analogous to logint0, whithout sanity checks.)

ulong ulogintall(ulong B, ulong y, ulong *ptq) as logintall for ulong arguments.
long logint(GEN B, GEN y) returns the floor e of log, B, where B > 0 and y > 1 are integers.
ulong ulogint(ulong B, ulong y) as logint for ulong arguments.

GEN vecpowuu(long N, ulong a) return the vector of n®, n=1,..., N. Not memory clean.

GEN vecpowug(long N, GEN a, long prec) return the vector of n® n = 1,..., N, where the
powers are computed at precision prec. Not memory clean.

6.2.17 GCD, extended GCD and LCM.

long cgcd(long x, long y) returns the GCD of x and y.
ulong ugcd(ulong x, ulong y) returns the GCD of x and y.
ulong ugcdiu(GEN x, ulong y) returns the GCD of x and y.
ulong ugcdui(ulong x, GEN y) returns the GCD of x and y.

GEN coprimes_zv(ulong N) return a t_VECSMALL 7 with N entries such that T[i] = 1 iff (i, N) =1
and 0 otherwise.

long clcm(long x, long y) returns the LCM of x and y, provided it fits into a long. Silently
overflows otherwise.

ulong ulcm(ulong x, ulong y) returns the LCM of x and y, provided it fits into an ulong.
Silently overflows otherwise.

GEN gcdii(GEN x, GEN y), returns the GCD of the t_INTs x and y.
GEN lcmii(GEN x, GEN y), returns the LCM of the t_INTs x and y.

GEN bezout(GEN a, GEN b, GEN *u, GEN *v), returns the GCD d of t_INTs a and b and sets u,
v to the Bezout coefficients such that au + bv = d.

long cbezout(long a, long b, long *u, long *v), returns the GCD d of a and b and sets u,
v to the Bezout coefficients such that au + bv = d.

GEN halfgcdii(GEN x, GEN y) assuming x and y are t_INTs, returns a 2-components t_VEC
[M,V] where M is a 2 x 2 t_MAT and V' a 2-component t_COL, both with t_INT entries, such that

M x [x,y] ==V and such that if V = [a,b] , then a > { max(|z|, \y])—‘ > b.

GEN ZV_extgcd(GEN A) given a vector of n integers A, returns [d, U], where d is the GCD of the
Ali] and U is a matrix in GL,,(Z) such that AU =[0,...,0, D].

GEN ZV_1cm(GEN v) given a vector v of integers returns the LCM of its entries.

GEN ZV_snf_gcd(GEN v, GEN N) given a vector v of integers and a positive integer N, return the
vector whose entries are the geds (v[i], N). Use case: if v gives the cyclic components for some
Abelian group G of finite type, then this returns the structure of the finite groupe G/G¥.
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6.2.18 Continued fractions and convergents.
GEN ZV_allpngn(GEN x) given = = [ag, ..., a,] a continued fraction from gboundcf, n > 0, return

all convergents as [P, Q], where P = [po,...,pn] and Q = [qo, - - ., qn)-

6.2.19 Pseudo-random integers. These routine return pseudo-random integers uniformly dis-
tributed in some interval. The all use the same underlying generator which can be seeded and
restarted using getrand and setrand.

void setrand(GEN seed) reseeds the random number generator using the seed n. The seed is
either a technical array output by getrand or a small positive integer, used to generate deter-
ministically a suitable state array. For instance, running a randomized computation starting by
setrand (1) twice will generate the exact same output.

GEN getrand(void) returns the current value of the seed used by the pseudo-random number
generator random. Useful mainly for debugging purposes, to reproduce a specific chain of compu-
tations. The returned value is technical (reproduces an internal state array of type t_VECSMALL),
and can only be used as an argument to setrand.

ulong pari_rand(void) returns a random 0 < x < 2BITS-IN-LONG,

long random_bits(long k) returns a random 0 < z < 2k Assumes that 0 < k < BITS_IN_LONG.
ulong random_F1(ulong p) returns a pseudo-random integer in 0,1,...p — 1.

GEN randomi(GEN n) returns a random t_INT between 0 and n — 1.

GEN randomr (long prec) returns a random t_REAL in [0, 1[, with precision prec.

6.2.20 Modular operations. In this subsection, all GENs are t_INT.

GEN Fp_red(GEN a, GEN m) returns a modulo m (smallest nonnegative residue). (This is identical
to modii).

GEN Fp_neg(GEN a, GEN m) returns —a modulo m (smallest nonnegative residue).

GEN Fp_add(GEN a, GEN b, GEN m) returns the sum of a and b modulo m (smallest nonnegative
residue).

GEN Fp_sub(GEN a, GEN b, GEN m) returns the difference of a and b modulo m (smallest nonneg-
ative residue).

GEN Fp_center(GEN a, GEN p, GEN pov2) assuming that pov2is shifti(p,-1) and that —p/2 <
a < p, returns the representative of a in the symmetric residue system | — p/2,p/2].

GEN Fp_center_i(GEN a, GEN p, GEN pov2) internal variant of Fp_center, not gerepile-safe:
when « is already in the proper interval, it is returned as is, without a copy.

GEN Fp_mul(GEN a, GEN b, GEN m) returns the product of a by b modulo m (smallest nonnegative
residue).

GEN Fp_addmul(GEN x, GEN y, GEN z, GEN p) returns z + yz.

GEN Fp_mulu(GEN a, ulong b, GEN m) returns the product of a by b modulo m (smallest nonneg-
ative residue).

GEN Fp_muls(GEN a, long b, GEN m) returns the product of a by b modulo m (smallest nonnegative
residue).
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GEN Fp_halve(GEN x, GEN m) returns z such that 2z = x modulo m assuming such z exists.
GEN Fp_sqr(GEN a, GEN m) returns a? modulo m (smallest nonnegative residue).

ulong Fp_powu(GEN x, ulong n, GEN m) raises x to the n-th power modulo m (smallest nonneg-
ative residue). Not memory-clean, but suitable for gerepileupto.

ulong Fp_pows(GEN x, long n, GEN m) raises x to the n-th power modulo m (smallest nonnegative
residue). A negative n is allowed Not memory-clean, but suitable for gerepileupto.

GEN Fp_pow(GEN x, GEN n, GEN m) returns x® modulo m (smallest nonnegative residue).

GEN Fp_pow_init(GEN x, GEN n, long k, GEN p) Return a table R that can be used with
Fp_pow_table to compute the powers of 2 up to n. The table is of size 2% log,(n).

GEN Fp_pow_table(GEN R, GEN n, GEN p) return 2", where R is given by Fp_pow_init(x,m,k,p)
for some integer m > n.

GEN Fp_powers(GEN x, long n, GEN m) returns [x’,...,x?] modulo m as a t_VEC (smallest

nonnegative residue).

GEN Fp_inv(GEN a, GEN m) returns an inverse of a modulo m (smallest nonnegative residue). Raise
an error if a is not invertible.

GEN Fp_invsafe(GEN a, GEN m) as Fp_inv, but return NULL if a is not invertible.

GEN Fp_invgen(GEN x, GEN m, GEN *pg) set *pg to g = ged(x, m) and return w in (Z/mZ)* such
that zu = g modulo m. We have g = 1 if and only if z is invertible, and in this case w is its inverse.

GEN FpV_prod(GEN x, GEN p) returns the product of the components of x.

GEN FpV_inv(GEN x, GEN m) z being a vector of t_INTs, return the vector of inverses of the z[i]
mod m. The routine uses Montgomery’s trick, and involves a single inversion mod m, plus 3(N —1)
multiplications for N entries. The routine is not stack-clean: 2N integers mod m are left on stack,
besides the N in the result.

GEN Fp_div(GEN a, GEN b, GEN m) returns the quotient of a by b modulo m (smallest nonnegative
residue). Raise an error if b is not invertible.

GEN Fp_divu(GEN a, ulong b, GEN m) returns the quotient of a by b modulo m (smallest non-
negative residue). Raise an error if b is not invertible.

int invmod(GEN a, GEN m, GEN *g), return 1 if a modulo m is invertible, else return 0 and set
g = ged(a,m).
In the following three functions the integer parameter ord can be given either as a positive

t_INT N, or as its factorization matrix faN, or as a pair [N, faN]. The parameter may be omitted
by setting it to NULL (the value is then p — 1).

GEN Fp_log(GEN a, GEN g, GEN ord, GEN p) Let g such that g°? =1 (mod p). Return an
integer e such that a® =¢ (mod p). If e does not exist, the result is undefined.

GEN Fp_order(GEN a, GEN ord, GEN p) returns the order of the Fp a. Assume that ord is a
multiple of the order of a.

GEN Fp_factored_order(GEN a, GEN ord, GEN p) returns |o, F'], where o is the multiplicative
order of the Fp a in F, and F' is the factorization of 0. Assume that ord is a multiple of the order
of a.

104



int Fp_issquare(GEN x, GEN p) returns 1 if x is a square modulo p, and 0 otherwise.
int Fp_ispower (GEN x, GEN n, GEN p) returns 1 if x is an n-th power modulo p, and 0 otherwise.

GEN Fp_sqrt(GEN x, GEN p) returns a square root of x modulo p (the smallest nonnegative
residue), where x, p are t_INTs, and p is assumed to be prime. Return NULL if x is not a quadratic
residue modulo p.

GEN Fp_2gener (GEN p) return a generator of the 2-Sylow subgroup of Fj. To use with Fp_sqrt_i.

GEN Fp_sqrt_i(GEN x, GEN s2, GEN p) as Fp_sqrt where s2 is the element returned by
Fp_2gener.

GEN Fp_sqrtn(GEN a, GEN n, GEN p, GEN *zn) returns NULL if a is not an n-th power residue
mod p. Otherwise, returns an n-th root of a; if zn is not NULL set it to a primitive m-th root of 1,
m = ged(p — 1,7n) allowing to compute all m solutions in F), of the equation 2" = a.

GEN Zn_sqrt(GEN x, GEN n) returns one of the square roots of x modulo n (possibly not prime),
where x is a t_INT and n is either a t_INT or is given by its factorization matrix. Return NULL if
no such square root exist.

GEN Zn_quad_roots(GEN N, GEN B, GEN C) solves the equation X2+ BX + C modulo N. Return
NULL if there are no solutions. Else returns [v, M] where M | N and the FpV v of distinct integers
(reduced, implicitly modulo M) is such that z modulo N is a solution to the equation if and only
if  modulo M belongs to v. If the discriminant B? — 4C is coprime to N, we have M = N but in
general M can be a strict divisor of N.

long kross(long x, long y) returns the Kronecker symbol (z]y), i.e.—1, 0 or 1. If y is an odd
prime, this is the Legendre symbol. (Contrary to krouu, kross also supports y = 0)

long krouu(ulong x, ulong y) returns the Kronecker symbol (x|y), i.e. —1, 0 or 1. Assumes y
is nonzero. If y is an odd prime, this is the Legendre symbol.

long krois(GEN x, long y) returns the Kronecker symbol (z|y) of t_INT x and long y. As
kross otherwise.

long kroiu(GEN x, ulong y) returns the Kronecker symbol (z|y) of t_INT x and nonzero ulong y.
As krouu otherwise.

long krosi(long x, GEN y) returns the Kronecker symbol (z]y) of long x and t_INT y. As
kross otherwise.

long kroui(ulong x, GEN y) returns the Kronecker symbol (z|y) of long x and t_INT y. As
kross otherwise.

long kronecker (GEN x, GEN y) returns the Kronecker symbol (z|y) of t_INTs x and y. As kross
otherwise.

GEN factorial_Fp(long n, GEN p) return n! mod p.
GEN pgener_Fp(GEN p) returns the smallest primitive root modulo p, assuming p is prime.

GEN pgener_Zp(GEN p) returns the smallest primitive root modulo p*, k > 1, assuming p is an
odd prime.

long Zp_issquare(GEN x, GEN p) returns 1 if the t_INT z is a p-adic square, 0 otherwise.
long Zn_issquare(GEN x, GEN n) returns 1 if t_INT z is a square modulo n (possibly not prime),

where n is either a t_INT or is given by its factorization matrix. Return 0 otherwise.
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long Zn_ispower (GEN x, GEN n, GEN K, GEN *py) returns 1 if t_INT x is a K-th power modulo
n (possibly not prime), where n is either a t_INT or is given by its factorization matrix. Return 0
otherwise. If py is not NULL, set it to y such that y® = z modulo n.

GEN pgener_Fp_local(GEN p, GEN L), L being a vector of primes dividing p — 1, returns the
smallest integer x > 1 which is a generator of the ¢-Sylow of F, for every £ in L. In other words,

xP=1/¢ £ 1 for all such ¢. In particular, returns pgener_Fp(p) if L contains all primes dividing
p—1. It is not necessary, and in fact slightly inefficient, to include ¢ = 2, since 2 is treated separately
in any case, i.e. the generator obtained is never a square.

GEN rootsofl_Fp(GEN n, GEN p) returns a primitive n-th root modulo the prime p.
GEN rootsoflu_Fp(ulong n, GEN p) returns a primitive n-th root modulo the prime p.

ulong rootsofl_Fl(ulong n, ulong p) returns a primitive n-th root modulo the prime p.

6.2.21 Extending functions to vector inputs.

The following functions apply f to the given arguments, recursively if they are of vector /
matrix type:

GEN map_proto_G(GEN (*f) (GEN), GEN x) For instance, if  is a t_VEC, return a t_VEC whose
components are the f(z[i]).

GEN map_proto_1G(long (*f)(GEN), GEN x) As above, applying the function stoi( £() ).
GEN map_proto_GL(GEN (*f)(GEN, long), GEN x, long y)
GEN map_proto_1GL(long (*f) (GEN, long), GEN x, long y)

In the last function, f implements an associative binary operator, which we extend naturally
to an n-ary operator f, for any n: by convention, fo() =1, fi(z) = x, and

fa(@y, .o ozn) = f(faci(z1, 0 2n—1), 20)),

for n > 2.

GEN gassoc_proto(GEN (xf)(GEN, GEN), GEN x, GEN y) If y is not NULL, return f(z,y).
Otherwise, x must be of vector type, and we return the result of f applied to its components,
computed using a divide-and-conquer algorithm. More precisely, return

f(f(.’E]_,NULL), f($27NULL))7

where 1, o are the two halves of .
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6.2.22 Miscellaneous arithmetic functions.

long bigomegau(ulong n) returns the number of prime divisors of » > 0, counted with multiplic-
ity.
ulong coreu(ulong n), unique squarefree integer d dividing n such that n/d is a square.

ulong coreu_fact(GEN fa) same, where fa is factoru(n).

ulong corediscs(long d, ulong *pt_f), d (possibly negative) being congruent to 0 or 1 modulo
4, return the fundamental discriminant D such that d = D x f2 and set *pt_f to f (if *pt_f not
NULL).

GEN coredisc2_fact(GEN fa, long s, GEN *pP, GEN *pE) let d be an integer congruent to 0
or 1 mod 4. Return D = coredisc(d) assuming that fa is the factorization of |d| and sd > 0 (s is
the sign of d). Set *pP and *pE to the factorization of the conductor f such that d = D f?, where
P is a t_VEC of primes and E a t_VECSMALL of exponents.

ulong coredisc2u_fact(GEN fa, long s, GEN *pP, GEN *pE) let d be an integer congruent to 0
or 1 mod 4 whose absolute value fits in an ulong. Return the absolute value of D = corediscs(d)
assuming that fa is the factorization of |d| and sd > 0 (s is the sign of d and D). Set *pP and *pE
to the factorization of the conductor f such that d = D f?, where P is a t_VECSMALL of primes and
E a t_VECSMALL of exponents.

ulong eulerphiu(ulong n), Kuler’s totient function of n.

ulong eulerphiu_fact(GEN fa) same, where fa is factoru(n).

long moebiusu(ulong n), Moebius p-function of n.

long moebiusu_fact(GEN fa) same, where fa is factoru(n).

ulong radicalu(ulong n), product of primes dividing n.

GEN divisorsu(ulong n), returns the divisors of n in a t_VECSMALL, sorted by increasing order.
GEN divisorsu_fact(GEN fa) same, where fa is factoru(n).

GEN divisorsu_fact_factored(GEN fa) where fa is factoru(n). Return a vector [D, F|, where
D is a a t_VECSMALL containing the divisors of u and F'[i] contains factoru(D]i]).

GEN divisorsu_moebius(GEN P) returns the divisors of n of the form [[ cg(-p), S C P in a
t_VECSMALL. The vector is not sorted but its first element is guaranteed to be 1. If P is fac-
toru(n) [1], this returns the set of p(d)d where d runs through the squarefree divisors of n.

long numdivu(ulong n), returns the number of positive divisors of n > 0.

long numdivu_fact(GEN fa) same, where fa is factoru(n).

long omegau(ulong n) returns the number of prime divisors of n > 0.

long maxomegau(ulong x) return the optimal B such that w(n) < B for all n < x.

long maxomegaoddu(ulong x) return the optimal B such that w(n) < B for all odd n < z.
long uissquarefree(ulong n) returns 1 if n is square-free, and 0 otherwise.

long uissquarefree_fact(GEN fa) same, where fa is factoru(n).

long uposisfundamental(ulong x) return 1 if x is a fundamental discriminant, and 0 otherwise.
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long unegisfundamental (ulong x) return 1 if —x is a fundamental discriminant, and 0 otherwise.
long sisfundamental(long x) return 1 if = is a fundamental discriminant, and 0 otherwise.
int uis_357_power(ulong x, ulong *pt, ulong *mask) as is_357_power for ulong x.

int uis_357_powermod(ulong x, ulong *mask) as uis_357_power, but only check for 3rd, 5th
or 7th powers modulo 211 x 209 x 61 x 203 x 117 x 31 x 43 x 71.

long uisprimepower (ulong n, ulong *p) as isprimepower, for ulong n.

int uislucaspsp(ulong n) returns 1 if the ulong n fails Lucas compositeness test (it thus may
be prime or composite), and 0 otherwise (proving that n is composite).

int uis2psp(ulong n) returns 1 if the odd ulong n > 1 fails a strong Rabin-Miller test for the
base 2 (it thus may be prime or composite), and 0 otherwise (proving that n is composite).

int uispsp(ulong a, ulong n) returns 1 if the odd ulong n > 1 fails a strong Rabin-Miller test
for the base 1 < a < n (it thus may be prime or composite), and 0 otherwise (proving that n is
composite).

ulong sumdigitsu(ulong n) returns the sum of decimal digits of w.
GEN usumdiv_fact(GEN fa), sum of divisors of ulong n, where fa is factoru(n).

GEN usumdivk_fact(GEN fa, ulong k), sum of k-th powers of divisors of ulong n, where fa is
factoru(n).

GEN hilbertii(GEN x, GEN y, GEN p), returns the Hilbert symbol (z,y) at the prime p (NULL
for the place at infinity); x and y are t_INTs.

GEN sumdedekind(GEN h, GEN k) returns the Dedekind sum attached to the t_INT h and k, k > 0.

GEN sumdedekind_coprime (GEN h, GEN k) as sumdedekind, except that h and k are assumed to
be coprime t_INTs.

GEN u_sumdedekind_coprime(long h, long k) Let £ > 0,0 < h <k, (h,k) = 1. Returns [s1, s
in a t_VECSMALL, such that s(h,k) = (s2 + ks1)/(12k). Requires max(h + k/2,k) < LONG_MAX to
avoid overflow, in particular k& < (2/3)LONG_MAX is fine.
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Chapter 7:
Level 2 kernel

These functions deal with modular arithmetic, linear algebra and polynomials where assumptions
can be made about the types of the coefficients.

7.1 Naming scheme.

A function name is built in the following way: A;_..._A,fun for an operation fun with n
arguments of class A1,..., A,. A class name is given by a base ring followed by a number of code
letters. Base rings are among

Fl: Z/IZ where | < 2BITS-IN-LONG jg 1ot necessarily prime. Implemented using ulongs

Fp: Z/pZ where p is a t_INT, not necessarily prime. Implemented as t_INTs z, preferably
satisfying 0 < z < p. More precisely, any t_INT can be used as an Fp, but reduced inputs are
treated more efficiently. Outputs from Fpxxx routines are reduced.

Fq: Z[X]/(p,T(X)), p a t_INT, T a t_POL with Fp coefficients or NULL (in which case no
reduction modulo T is performed). Implemented as t_POLs z with Fp coefficients, deg(z) < degT,
although z a t_INT is allowed for elements in the prime field.

Z: the integers Z, implemented as t_INTs.
Zp: the p-adic integers Z,, implemented as t_INTs, for arbitrary p
Z1: the p-adic integers Z,,, implemented as t_INTs, for p < 2BITS-IN-LONG
z: the integers Z, implemented using (signed) longs.
Q: the rational numbers Q, implemented as t_INTs and t_FRACs.
Rg: a commutative ring, whose elements can be gadd-ed, gmul-ed, etc.
Possible letters are:
X: polynomial in X (t_POL in a fixed variable), e.g. FpX means Z/pZ[X]|
Y: polynomial in Y # X. This is used to resolve ambiguities. E.g. FpXY means ((Z/pZ)[X])[Y].

V: vector (t_VEC or t_COL), treated as a line vector (independently of the actual type). E.g.
ZV means Z* for some k.

C: vector (t_VEC or t_COL), treated as a column vector (independently of the actual type).
The difference with V is purely semantic: if the result is a vector, it will be of type t_COL unless
mentioned otherwise. For instance the function ZC_add receives two integral vectors (t_COL or
t_VEC, possibly different types) of the same length and returns a t_COL whose entries are the sums
of the input coefficients.

M: matrix (t_MAT). E.g. QM means a matrix with rational entries
T: Trees. Either a leaf or a t_VEC of trees.
E: point over an elliptic curve, represented as two-component vectors [x,y], except for the

represented by the one-component vector [0]. Not all curve models are supported.
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Q: representative (t_POL) of a class in a polynomial quotient ring. E.g. an FpXQ belongs to
(Z/pZ)[X]/(T(X)), FpXQV means a vector of such elements, etc.

n: a polynomial representative (t_POL) for a truncated power series modulo X". E.g. an FpXn
belongs to (Z/pZ)[X]/(X™), FpXnV means a vector of such elements, etc.

X, y,m, v, ¢, q: as their uppercase counterpart, but coefficient arrays are implemented using
t_VECSMALLs, which coefficient understood as ulongs.

x and y (and q) are implemented by a t_VECSMALL whose first coefficient is used as a code-word
and the following are the coefficients , similarly to a t_POL. This is known as a '"POLSMALL’.

m are implemented by a t_MAT whose components (columns) are t_VECSMALLs. This is known
as a 'MATSMALL’.

v and c are regular t_VECSMALLs. Difference between the two is purely semantic.
Omitting the letter means the argument is a scalar in the base ring. Standard functions fun are

add: add

sub: subtract

mul: multiply

sqr: square

div: divide (Euclidean quotient)

rem: FEuclidean remainder

divrem: return Euclidean quotient, store remainder in a pointer argument. Three special
values of that pointer argument modify the default behavior: NULL (do not store the remainder,
used to implement div), ONLY_REM (return the remainder, used to implement rem), ONLY_DIVIDES
(return the quotient if the division is exact, and NULL otherwise).

gcd: GCD

extged: return GCD, store Bezout coefficients in pointer arguments

pow: exponentiate

eval: evaluation / composition
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7.2 Coefficient ring.

long Rg_type(GEN x, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring
over which the object x is defined.

Raise an error if it detects consistency problems in modular objects: incompatible rings (e.g.
F, and F, for primes p # ¢, F,[X]/(T) and F,[X]/(U) for T # U). Minor discrepancies are
supported if they make general sense (e.g. Fj and Fx, but not F), and Q,); t_FFELT and t_POLMOD
of t_INTMODs are considered inconsistent, even if they define the same field: if you need to use
simultaneously these different finite field implementations, multiply the polynomial by a t_FFELT
equal to 1 first.

e 0: none of the others (presumably multivariate, possibly inconsistent).

e t_INT: defined over Z.

e t_FRAC: defined over Q.

e t_INTMOD: defined over Z/pZ, where *ptp is set to p. It is not checked whether p is prime.

e t_COMPLEX: defined over C (at least one t_COMPLEX with at least one inexact floating point
t_REAL component). Set *ptprec to the minimal accuracy (as per precision) of inexact compo-
nents.

e t_REAL: defined over R (at least one inexact floating point t_REAL component). Set *ptprec
to the minimal accuracy (as per precision) of inexact components.

e t_PADIC: defined over Q,, where *ptp is set to p and *ptprec to the p-adic accuracy.

e t_FFELT: defined over a finite field Fx, where *ptp is set to the field characteristic p and
xptpol is set to a t_FFELT belonging to the field.

e t_POL: defined over a polynomial ring.

e other values are composite corresponding to quotients R[X|/(T"), with one primary type t1,
describing the form of the quotient, and a secondary type t2, describing R. If t is the RgX_type,
t1 and t2 are recovered using

void RgX_type_decode(long t, long *tl, long *t2)
t1 is one of
t_POLMOD: at least one t_POLMOD component, set *ppol to the modulus,

t_QUAD: no t_POLMOD, at least one t_QUAD component, set *ppol to the modulus (—.pol) of
the t_QUAD,

t_COMPLEX: no t_POLMOD or t_QUAD, at least one t_COMPLEX component, set *ppol to y2 + 1.

and the underlying base ring R is given by t2, which is one of t_INT, t_INTMOD (set *ptp) or
t_PADIC (set *ptp and *ptprec), with the same meaning as above.

int RgX_type_is_composite(long t) t as returned by RgX_type, return 1 if ¢ is a composite type,
and 0 otherwise.

GEN Rg_get_O(GEN x) returns 0 in the base ring over which x is defined, to the proper accuracy
(e.g. 0, Mod(0,3), 0(5710)).

GEN Rg_get_1(GEN x) returns 1 in the base ring over which x is defined, to the proper accuracy
(e.g. 0, Mod(0,3),
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long RgX_type(GEN x, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring
over which the polynomial z is defined, otherwise as Rg_type.

long RgX_Rg_type(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returnsthe “natural”
base ring over which the polynomial x and the element y are defined, otherwise as Rg_type.

long RgX_type2(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural”
base ring over which the polynomials z and y are defined, otherwise as Rg_type.

long RgX_type3(GEN x, GEN y, GNE z, GEN #*ptp, GEN *ptpol, long *ptprec) returns the
“natural” base ring over which the polynomials x, y and z are defined, otherwise as Rg_type.

long RgM_type(GEN x, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring
over which the matrix « is defined, otherwise as Rg_type.

long RgM_type2(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural”
base ring over which the matrices x and y are defined, otherwise as Rg_type.

long RgV_type(GEN x, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural” base ring
over which the vector x is defined, otherwise as Rg_type.

long RgV_type2(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returns the “natural”
base ring over which the vectors = and y are defined, otherwise as Rg_type.

long RgM_RgC_type(GEN x, GEN y, GEN *ptp, GEN *ptpol, long *ptprec) returns the
“natural” base ring over which the matrix z and the vector y are defined, otherwise as Rg_type.

7.3 Modular arithmetic.

These routines implement univariate polynomial arithmetic and linear algebra over finite fields, in
fact over finite rings of the form (Z/pZ)[X]/(T), where p is not necessarily prime and T' € (Z/pZ)[X]
is possibly reducible; and finite extensions thereof. All this can be emulated with t_INTMOD and
t_POLMOD coefficients and using generic routines, at a considerable loss of efficiency. Also, specialized
routines are available that have no obvious generic equivalent.

7.3.1 FpC / FpV, FpM. A ZV (resp. a ZM) is a t_VEC or t_COL (resp. t_MAT) with t_INT coefficients.
An FpV or FpM, with respect to a given t_INT p, is the same with Fp coordinates; operations are
understood over Z/pZ.

7.3.1.1 Conversions.

int Rg_is_Fp(GEN z, GEN *p), checks if z can be mapped to Z/pZ: a t_INT or a t_INTMOD whose
modulus is equal to *p, (if *p not NULL), in that case return 1, else 0. If a modulus is found it is
put in *p, else *p is left unchanged.

int RgV_is_FpV(GEN z, GEN *p), z a t_VEC (resp. t_COL), checks if it can be mapped to a FpV
(resp. FpC), by checking Rg_is_Fp coefficientwise.

int RgM_is_FpM(GEN z, GEN *p), z a t_MAT, checks if it can be mapped to a FpM, by checking
RgV_is_FpV columnwise.

GEN Rg_to_Fp(GEN z, GEN p), z a scalar which can be mapped to Z/pZ: a t_INT, a t_INTMOD
whose modulus is divisible by p, a t_FRAC whose denominator is coprime to p, or a t_PADIC with
underlying prime ¢ satisfying p = ¢ for some n (less than the accuracy of the input). Returns
1lift(z * Mod(1,p)), normalized.
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GEN padic_to_Fp(GEN x, GEN p) special case of Rg_to_Fp, for a = a t_PADIC.

GEN RgV_to_FpV(GEN z, GEN p), z a t_VEC or t_COL, returns the FpV (as a t_VEC) obtained by
applying Rg_to_Fp coefficientwise.

GEN RgC_to_FpC(GEN z, GEN p), z a t_VEC or t_COL, returns the FpC (as a t_COL) obtained by
applying Rg_to_Fp coefficientwise.

GEN RgM_to_FpM(GEN z, GEN p), z a t_MAT, returns the FpM obtained by applying RgC_to_FpC
columnwise.

GEN RgM_Fp_init(GEN z, GEN p, ulong *pp), given an RgM z, whose entries can be mapped to
F, (as per Rg_to_Fp), and a prime number p. This routine returns a normal form of z: either an
F2m (p = 2), an Flm (p fits into an ulong) or an FpM. In the first two cases, pp is set to itou(p),
and to 0 in the last.

The functions above are generally used as follows:

GEN add(GEN x, GEN y)

{
GEN p = NULL;
if (Rg_is_Fp(x, &p) && Rg_is_Fp(y, &p) && p)
{

X

Rg_to_Fp(x, p); y = Rg_to_Fp(y, p);
z = Fp_add(x, y, p);
return Fp_to_mod(z);

}
else return gadd(x, y);

}
GEN FpC_red(GEN z, GEN p), z a ZC. Returns 1ift(Col(z) * Mod(1l,p)), hence a t_COL.
GEN FpV_red(GEN z, GEN p), z a ZV. Returns 1ift(Vec(z) * Mod(1,p)), hence a t_VEC
GEN FpM_red(GEN z, GEN p), z a ZM. Returns 1ift(z * Mod(1,p)), which is an FpM.
7.3.1.2 Basic operations.
GEN random_FpC(long n, GEN p) returns a random FpC with n components.
GEN random_FpV(long n, GEN p) returns a random FpV with n components.

GEN FpC_center(GEN z, GEN p, GEN pov2) returns a t_COL whose entries are the Fp_center of
the gel(z,1).

GEN FpM_center(GEN z, GEN p, GEN pov2) returns a matrix whose entries are the Fp_center of
the gcoeff(z,i,j).

void FpC_center_inplace(GEN z, GEN p, GEN pov2) in-place version of FpC_center, using
affii.

void FpM_center_inplace(GEN z, GEN p, GEN pov2) in-place version of FpM_center, using
affij.

GEN FpC_add(GEN x, GEN y, GEN p) adds the ZC z and y and reduce modulo p to obtain an FpC.
GEN FpV_add(GEN x, GEN y, GEN p) same as FpC_add, returning and FpV.
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GEN FpM_add(GEN x, GEN y, GEN p) adds the two ZMs x and y (assumed to have compatible
dimensions), and reduce modulo p to obtain an FpM.

GEN FpC_sub(GEN x, GEN y, GEN p) subtracts the ZC y to the ZC x and reduce modulo p to
obtain an FpC.

GEN FpV_sub(GEN x, GEN y, GEN p) same as FpC_sub, returning and FpV.

GEN FpM_sub(GEN x, GEN y, GEN p) subtracts the two ZMs x and y (assumed to have compatible
dimensions), and reduce modulo p to obtain an FpM.

GEN FpC_Fp_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the
t_INT y and reduce modulo p to obtain an FpC.

GEN FpM_Fp_mul(GEN x, GEN y, GEN p) multiplies the ZM x (seen as a column vector) by the
t_INT y and reduce modulo p to obtain an FpM.

GEN FpC_FpV_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the
ZV y (seen as a row vector, assumed to have compatible dimensions), and reduce modulo p to obtain
an FpM.

GEN FpM_mul(GEN x, GEN y, GEN p) multiplies the two ZMs x and y (assumed to have compatible
dimensions), and reduce modulo p to obtain an FpM.

GEN FpM_powu(GEN x, ulong n, GEN p) computes 2" where z is a square FpM.

GEN FpM_FpC_mul (GEN x, GEN y, GEN p) multiplies the ZM x by the ZC y (seen as a column
vector, assumed to have compatible dimensions), and reduce modulo p to obtain an FpC.

GEN FpM_FpC_mul _FpX(GEN x, GEN y, GEN p, long v) is a memory-clean version of

GEN tmp = FpM_FpC_mul(x,y,p);
return RgV_to_RgX(tmp, v);

GEN FpV_FpC_mul (GEN x, GEN y, GEN p) multiplies the ZV x (seen as a row vector) by the ZC y
(seen as a column vector, assumed to have compatible dimensions), and reduce modulo p to obtain
an Fp.

GEN FpV_dotproduct(GEN x, GEN y, GEN p) scalar product of x and y (assumed to have the
same length).

GEN FpV_dotsquare(GEN x, GEN p) scalar product of x with itself. has t_INT entries.

GEN FpV_factorback(GEN L, GEN e, GEN p) given an FpV L and a ZV or zv e of the same length,
return [[, L{* modulo p.

7.3.1.3 Fp-linear algebra. The implementations are not asymptotically efficient (O(n?) standard
algorithms).

GEN FpM_deplin(GEN x, GEN p) returns a nontrivial kernel vector, or NULL if none exist.
GEN FpM_det(GEN x, GEN p) as det

GEN FpM_gauss(GEN a, GEN b, GEN p) as gauss, where a and b are FpM.

GEN FpM_FpC_gauss(GEN a, GEN b, GEN p) as gauss, where a is a FpM and b a FpC.
GEN FpM_image(GEN x, GEN p) as image

GEN FpM_intersect(GEN x, GEN y, GEN p) as intersect
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GEN FpM_intersect_i(GEN x, GEN y, GEN p) internal variant of FpM_intersect but the result
is only a generating set, not necessarily an F,-basis. It is not gerepile-clean either, but suitable
for gerepileupto.

GEN FpM_inv(GEN x, GEN p) returns a left inverse of x (the inverse if x is square), or NULL if x is
not invertible.

GEN FpM_FpC_invimage(GEN A, GEN y, GEN p) given an FpM A and an FpC y, returns an = such
that Ax = y, or NULL if no such vector exist.

GEN FpM_invimage(GEN A, GEN y, GEN p) given two FpM A and y, returns « such that Az =y,
or NULL if no such matrix exist.

GEN FpM_ker (GEN x, GEN p) as ker

long FpM_rank(GEN x, GEN p) as rank

GEN FpM_indexrank(GEN x, GEN p) as indexrank

GEN FpM_suppl(GEN x, GEN p) as suppl

GEN FpM_hess(GEN x, GEN p) upper Hessenberg form of x over F,,.
GEN FpM_charpoly(GEN x, GEN p) characteristic polynomial of x.
7.3.1.4 FqC, FgM and Fg-linear algebra.

An FgM (resp. FqC) is a matrix (resp a t_COL) with Fq coefficients (with respect to given T, p),
not necessarily reduced (i.e arbitrary t_INTs and ZXs in the same variable as T).

GEN RgC_to_FqC(GEN z, GEN T, GEN p)

GEN RgM_to_FgM(GEN z, GEN T, GEN p)

GEN FqC_add(GEN a, GEN b, GEN T, GEN p)

GEN FqC_sub(GEN a, GEN b, GEN T, GEN p)

GEN FqC_Fq_mul(GEN a, GEN b, GEN T, GEN p)

GEN FqC_FqV_mul(GEN a, GEN b, GEN T, GEN p)

GEN FgM_FqC_gauss(GEN a, GEN b, GEN T, GEN p) as gauss, where b is a FqC.

GEN FgM_FqC_invimage(GEN a, GEN b, GEN T, GEN p)

GEN FqM_FqC_mul(GEN a, GEN b, GEN T, GEN p)

GEN FgM_deplin(GEN x, GEN T, GEN p) returns a nontrivial kernel vector, or NULL if none exist.
GEN FqM_det(GEN x, GEN T, GEN p) as det

GEN FgM_gauss(GEN a, GEN b, GEN T, GEN p) as gauss, where b is a FqM.

GEN FgM_image(GEN x, GEN T, GEN p) as image

GEN FgM_indexrank(GEN x, GEN T, GEN p) as indexrank

GEN FgM_inv(GEN x, GEN T, GEN p) returns the inverse of x, or NULL if x is not invertible.
GEN FgM_invimage(GEN a, GEN b, GEN T, GEN p) as invimage

GEN FgM_ker(GEN x, GEN T, GEN p) as ker
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GEN FqM_mul(GEN a, GEN b, GEN T, GEN p)
long FgM_rank(GEN x, GEN T, GEN p) as rank
GEN FgM_suppl(GEN x, GEN T, GEN p) as suppl

7.3.2 Flc / Flv, Flm. See FpV, FpM operations.

GEN Flv_copy(GEN x) returns a copy of x.

GEN Flv_center(GEN z, ulong p, ulong ps2)

GEN random_Flv(long n, ulong p) returns a random Flv with n components.

GEN Flm_copy(GEN x) returns a copy of x.

GEN matid_Flm(long n) returns an Flm which is an n X n identity matrix.

GEN scalar_Flm(long s, long n) returns an Flm which is s times the n X n identity matrix.
GEN Flm_center(GEN z, ulong p, ulong ps2)

GEN Flm_F1_add(GEN x, ulong y, ulong p) returns x + y * Id (z must be square).

GEN Flm_F1_sub(GEN x, ulong y, ulong p) returns z — y * Id (x must be square).

GEN Flm_Flc_mul (GEN x, GEN y, ulong p) multiplies x and y (assumed to have compatible
dimensions).

GEN Flm_Flc_mul_pre(GEN x, GEN y, ulong p, ulong pi) multiplies x and y (assumed to
have compatible dimensions), assuming pi is the pseudoinverse of p, or 0 in which case we assume
SMALL_ULONG(p).

GEN Flc_Flv_mul(GEN x, GEN y, ulong p) multiplies the column vector z by the row vector y.
The result is a matrix.

GEN Flm_Flc_mul_pre_F1x(GEN x, GEN vy, ulong p, ulong pi, long sv) return
Flv_to Flx(Flm Flcmul pre(x, y, p, pi), sv).

GEN Flm_F1_mul(GEN x, ulong y, ulong p) multiplies the Flm x by y.

GEN Flm_F1_mul_pre(GEN x, ulong y, ulong p, ulong pi) multiplies the Flm x by y assuming
pi is the pseudoinverse of p, or 0 in which case we assume p < BY/2 is small.

GEN Flm_neg(GEN x, ulong p) negates the Flm x.

void Flm_F1_mul_inplace(GEN x, ulong y, ulong p) replaces the Flm x by x * y.
GEN Flv_F1_mul(GEN x, ulong y, ulong p) multiplies the F1lv x by y.

void Flv_F1_mul_inplace(GEN x, ulong y, ulong p) replaces the Flc x by x *y.

void Flv_F1l_mul_part_inplace(GEN x, ulong y, ulong p, long 1) multiplies z[1..]] by y
modulo p. In place.

GEN Flv_F1_div(GEN x, ulong y, ulong p) divides the Flv x by y.
void Flv_F1l_div_inplace(GEN x, ulong y, ulong p) replaces the F1lv x by x/y.
void Flc_lincombl_inplace(GEN X, GEN Y, ulong v, ulong q) sets X <+ X +vY, where X, Y

are Flc. Memory efficient (e.g. no-op if v = 0), and gerepile-safe.
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GEN Flv_add(GEN x, GEN y, ulong p) adds two Flv.

void Flv_add_inplace(GEN x, GEN y, ulong p) replaces z by =z + y.

GEN Flv_neg(GEN x, ulong p) returns —z.

void Flv_neg_inplace(GEN x, ulong p) replaces z by —=.

GEN Flv_sub(GEN x, GEN y, ulong p) subtracts y to x.

void Flv_sub_inplace(GEN x, GEN y, ulong p) replaces z by z —y.

ulong Flv_dotproduct(GEN x, GEN y, ulong p) returns the scalar product of x and y

ulong Flv_dotproduct_pre(GEN x, GEN y, ulong p, ulong pi) returns the scalar product of
x and y assuming pi is the pseudoinverse of p, or 0 in which case we assume SMALL_ULONG(p).

GEN Flv_factorback(GEN L, GEN e, ulong p) given an Flv L and a zv e of the same length,
return [[, L modulo p.

ulong Flv_sum(GEN x, ulong p) returns the sum of the components of z.
ulong Flv_prod(GEN x, ulong p) returns the product of the components of x.

ulong Flv_prod_pre(GEN x, ulong p, ulong pi) as Flv_prod assuming p: is the pseudoinverse
of p.

GEN Flv_inv(GEN x, ulong p) returns the vector of inverses of the elements of z (as a F1v). Use
Montgomery’s trick.

void Flv_inv_inplace(GEN x, ulong p) in place variant of Flv_inv.

GEN Flv_inv_pre(GEN x, ulong p, ulong pi) as Flv_inv assuming p: is the pseudoinverse of
p.
void Flv_inv_pre_inplace(GEN x, ulong p, ulong pi) in place variant of Flv_inv.

GEN Flc_FpV_mul(GEN x, GEN y, GEN p) multiplies x (seen as a column vector) by y (seen as a
row vector, assumed to have compatible dimensions) to obtain an Flm.

GEN zero_Flm(long m, long n) creates a Flm with m x n components set to 0. Note that the
result allocates a single column, so modifying an entry in one column modifies it in all columns.

GEN zero_Flm_copy(long m, long n) creates a Flm with m x n components set to 0.

GEN zero_Flv(long n) creates a Flv with n components set to 0.

GEN Flm_row(GEN A, long x0) return A[,], the i-th row of the F1lm A.

GEN Flm_add(GEN x, GEN y, ulong p) adds x and y (assumed to have compatible dimensions).

GEN Flm_sub(GEN x, GEN y, ulong p) subtracts x and y (assumed to have compatible dimen-
sions).

GEN Flm_mul (GEN x, GEN y, ulong p) multiplies x and y (assumed to have compatible dimen-
sions).

GEN Flm_mul_pre(GEN x, GEN y, ulong p, ulong pi) multiplies x and y (assumed to have
compatible dimensions), assuming pi is the pseudoinverse of p, or 0 in which case we assume
SMALL_ULONG(p).

GEN Flm_powers(GEN x, ulong n, ulong p) returns [x°,...,x?] as a t_VEC of Flms.
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GEN Flm_powu(GEN x, ulong n, ulong p) computes 2™ where z is a square Flm.

GEN Flm_charpoly(GEN x, ulong p) return the characteristic polynomial of the square Flm z, as
a Flx.

GEN Flm_deplin(GEN x, ulong p)

ulong Flm_det(GEN x, ulong p)

ulong Flm_det_sp(GEN x, ulong p), as Flm_ det, in place (destroys x).
GEN Flm_gauss(GEN a, GEN b, ulong p) as gauss, where b is a Flm.

GEN Flm_Flc_gauss(GEN a, GEN b, ulong p) as gauss, where b is a Flc.
GEN Flm_indexrank(GEN x, ulong p)

GEN Flm_inv(GEN x, ulong p)

GEN Flm_adjoint(GEN x, ulong p) as matadjoint.

GEN Flm_Flc_invimage(GEN A, GEN y, ulong p) given an Flm A and an Flc y, returns an x
such that Az =y, or NULL if no such vector exist.

GEN Flm_invimage(GEN A, GEN y, ulong p) given two Flm A and y, returns x such that Az =y,
or NULL if no such matrix exist.

GEN Flm_ker(GEN x, ulong p)

GEN Flm_ker_sp(GEN x, ulong p, long deplin), as Flm ker (if deplin=0) or Flm deplin (if
deplin=1) , in place (destroys x).

long Flm_rank(GEN x, ulong p)
long Flm_suppl(GEN x, ulong p)
GEN Flm_image(GEN x, ulong p)
GEN Flm_intersect(GEN x, GEN y, ulong p)

GEN Flm_intersect_i(GEN x, GEN y, GEN p) internal variant of Flm_intersect but the result
is only a generating set, not necessarily an F,-basis. It is a basis if both z and y have independent
columns. It is not gerepile-clean either, but suitable for gerepileupto.

GEN Flm_transpose(GEN x)

GEN Flm_hess(GEN x, ulong p) upper Hessenberg form of z over F,,.
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7.3.3 F2c / F2v, F2m. An F2v v is a t_VECSMALL representing a vector over Fy. Specifically z[0]
is the usual codeword, z[1] is the number of components of v and the coefficients are given by the
bits of remaining words by increasing indices.

ulong F2v_coeff (GEN x, long i) returns the coefficient 7 > 1 of z.

void F2v_clear(GEN x, long i) sets the coefficient ¢ > 1 of x to 0.

int F2v_equalO(GEN x) returns 1 if all entries are 0, and return 0 otherwise.
void F2v_flip(GEN x, long i) adds 1 to the coefficient ¢ > 1 of x.

void F2v_set(GEN x, long i) sets the coefficient i > 1 of z to 1.

void F2v_copy(GEN x) returns a copy of .

GEN F2v_slice(GEN x, long a, long b) returns the F2v with entries x[al, ..., x[b]. Assumes
a<b.

ulong F2m_coeff (GEN x, long i, long j) returns the coefficient (i, j) of x.

void F2m_clear(GEN x, long i, long j) sets the coefficient (i,75) of = to 0.

void F2m_f1lip(GEN x, long i, long j) adds 1 to the coefficient (i,j) of x.

void F2m_set(GEN x, long i, long j) sets the coefficient (7, j) of = to 1.

GEN F2m_copy (GEN x) returns a copy of z.

GEN F2m_transpose(GEN x) returns the transpose of z.

GEN F2m_row(GEN x, long j) returns the F2v which corresponds to the j-th row of the F2m x.

GEN F2m_rowslice(GEN x, long a, long b) returns the F2m built from the a-th to b-th rows of
the F2m z. Assumes a < b.

GEN F2m_F2c_mul(GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN F2m_image (GEN x) gives a subset of the columns of x that generate the image of x.

GEN F2m_invimage (GEN A, GEN B)

GEN F2m_F2c_invimage (GEN A, GEN y)

GEN F2m_gauss(GEN a, GEN b) as gauss, where b is a F2m.

GEN F2m_F2c_gauss(GEN a, GEN b) as gauss, where b is a F2c.

GEN F2m_indexrank(GEN x) x being a matrix of rank r, returns a vector with two t_VECSMALL
components y and z of length r giving a list of rows and columns respectively (starting from 1) such
that the extracted matrix obtained from these two vectors using vecextract(z,y, z) is invertible.

GEN F2m_mul (GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN F2m_powu(GEN x, ulong n) computes z" where x is a square F2m.

long F2m_rank(GEN x) as rank.

long F2m_suppl(GEN x) as suppl.

GEN matid_F2m(long n) returns an F2m which is an n x n identity matrix.

GEN zero_F2v(long n) creates a F2v with n components set to 0.
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GEN const_F2v(long n) creates a F2v with n components set to 1.

GEN F2v_ei(long n, long i) creates a F2v with n components set to 0, but for the i-th one,
which is set to 1 (i-th vector in the canonical basis).

GEN zero_F2m(long m, long n) creates a Flm with m x n components set to 0. Note that the
result allocates a single column, so modifying an entry in one column modifies it in all columns.

GEN zero_F2m_copy(long m, long n) creates a F2m with m x n components set to 0.
GEN F2v_to_Flv(GEN x)
GEN F2c_to_ZC(GEN x)
GEN ZV_to_F2v(GEN x)
GEN RgV_to_F2v(GEN x)
GEN F2m_to_F1lm(GEN x)
GEN F2m_to_ZM(GEN x)
GEN Flv_to_F2v(GEN x)
GEN Flm_to_F2m(GEN x)
GEN ZM_to_F2m(GEN x)
GEN RgM_to_F2m(GEN x)

void F2v_add_inplace(GEN x, GEN y) replaces x by x +y. It is allowed for y to be shorter than
T.

void F2v_and_inplace(GEN x, GEN y) replaces x by the term-by term product of x and y (which
is the logical and). It is allowed for y to be shorter than x.

void F2v_negimply_inplace(GEN x, GEN y) replaces x by the term-by term logical and not of
x and y. It is allowed for y to be shorter than .

void F2v_or_inplace(GEN x, GEN y) replaces x by the term-by term logical or of x and y. It is
allowed for y to be shorter than z.

int F2v_subset(GEN x, GEN y) return 1 if the set of indices of non-zero components of y is a
subset of the set of indices of non-zero components of z, 0 otherwise.

ulong F2v_hamming(GEN x) returns the Hamming weight of x, that is the number of nonzero
entries.

ulong F2m_det (GEN x)

ulong F2m_det_sp(GEN x), as F2m_det, in place (destroys x).

GEN F2m_deplin(GEN x)

ulong F2v_dotproduct(GEN x, GEN y) returns the scalar product of x and y

GEN F2m_inv(GEN x)

GEN F2m_ker (GEN x)

GEN F2m_ker_sp(GEN x, long deplin), as F2m ker (if deplin=0) or F2m deplin (if deplin=1),

in place (destroys x).
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7.3.4 F3c / F3v, F3m. An F3v v is a t_VECSMALL representing a vector over F3. Specifically z[0]
is the usual codeword, z[1] is the number of components of v and the coefficients are given by pair
of adjacent bits of remaining words by increasing indices, with the coding 00 — 0,01 — 1,10 — 2
and 11 is undefined.

ulong F3v_coeff (GEN x, long i) returns the coefficient i > 1 of z.

void F3v_clear(GEN x, long i) sets the coefficient ¢ > 1 of x to 0.

void F3v_set(GEN x, long i, ulong n) sets the coefficient i > 1 of z to n < 3,

ulong F3m_coeff(GEN x, long i, long j) returns the coefficient (i, j) of x.

void F3m_set(GEN x, long i, long j, ulong n) sets the coefficient (7,7) of x to n < 3.
GEN F3m_copy(GEN x) returns a copy of x.

GEN F3m_transpose(GEN x) returns the transpose of z.

GEN F3m_row(GEN x, long j) returns the F3v which corresponds to the j-th row of the F3m z.
GEN F3m_ker (GEN x)

GEN F3m_ker_sp(GEN x, long deplin), as F3m ker (if deplin=0) or F2m_deplin (if deplin=1),
in place (destroys x).

GEN F3m_mul(GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN zero_F3v(long n) creates a F3v with n components set to 0.

GEN zero_F3m_copy(long m, long n) creates a F3m with m x n components set to 0.
GEN F3v_to_F1v(GEN x)

GEN ZV_to_F3v(GEN x)

GEN RgV_to_F3v(GEN x)

GEN F3c_to_ZC(GEN x)

GEN F3m_to_F1m(GEN x)

GEN F3m_to_ZM(GEN x)

GEN Flv_to_F3v(GEN x)

GEN Flm_to_F3m(GEN x)

GEN ZM_to_F3m(GEN x)

GEN RgM_to_F3m(GEN x)
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7.3.5 FlxqV, F1xqC, F1lxgM. See FqV, FqC, FgM operations.
GEN FlxqV_dotproduct(GEN x, GEN y, GEN T, ulong p) as FpV_dotproduct.

GEN FlxqV_dotproduct_pre(GEN x, GEN y, GEN T, ulong p, ulong pi) where pi¢ is the
pseudoinverse of p, or 0 in which case we assume SMALL_ULONG(p).

GEN F1xM_Flx_add_shallow(GEN x, GEN y, ulong p) as RgM_Rg_add_shallow.

GEN F1xqC_Flxq_mul(GEN x, GEN y, GEN T, ulong p)

GEN FlxgM_Flxq_mul(GEN x, GEN y, GEN T, ulong p)

GEN FlxgM_F1xqC_gauss(GEN a, GEN b, GEN T, ulong p)

GEN FlxgM_FlxqC_invimage(GEN a, GEN b, GEN T, ulong p)

GEN F1lxgM_F1xqC_mul(GEN a, GEN b, GEN T, ulong p)

GEN FlxgM_deplin(GEN x, GEN T, ulong p)

GEN FlxgM_det(GEN x, GEN T, ulong p)

GEN FlxqM_gauss(GEN a, GEN b, GEN T, ulong p)

GEN FlxgM_image(GEN x, GEN T, ulong p)

GEN FlxgM_indexrank(GEN x, GEN T, ulong p)

GEN FlxgM_inv(GEN x, GEN T, ulong p)

GEN FlxgM_invimage(GEN a, GEN b, GEN T, ulong p)

GEN FlxqM_ker(GEN x, GEN T, ulong p)

GEN FlxgM_mul(GEN a, GEN b, GEN T, ulong p)

long FlxgM_rank(GEN x, GEN T, ulong p)

GEN FlxgM_suppl(GEN x, GEN T, ulong p)

GEN matid_F1lxgM(long n, GEN T, ulong p)

7.3.6 FpX. Let p an understood t_INT, to be given in the function arguments; in practice p is not
assumed to be prime, but be wary. Recall than an Fp object is a t_INT, preferably belonging to

[0,p—1]; an FpX is a t_POL in a fixed variable whose coefficients are Fp objects. Unless mentioned
otherwise, all outputs in this section are FpXs. All operations are understood to take place in

(Z2/pZ)[X].
7.3.6.1 Conversions. In what follows p is always a t_INT, not necessarily prime.

int RgX_is_FpX(GEN z, GEN *p), z a t_POL, checks if it can be mapped to a FpX, by checking
Rg_is_Fp coefficientwise.

GEN RgX_to_FpX(GEN z, GEN p), z a t_POL, returns the FpX obtained by applying Rg_to_Fp
coeflicientwise.

GEN FpX_red(GEN z, GEN p), z a ZX, returns 1ift(z * Mod(1,p)), normalized.

GEN FpXV_red(GEN z, GEN p), z a t_VEC of ZX. Applies FpX_red componentwise and returns the
result (and we obtain a vector of FpXs).

GEN FpXT_red(GEN z, GEN p), z a tree of ZX. Applies FpX_red to each leaf and returns the result
(and we obtain a tree of FpXs).
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7.3.6.2 Basic operations. In what follows p is always a t_INT, not necessarily prime.

Now, except for p, the operands and outputs are all FpX objects. Results are undefined on other
inputs.

GEN FpX_add(GEN x, GEN y, GEN p) adds x and y.

GEN FpX_neg(GEN x, GEN p) returns —x, the components are between 0 and p if this is the case
for the components of x.

GEN FpX_renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.

GEN FpX_sub(GEN x, GEN y, GEN p) returns x — y.

GEN FpX_halve(GEN x, GEN p) returns z such that 2z = 2 modulo p assuming such z exists.
GEN FpX_mul(GEN x, GEN y, GEN p) returns zy.

GEN FpX_mulspec(GEN a, GEN b, GEN p, long na, long nb) see ZX_mulspec

GEN FpX_sqr(GEN x, GEN p) returns x2.

GEN FpX_powu(GEN x, ulong n, GEN p) returns z".

GEN FpX_convol(GEN x, GEN y, GEN p) return the-term by-term product of z and y.

GEN FpX_divrem(GEN x, GEN y, GEN p, GEN *pr) returns the quotient of x by y, and sets pr to
the remainder.

GEN FpX_div(GEN x, GEN y, GEN p) returns the quotient of x by y.

GEN FpX_div_by_X_x(GEN A, GEN a, GEN p, GEN #*r) returns the quotient of the FpX A by
(X — a), and sets r to the remainder A(a).

GEN FpX_rem(GEN x, GEN y, GEN p) returns the remainder x mod y.

long FpX_valrem(GEN x, GEN t, GEN p, GEN *r) The arguments x and e being nonzero FpX
returns the highest exponent e such that t¢ divides x. The quotient x/t° is returned in *r. In
particular, if t is irreducible, this returns the valuation at t of x, and *r is the prime-to-t part of x.

GEN FpX_deriv(GEN x, GEN p) returns the derivative of x. This function is not memory-clean,
but nevertheless suitable for gerepileupto.

GEN FpX_integ(GEN x, GEN p) returns the primitive of x whose constant term is 0.

GEN FpX_digits(GEN x, GEN B, GEN p) returns a vector of FpX [co,...,cy,] of degree less than
the degree of B and such that . = Y. ¢, B".

GEN FpXV_FpX_fromdigits(GEN v, GEN B, GEN p) where v = [cq,...,cy,] is a vector of FpX,
returns y ., ¢; B

GEN FpX_translate(GEN P, GEN c, GEN p) let c be an Fp and let P be an FpX; returns the
translated FpX of P(X + ¢).

GEN FpX_gcd(GEN x, GEN y, GEN p) returns a (not necessarily monic) greatest common divisor
of x and y.

GEN FpX_halfgcd(GEN x, GEN y, GEN p) returns a two-by-two FpXM M with determinant +1
such that the image (a,b) of (z,y) by M has the property that dega > de% > degb.
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GEN FpX_extgcd(GEN x, GEN y, GEN p, GEN *u, GEN *v) returns d = GCD(x,y) (not necessarily
monic), and sets *u, *v to the Bezout coefficients such that xux + xvy = d. If *u is set to NULL, it
is not computed which is a bit faster. This is useful when computing the inverse of y modulo z.

GEN FpX_center(GEN z, GEN p, GEN pov2) returns the polynomial whose coefficient belong to
the symmetric residue system. Assumes the coefficients already belong to | — p/2, p[ and that pov2
is shifti(p,-1).

GEN FpX_center_i(GEN z, GEN p, GEN pov2) internal variant of FpX_center, not gerepile-safe.
GEN FpX_Frobenius(GEN T, GEN p) returns X? (mod T(X)).

GEN FpX_matFrobenius(GEN T, GEN p) returns the matrix of the Frobenius automorphism z +— x?
over the power basis of F,[X]/(T).

7.3.6.3 Mixed operations. The following functions implement arithmetic operations between
FpX and Fp operands, the result being of type FpX. The integer p need not be prime.

GEN Z_to_FpX(GEN x, GEN p, long v) converts a t_INT to a scalar polynomial in variable v,
reduced modulo p.

GEN FpX_Fp_add(GEN y, GEN x, GEN p) add the Fp x to the FpX y.

GEN FpX_Fp_add_shallow(GEN y, GEN x, GEN p) add the Fp x to the FpX y, using a shallow copy
(result not suitable for gerepileupto)

GEN FpX_Fp_sub(GEN y, GEN x, GEN p) subtract the Fp x from the FpX y.

GEN FpX_Fp_sub_shallow(GEN y, GEN x, GEN p) subtract the Fp x from the FpX y, using a
shallow copy (result not suitable for gerepileupto)

GEN Fp_FpX_sub(GEN x, GEN y, GEN p) returns x — y, where z is a t_INT and y an FpX.
GEN FpX_Fp_mul(GEN x, GEN y, GEN p) multiplies the FpX x by the Fp y.

GEN FpX_Fp_mulspec(GEN x, GEN y, GEN p, long 1x) see ZX_mulspec

GEN FpX_mulu(GEN x, ulong y, GEN p) multiplies the FpX x by y.

GEN FpX_Fp_mul_to_monic(GEN y, GEN x, GEN p) returns yz assuming the result is monic of
the same degree as y (in particular x # 0).

GEN FpX_Fp_div(GEN x, GEN y, GEN p) divides the FpX x by the Fp y.
GEN FpX_divu(GEN x, ulong y, GEN p) divides the FpX x by y.
7.3.6.4 Miscellaneous operations.

GEN FpX_normalize(GEN z, GEN p) divides the FpX z by its leading coefficient. If the latter is 1,
z itself is returned, not a copy. If not, the inverse remains uncollected on the stack.

GEN FpX_invBarrett(GEN T, GEN p), returns the Barrett inverse M of T defined by M (z)z™ x
T(1/z) =1 (mod 2"~ 1) where n is the degree of T.

GEN FpX_rescale(GEN P, GEN h, GEN p) returns h9®e(") P(z/h). P is an FpX and h is a nonzero
Fp (the routine would work with any nonzero t_INT but is not efficient in this case). Neither
memory-clean nor suitable for gerepileupto.

GEN FpX_eval(GEN x, GEN y, GEN p) evaluates the FpX x at the Fp y. The result is an Fp.

124



GEN FpX_FpV_multieval(GEN P, GEN v, GEN p) returns the vector [P(v[1]),...,P(v[n])] as a
FpV.

GEN FpX_dotproduct (GEN x, GEN y, GEN p) return the scalar product ) .., x;y; of the coefficients
of z and y. -

GEN FpXV_FpC_mul(GEN V, GEN W, GEN p) multiplies a nonempty line vector ofFpX by a column
vector of Fp of compatible dimensions. The result is an FpX.

GEN FpXV_prod(GEN V, GEN p), V being a vector of FpX, returns their product.

GEN FpXV_factorback(GEN L, GEN e, GEN p, long v) returns [[, L;* where L is a vector of
FpXs in the variable v and e a vector of non-negative t_INTs or a t_VECSMALL.

GEN FpV_roots_to_pol(GEN V, GEN p, long v), V being a vector of INTs, returns the monic FpX
[, (pol_x[v] — V[i]).

GEN FpX_chinese_coprime(GEN x, GEN y, GEN Tx, GEN Ty, GEN Tz, GEN p): returns an FpX,
congruent to x mod Tx and to y mod Ty. Assumes Tx and Ty are coprime, and Tz = Tx * Ty or
NULL (in which case it is computed within).

GEN FpV_polint(GEN x, GEN y, GEN p, long v) returns the FpX interpolation polynomial with
value y[i] at x[i]. Assumes lengths are the same, components are t_INTs, and the x[i] are
distinct modulo p.

GEN FpV_FpM_polint(GEN x, GEN V, GEN p, long v) equivalent (but faster) to applying
FpV_polint(x,...) to all the elements of the vector V' (thus, returns a FpXV).

GEN FpX_FpXV_multirem(GEN A, GEN P, GEN p) given a FpX A and a vector P of pairwise coprime
FpX of length n > 1, return a vector B of the same length such that B[i] = A (mod P[i]) and B][i]
of minimal degree for all 1 <17 < n.

GEN FpXV_chinese(GEN A, GEN P, GEN p, GEN *pM) let P be a vector of pairwise coprime FpX,
let A be a vector of FpX of the same length n > 1 and let M be the product of the elements of P.
Returns a FpX of minimal degree congruent to A[i] mod P[i] for all 1 < i < n. If pM is not NULL,
set *pM to M.

GEN FpV_invVandermonde(GEN L, GEN d, GEN p) L being a FpV of length n, return the inverse
M of the Vandermonde matrix attached to the elements of L, eventually multiplied by d if it is not
NULL. If A is a FpV and B = M A, then the polynomial P = > | B[i|X*~! verifies P(L[i]) = dA[i]
forl1 <i<n.

int FpX_is_squarefree(GEN f, GEN p) returns 1 if the FpX f is squarefree, 0 otherwise.

int FpX_is_irred(GEN f, GEN p) returns 1 if the FpX £ is irreducible, 0 otherwise. Assumes that
p is prime. If £ has few factors, FpX_nbfact(f,p) == 1 is much faster.

int FpX_is_totally_split(GEN f, GEN p) returns 1 if the FpX f splits into a product of distinct
linear factors, 0 otherwise. Assumes that p is prime. The 0 polynomial is not totally split.

long FpX_ispower (GEN f, ulong k, GEN p, GEN *pt) return 1 if the FpX f is a k-th power, 0
otherwise. If pt is not NULL, set it to g such that g¥ = f.

GEN FpX_factor(GEN f, GEN p), factors the FpX f. Assumes that p is prime. The returned
value v is a t_VEC with two components: v[1] is a vector of distinct irreducible (FpX) factors, and
v[2] is a t_VECSMALL of corresponding exponents. The order of the factors is deterministic (the
computation is not).
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GEN FpX_factor_squarefree(GEN f, GEN p) returns the squarefree factorization of f modulo p.
This is a vector [ug, ..., ux| of squarefree and pairwise coprime FpX such that uy, # 1 and f = []ul.
The other u; may equal 1. Shallow function.

GEN FpX_ddf (GEN f, GEN p) assuming that f is squarefree, returns the distinct degree factorization
of f modulo p. The returned value v is a t_VEC with two components: F=v[1] is a vector of (FpX)
factors, and E=v[2] is a t_VECSMALL, such that f is equal to the product of the F[i] and each
F[i] is a product of irreducible factors of degree E[i].

long FpX_ddf_degree(GEN f, GEN XP, GEN p) assuming that f is squarefree and that all its
factors have the same degree, return the common degree, where XP is FpX_Frobenius(f, p).

long FpX_nbfact(GEN f, GEN p), assuming the FpX f is squarefree, returns the number of its
irreducible factors. Assumes that p is prime.

long FpX_nbfact_Frobenius(GEN f, GEN XP, GEN p), as FpXnbfact(f, p) but faster, where
XP is FpX_Frobenius(f, p).

GEN FpX_degfact(GEN f, GEN p), as FpX_factor, but the degrees of the irreducible factors are
returned instead of the factors themselves (as a t_VECSMALL). Assumes that p is prime.

long FpX_nbroots(GEN f, GEN p) returns the number of distinct roots in Z/pZ of the FpX f£.
Assumes that p is prime.

GEN FpX_oneroot(GEN f, GEN p) returns one root in Z/pZ of the FpX f£. Return NULL if no root
exists. Assumes that p is prime.

GEN FpX_oneroot_split(GEN f, GEN p) as FpX_oneroot. Faster when f is close to be totally
split.

GEN FpX_roots(GEN f, GEN p) returns the roots in Z/pZ of the FpX £ (without multiplicity, as a
vector of Fps). Assumes that p is prime.

GEN FpX_roots_mult(GEN f, long n, GEN p) returns the roots in Z/pZ with multiplicity at
least n of the FpX £ (without multiplicity, as a vector of Fps). Assumes that p is prime.

GEN FpX_split_part(GEN f, GEN p) returns the largest totally split squarefree factor of f.

GEN FpX_factcyclo(ulong n, GEN p, wulong m) returns the factors of the n-th cyclotomic
polynomial over Fp. if m = 1 returns a single factor.

GEN random_FpX(long d, long v, GEN p) returns a random FpX in variable v, of degree less
than d.

GEN FpX_resultant(GEN x, GEN y, GEN p) returns the resultant of x and y, both FpX. The result
is a t_INT belonging to [0,p — 1].

GEN FpX_disc(GEN x, GEN p) returns the discriminant of the FpX x. The result is a t_INT
belonging to [0,p — 1].

GEN FpX_FpXY_resultant(GEN a, GEN b, GEN p), a a t_POL of t_INTs (say in variable X),
b a t_POL (say in variable X)) whose coefficients are either t_POLs in Z[Y] or t_INTs. Returns
Resx (a,b) in F,,[Y] as an FpY. The function assumes that X has lower priority than Y.

GEN FpX_Newton(GEN x, long n, GEN p) return > i = 0""'7;X? where m; is the sum of the
ith-power of the roots of x in an algebraic closure.
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GEN FpX_fromNewton(GEN x, GEN p) recover a polynomial from it s Newton sums given by the
coefficients of x. This function assumes that p and the accuracy of x as a FpXn is larger than the
degree of the solution.

GEN FpX_Laplace(GEN x, GEN p) return Z?:_ol 2! X

GEN FpX_invLaplace(GEN x, GEN p) return Z?;ol x; /i1 X

7.3.7 FpXQ, Fq. Let p a t_INT and T an FpX for p, both to be given in the function arguments; an
FpXQ object is an FpX whose degree is strictly less than the degree of T. An Fq is either an FpXQ
or an Fp. Both represent a class in (Z/pZ)[X]/(T), in which all operations below take place. In
addition, Fq routines also allow T = NULL, in which case no reduction mod T is performed on the
result.

For efficiency, the routines in this section may leave small unused objects behind on the stack
(their output is still suitable for gerepileupto). Besides T and p, arguments are either FpXQ or Fq
depending on the function name. (All Fq routines accept FpXQs by definition, not the other way
round.)

7.3.7.1 Preconditioned reduction.

For faster reduction, the modulus 7' can be replaced by an extended modulus in all FpXQ-
and Fg-classes functions, and in FpX_rem and FpX_divrem. An extended modulus(FpXT, which is
a tree whose leaves are FpX)In current implementation, an extended modulus is either a plain
modulus (an FpX) or a pair of polynomials, one being the plain modulus 7" and the other being
FpX_invBarret(T,p).

GEN FpX_get_red(GEN T, GEN p) returns the extended modulus eT.

To write code that works both with plain and extended moduli, the following accessors are
defined:

GEN get_FpX_mod(GEN eT) returns the underlying modulus 7'
GEN get_FpX_var (GEN eT) returns the variable number varn(T).
GEN get_FpX_degree(GEN eT) returns the degree degpol(T).
7.3.7.2 Conversions.

int ff_parse_Tp(GEN Tp, GEN *T, GEN *p, long red) Tp is either a prime number p or a
t_VEC with 2 entries T' (an irreducible polynomial mod p) and p (a prime number). Sets *p and
*T to the corresponding GENs (NULL if undefined). If red is nonzero, normalize *T as an FpX; on
the other hand, to initialize a p-adic function, set red to 0 and *T is left as is and must be a ZX
to start with. Return 1 on success, and 0 on failure. This helper routine is used by GP functions
such as factormod where a single user argument defines a finite field. t_FFELT is not supported.

GEN Rg_is_FpXQ(GEN z, GEN *T, GEN *p), checks if z is a GEN which can be mapped to F,,[X]/(T):
anything for which Rg_is Fp return 1, a t_POL for which RgX_to_FpX return 1, a t_POLMOD whose
modulus is equal to *T if *T is not NULL (once mapped to a FpX), or a t_FFELT z with the same
definition field as *T if *T is not NULL and is a t_FFELT.

If an integer modulus is found it is put in *p, else *p is left unchanged. If a polynomial modulus
is found it is put in *T, if a t_FFELT z is found, z is put in *T, else *T is left unchanged.

int RgX_is_FpXQX(GEN z, GEN *T, GEN *p), z a t_POL, checks if it can be mapped to a FpXQX,
by checking Rg_is_FpXQ coefficientwise.
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GEN Rg_to_FpXQ(GEN z, GEN T, GEN p), z a GEN which can be mapped to F,[X]/(T): anything
Rg_to_Fp can be applied to, a t_POL to which RgX_to_FpX can be applied to, a t_POLMOD whose
modulus is divisible by 7' (once mapped to a FpX), a suitable t_RFRAC. Returns z as an FpXQ,
normalized.

GEN Rg_to_Fq(GEN z, GEN T, GEN p), applies Rg_to_Fp if 7" is NULL and Rg_to_FpXQ otherwise.

GEN RgX_to_FpXQX(GEN z, GEN T, GEN p), z a t_POL, returns the FpXQ obtained by applying
Rg_to_FpXQ coefficientwise.

GEN RgX_to_FqX(GEN z, GEN T, GEN p): let z be a t_POL; returns the FgX obtained by applying
Rg_to_Fq coefficientwise.

GEN Fq_to_FpXQ(GEN z, GEN T, GEN p /*unused*/) if z is a t_INT, convert it to a constant
polynomial in the variable of T'; otherwise return z (shallow function).

GEN Fq_red(GEN x, GEN T, GEN p), x a ZX or t_INT, reduce it to an Fq (T = NULL is allowed iff
x is a t_INT).

GEN FgX_red(GEN x, GEN T, GEN p), x a t_POL whose coeflicients are ZXs or t_INTs, reduce them
to Fgs. (If T = NULL, as FpXX_red(x, p).)

GEN FqV_red(GEN x, GEN T, GEN p), x a vector of ZXs or t_INTs, reduce them to Fgs. (If
T = NULL, only reduce components mod p to FpXs or Fps.)

GEN FpXQ_red(GEN x, GEN T, GEN p) x a t_POL whose coefficients are t_INTs, reduce them to
FpXQs.

7.3.8 FpXQ.

GEN FpXQ_add(GEN x, GEN y, GEN T, GEN p)

GEN FpXQ_sub(GEN x, GEN y, GEN T, GEN p)

GEN FpXQ_mul(GEN x, GEN y, GEN T, GEN p)

GEN FpXQ_sqr(GEN x, GEN T, GEN p)

GEN FpXQ_div(GEN x, GEN y, GEN T, GEN p)

GEN FpXQ_inv(GEN x, GEN T, GEN p) computes the inverse of x

GEN FpXQ_invsafe(GEN x, GEN T, GEN p), as FpXQ_inv, returning NULL if x is not invertible.
GEN FpXQ_pow(GEN x, GEN n, GEN T, GEN p) computes x".

GEN FpXQ_powu(GEN x, ulong n, GEN T, GEN p) computes x" for small n.

In the following three functions the integer parameter ord can be given either as a positive
t_INT N, or as its factorization matrix faN, or as a pair [N, faN]. The parameter may be omitted
by setting it to NULL (the value is then p? — 1, d = degT).

GEN FpXQ_log(GEN a, GEN g, GEN ord, GEN T, GEN p) Let g be of order dividing ord in the
finite field F,[X]/(T), return e such that a® = g. If e does not exists, the result is undefined.
Assumes that T is irreducible mod p.

GEN Fp_FpXQ_log(GEN a, GEN g, GEN ord, GEN T, GEN p) As FpXQ_log, a being a Fp.
GEN FpXQ_order(GEN a, GEN ord, GEN T, GEN p) returns the order of the FpXQ a. Assume that

ord is a multiple of the order of a. Assume that T is irreducible mod p.
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int FpXQ_issquare(GEN x, GEN T, GEN p) returns 1 if x is a square and 0 otherwise. Assumes
that T is irreducible mod p.

GEN FpXQ_sqrt(GEN x, GEN T, GEN p) returns a square root of x. Return NULL if x is not a
square.

GEN FpXQ_sqrtn(GEN x, GEN n, GEN T, GEN p, GEN #*zn) Let Tbe irreducible mod p and

g = pi°e T returns NULL if a is not an n-th power residue mod p. Otherwise, returns an n-th root

of a; if zn is not NULL set it to a primitive m-th root of 1 in F,, m = ged(q — 1,n) allowing to
compute all m solutions in F, of the equation 2™ = a.

7.3.9 Fq.

GEN Fq_add(GEN x, GEN y, GEN T/*unused*/, GEN p)

GEN Fq_sub(GEN x, GEN y, GEN T/*unused*/, GEN p)

GEN Fq_mul (GEN x, GEN y, GEN T, GEN p)

GEN Fq_Fp_mul(GEN x, GEN y, GEN T, GEN p) multiplies the Fq x by the t_INT y.

GEN Fq_mulu(GEN x, ulong y, GEN T, GEN p) multiplies the Fq = by the scalar y.

GEN Fq_halve(GEN x, GEN T, GEN p) returns z such that 2z = z assuming such z exists.
GEN Fq_sqr(GEN x, GEN T, GEN p)

GEN Fq_neg(GEN x, GEN T, GEN p)

GEN Fq_neg_inv(GEN x, GEN T, GEN p) computes —x '

GEN Fq_inv(GEN x, GEN pol, GEN p) computes x !, raising an error if x is not invertible.
GEN Fq_invsafe(GEN x, GEN pol, GEN p) as Fg_inv, but returns NULL if x is not invertible.
GEN Fq_div(GEN x, GEN y, GEN T, GEN p)

GEN FqV_inv(GEN x, GEN T, GEN p) z being a vector of Fgs, return the vector of inverses of
the z[i]. The routine uses Montgomery’s trick, and involves a single inversion, plus 3(N — 1)
multiplications for N entries. The routine is not stack-clean: 2N FpXQ are left on stack, besides
the N in the result.

GEN FqV_factorback(GEN L, GEN e, GEN T, GEN p) given an FqV L and a ZV or zv e of the
same length, return [[, L;* modulo p.

GEN Fq_pow(GEN x, GEN n, GEN pol, GEN p) returns x".
GEN Fq_powu(GEN x, ulong n, GEN pol, GEN p) returns x* for small n.
GEN Fq_log(GEN a, GEN g, GEN ord, GEN T, GEN p) as Fp_log or FpXQ_log.

int Fq_issquare(GEN x, GEN T, GEN p) returns 1 if z is a square and 0 otherwise. Assumes
that T is irreducible mod p and that p is prime; 7" = NULL is forbidden unless z is an Fp.

long Fq_ispower (GEN x, GEN n, GEN T, GEN p) returns 1 if z is a n-th power and 0 otherwise.
Assumes that T is irreducible mod p and that p is prime; 7" = NULL is forbidden unless z is an Fp.

GEN Fq_sqrt(GEN x, GEN T, GEN p) returns a square root of x. Return NULL if x is not a square.
GEN Fq_sqrtn(GEN a, GEN n, GEN T, GEN p, GEN *zn) as FpXQ_sqrtn.
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GEN FpXQ_charpoly(GEN x, GEN T, GEN p) returns the characteristic polynomial of x
GEN FpXQ_minpoly(GEN x, GEN T, GEN p) returns the minimal polynomial of x

GEN FpXQ_norm(GEN x, GEN T, GEN p) returns the norm of x

GEN FpXQ_trace(GEN x, GEN T, GEN p) returns the trace of x

GEN FpXQ_conjvec(GEN x, GEN T, GEN p) returns the vector of conjugates [w,:cp,xp2, . ,a:p"fl]
where n is the degree of T'.

GEN gener_FpXQ(GEN T, GEN p, GEN *po) returns a primitive root modulo (7,p). T is an FpX
assumed to be irreducible modulo the prime p. If po is not NULL it is set to o, fa], where o is the
order of the multiplicative group of the finite field, and fa is its factorization.

GEN gener_FpXQ_local(GEN T, GEN p, GEN L), L being a vector of primes dividing pd¢? — 1,
returns an element of G := F,[x]/(T") which is a generator of the ¢-Sylow of G for every £ in L. It is
not necessary, and in fact slightly inefficient, to include ¢ = 2, since 2 is treated separately in any
case, i.e. the generator obtained is never a square if p is odd.

GEN gener_Fq_local(GEN T, GEN p, GEN L) as pgener Fp_local(p, L) if T is NULL, or
gener FpXQ_local (otherwise).

GEN FpXQ_powers(GEN x, long n, GEN T, GEN p) returns [x°,...,x?] as a t_VEC of FpXQ@s.

GEN FpXQ_matrix_pow(GEN x, long m, long n, GEN T, GEN p), as FpXQ.powers(x,n — 1,7, p),
but returns the powers as a an m x n matrix. Usually, we have m =n = degT.

GEN FpXQ_autpow(GEN a, ulong n, GEN T, GEN p) computes ¢™(X) assuming a = o(X) where
o is an automorphism of the algebra F,[X]/T(X).

GEN FpXQ_autsum(GEN a, ulong n, GEN T, GEN p) a being a two-component vector, ¢ being the
automorphism defined by o(X) = a[l] (mod T(X)), returns the vector [¢"(X),bo(b)...c" 1(b)]
where b = a[2].

GEN FpXQ_auttrace(GEN a, ulong n, GEN T, GEN p) a being a two-component vector, o being
the automorphism defined by o(X) = a[l] (mod T'(X)), returns the vector [c"(X),b + o(b) +
..+ 0" 1(b)] where b = a[2].

GEN FpXQ_autpowers(GEN S, long n, GEN T, GEN p) returns [z, S(z),S(S(x)),..., S (z)] as
a t_VEC of FpXQs.

GEN FpXQM_autsum(GEN a, long n, GEN T, GEN p) o being the automorphism defined by
o(X)=all] (mod T(X)), returns the vector [0"(X),bo(b)...c" 1(b)] where b = a[2] is a square
matrix.

GEN FpX_FpXQ_eval(GEN f, GEN x, GEN T, GEN p) returns f(x).

GEN FpX_FpXQV_eval(GEN f, GEN V, GEN T, GEN p) returns f(x), assuming that V was computed
by FpXQ_powers(x,n,T,p).

GEN FpXC_FpXQ_eval(GEN C, GEN x, GEN T, GEN p) applies FpX_FpXQV_eval to all elements of
the vector C' and returns a t_COL.

GEN FpXC_FpXQV_eval(GEN C, GEN V, GEN T, GEN p) applies FpX_FpXQV_eval to all elements of
the vector C' and returns a t_COL.

GEN FpXM_FpXQV_eval(GEN M, GEN V, GEN T, GEN p) applies FpX_FpXQV_eval to all elements of
the matrix M.
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7.3.10 FpXn. Let p a t_INT and T an FpX for p, both to be given in the function arguments; an FpXn
object is an FpX whose degree is strictly less than n. They represent a class in (Z/pZ)[X]/(X™), in
which all operations below take place. They can be seen as truncated power series.

GEN FpXn_mul(GEN x, GEN y, long n, GEN p) return zy (mod X").
GEN FpXn_sqr(GEN x, long n, GEN p) return 22 (mod X™).
GEN FpXn_div(GEN x, GEN y, long n, GEN p) return z/y (mod X").
GEN FpXn_inv(GEN x, long n, GEN p) return 1/z (mod X").

GEN FpXn_exp(GEN f, long n, GEN p) return exp(f) as a composition of formal power series. It
is required that the valuation of f is positive and that p > n.

GEN FpXn_expint(GEN f, long n, GEN p) return exp(F') where F' is the primitive of f that
vanishes at 0. It is required that p > n.

7.3.11 FpXC, FpXM.

GEN FpXC_center(GEN C, GEN p, GEN pov2)

GEN FpXM_center(GEN M, GEN p, GEN pov2)

7.3.12 FpXX, FpXY. Contrary to what the name implies, an FpXX is a t_POL whose coefficients are

either t_INTs or FpXs. This reduces memory overhead at the expense of consistency. The prefix
FpXY is an alias for FpXX when variables matters.

GEN FpXX_red(GEN z, GEN p), z a t_POL whose coefficients are either ZXs or t_INTs. Returns the
t_POL equal to z with all components reduced modulo p.

GEN FpXX_renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.

GEN FpXX_add(GEN x, GEN y, GEN p) adds x and y.

GEN FpXX_sub(GEN x, GEN y, GEN p) returns x —y.

GEN FpXX_neg(GEN x, GEN p) returns —x.

GEN FpXX_Fp_mul(GEN x, GEN y, GEN p) multiplies the FpXX x by the Fp y.

GEN FpXX_FpX_mul(GEN x, GEN y, GEN p) multiplies the coefficients of the FpXX x by the FpX y.
GEN FpXX_mulu(GEN x, GEN y, GEN p) multiplies the FpXX x by the scalar y.

GEN FpXX_halve(GEN x, GEN p) returns z such that 2z = x assuming such z exists.

GEN FpXX_deriv(GEN P, GEN p) differentiates P with respect to the main variable.

GEN FpXX_integ(GEN P, GEN p) returns the primitive of P with respect to the main variable whose
constant term is 0.

GEN FpXY_eval(GEN Q, GEN y, GEN x, GEN p) () being an FpXY, i.e. a t_POL with Fp or FpX
coefficients representing an element of F,,[X]|[Y]. Returns the Fp Q(z,y).

GEN FpXY_evalx(GEN Q, GEN x, GEN p) @ being an FpXY, returns the FpX Q(x,Y’), where Y is
the main variable of Q).

GEN FpXY_evaly(GEN Q, GEN y, GEN p, long vx) ) an FpXY, returns the FpX Q(X,y), where
X is the second variable of (), and vx is the variable number of X.
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GEN FpXY_FpXQ_evaly(GEN Q, GEN y, GEN T, GEN p, long vx) () an FpXY and y being an FpXQ,
returns the FpXQX Q(X,y), where X is the second variable of @), and vx is the variable number of
X.

GEN FpXY_Fq_evaly(GEN Q, GEN y, GEN T, GEN p, long vx) () an FpXY and y being an Fq,
returns the FqX Q(X,y), where X is the second variable of @, and vx is the variable number of X.

GEN FpXY_FpXQ_evalx(GEN Q, GEN x, ulong p) ) an FpXY and x being an FpXQ, returns the
FpXQX Q(z,Y), where Y is the first variable of Q.

GEN FpXY_FpXQV_evalx(GEN Q, GEN V, wulong p) @ an FpXY and z being an FpXQ, returns
the FpXQX Q(z,Y), where Y is the first variable of ), assuming that V was computed by
FpXQ_powers(x,n, T, p).

GEN FpXYQQ_pow(GEN x, GEN n, GEN S, GEN T, GEN p), x being a FpXY, T being a FpX and S
being a FpY, return z” (mod S, T, p).

7.3.13 FpXQX, FgX. Contrary to what the name implies, an FpXQX is a t_POL whose coefficients are
Fgs. So the only difference between FqX and FpXQX routines is that T = NULL is not allowed in the
latter. (It was thought more useful to allow t_INT components than to enforce strict consistency,
which would not imply any efficiency gain.)

7.3.13.1 Basic operations.

GEN FqX_add(GEN x, GEN y, GEN T, GEN p)

GEN FqX_Fq_add(GEN x, GEN y, GEN T, GEN p) adds the Fq y to the FgX x.

GEN FqX_Fq_sub(GEN x, GEN y, GEN T, GEN p) substracts the Fq y to the FgX x.
GEN FgX_neg(GEN x, GEN T, GEN p)

GEN FgX_sub(GEN x, GEN y, GEN T, GEN p)

GEN FgX_mul(GEN x, GEN y, GEN T, GEN p)

GEN FgX_Fq_mul(GEN x, GEN y, GEN T, GEN p) multiplies the FgX x by the Fq y.
GEN FgX_mulu(GEN x, ulong y, GEN T, GEN p) multiplies the FgX x by the scalar y.
GEN FgX_halve(GEN x, GEN T, GEN p) returns z such that 2z = x assuming such z exists.
GEN FqX_Fp_mul (GEN x, GEN y, GEN T, GEN p) multiplies the FgX x by the t_INT y.

GEN FqX_Fq_mul_to_monic(GEN x, GEN y, GEN T, GEN p) returns zy assuming the result is
monic of the same degree as x (in particular y # 0).

GEN FpXQX_normalize(GEN z, GEN T, GEN p)

GEN FgX_normalize(GEN z, GEN T, GEN p) divides the FgX z by its leading term. The leading
coefficient becomes 1 as a t_INT.

GEN FqX_sqr(GEN x, GEN T, GEN p)

GEN FgX_powu(GEN x, ulong n, GEN T, GEN p)

GEN FgX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *z)
GEN FqX_div(GEN x, GEN y, GEN T, GEN p)

GEN FqX_div_by_X_x(GEN a, GEN x, GEN T, GEN p, GEN *r)
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GEN FqX_rem(GEN x, GEN y, GEN T, GEN p)

GEN FgX_deriv(GEN x, GEN T, GEN p) returns the derivative of x. (This function is suitable for
gerepilupto but not memory-clean.)

GEN FgX_integ(GEN x, GEN T, GEN p) returns the primitive of x. whose constant term is 0.

GEN FgX_translate(GEN P, GEN c, GEN T, GEN p) let ¢ be an Fq defined modulo (p,T"), and let
P be an FqgX; returns the translated FgX of P(X + ¢).

GEN FgX_gcd(GEN P, GEN Q, GEN T, GEN p) returns a (not necessarily monic) greatest common
divisor of x and .

GEN FqX_extgcd(GEN x, GEN y, GEN T, GEN p, GEN #ptu, GEN #ptv) returns d = GCD(x,y)
(not necessarily monic), and sets *u, *v to the Bezout coefficients such that ux + xvy = d.

GEN FqX_halfgcd(GEN x, GEN y, GEN T, GEN p) returns a two-by-two FqXM M with determinant
+1 such that the image (a,b) of (x,y) by M has the property that dega > de% > degb.

GEN FgX_eval(GEN x, GEN y, GEN T, GEN p) evaluates the FgX x at the Fq y. The result is
an Fq.

GEN FgXY_eval(GEN Q, GEN y, GEN x, GEN T, GEN p) ) an FgXY, i.e. a t_POL with Fq or FgX
coefficients representing an element of F,[X|[Y]. Returns the Fq Q(z,y).

GEN FgXY_evalx(GEN Q, GEN x, GEN T, GEN p) Q) being an FqXY, returns the FgX Q(z,Y"), where
Y is the main variable of Q).

GEN random_FpXQX(long d, long v, GEN T, GEN p) returns a random FpXQX in variable v, of
degree less than d.

GEN FpXQX_renormalize(GEN x, long 1x)

GEN FpXQX_red(GEN z, GEN T, GEN p) z a t_POL whose coefficients are ZXs or t_INTs, reduce
them to FpXQs.

GEN FpXQXV_red(GEN z, GEN T, GEN p), z a t_VEC of ZXX. Applies FpX_red componentwise and
returns the result (and we obtain a vector of FpXQXs).

GEN FpXQXT_red(GEN z, GEN T, GEN p), z a tree of ZXX. Applies FpX_red to each leaf and returns
the result (and we obtain a tree of FpXQXs).

GEN FpXQX_mul(GEN x, GEN y, GEN T, GEN p)

GEN Kronecker_to_FpXQX(GEN z, GEN T, GEN p). Let n =degT and let P(X,Y) € Z[X,Y] lift
a polynomial in K[Y], where K := F,[X]/(T) and degy P < 2n — 1 — such as would result from
multiplying minimal degree lifts of two polynomials in K[Y]. Let z = P(t,t>*"~!) be a Kronecker
form of P (see RgXX_to_Kronecker), this function returns @ € Z[X,t] such that @ is congruent to
P(X,t) mod (p,T(X)), degy @ < n, and all coefficients are in [0, p[. Not stack-clean. Note that ¢
need not be the same variable as Y'!

GEN FpXQX_FpXQ_mul(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX_sqr(GEN x, GEN T, GEN p)

GEN FpXQX_divrem(GEN x, GEN y, GEN T, GEN p, GEN *pr)
GEN FpXQX_div(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX_div_by_X_x(GEN a, GEN x, GEN T, GEN p, GEN *r)
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GEN FpXQX_rem(GEN x, GEN y, GEN T, GEN p)
GEN FpXQX_powu(GEN x, ulong n, GEN T, GEN p) returns z”.
GEN FpXQX_digits(GEN x, GEN B, GEN T, GEN p)

GEN FpXQX_dotproduct(GEN x, GEN y, GEN T, GEN p) returns the scalar product of the coeffi-
cients of x and y.

GEN FpXQXV_FpXQX_fromdigits(GEN v, GEN B, GEN T, GEN p)

GEN FpXQX_invBarrett(GEN y, GEN T, GEN p) returns the Barrett inverse of the FpXQX ¥, namely
a lift of 1/polrecip(y) + O(xdee®) 1),

GEN FpXQXV_prod(GEN V, GEN T, GEN p), V being a vector of FpXQX, returns their product.
GEN FpXQX_gcd(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX_extgcd(GEN x, GEN y, GEN T, GEN p, GEN *ptu, GEN *ptv)

GEN FpXQX_halfgcd(GEN x, GEN y, GEN T, GEN p)

GEN FpXQX_resultant(GEN x, GEN y, GEN T, GEN p) returns the resultant of x and y.
GEN FpXQX_disc(GEN x, GEN T, GEN p) returns the discriminant of x.

GEN FpXQX_FpXQXQ_eval(GEN f, GEN x, GEN S, GEN T, GEN p) returns f(x).

7.3.14 FpXQXn, FgXn.

A FpXQXn is a t_FpXQX which represents an element of the ring (F'p[X]/T(X))[Y]/(Y™), where
T is a FpX.

GEN FpXQXn_sqr(GEN x, long n, GEN T, GEN p)

GEN FqXn_sqr(GEN x, long n, GEN T, GEN p)

GEN FpXQXn_mul (GEN x, GEN y, long n, GEN T, GEN p)
GEN FgXn_mul (GEN x, GEN y, long n, GEN T, GEN p)
GEN FpXQXn_div(GEN x, GEN y, long n, GEN T, GEN p)
GEN FpXQXn_inv(GEN x, long n, GEN T, GEN p)

GEN FqXn_inv(GEN x, long n, GEN T, GEN p)

GEN FpXQXn_exp(GEN x, long n, GEN T, GEN p) return exp(x) as a composition of formal power
series. It is required that the valuation of x is positive and that p > n.

GEN FgXn_exp(GEN x, long n, GEN T, GEN p)

GEN FpXQXn_expint(GEN f, long n, GEN p) return exp(F') where F' is the primitive of f that
vanishes at 0. It is required that p > n.

GEN FgXn_expint(GEN x, long n, GEN T, GEN p)
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7.3.15 FpXQXQ, FgXQ.

A FpXQXQ is a t_FpXQX which represents an element of the ring (Fp[X]/T(X))[Y]/S(X,Y),
where 7' is a FpX and S a FpXQX modulo 7. A FqgXQ is identical except that T is allowed to be NULL
in which case S must be a FpX.

7.3.15.1 Preconditioned reduction.

For faster reduction, the modulus S can be replaced by an extended modulus, which is an
FpXQXT, in all FpXQXQ- and FgXQ-classes functions, and in FpXQX_rem and FpXQX_divrem.

GEN FpXQX_get_red(GEN S, GEN T, GEN p) returns the extended modulus eS.

GEN FgX_get_red(GEN S, GEN T, GEN p) identical, but allow 7" to be NULL, in which case it
returns FpX_get_red(S,p).

To write code that works both with plain and extended moduli, the following accessors are

defined:

GEN get_FpXQX_mod(GEN eS) returns the underlying modulus S.

GEN get_FpXQX_var(GEN eS) returns the variable number of the modulus.
GEN get_FpXQX_degree(GEN eS) returns the degree of the modulus.

Furthermore, ZXXT_to_F1xXT allows to convert an extended modulus for a FpXQX to an extended
modulus for the corresponding F1xgX.

7.3.15.2 basic operations.

GEN FpXQX_FpXQXQV_eval(GEN f, GEN V, GEN S, GEN T, GEN p) returns f(x), assuming that V
was computed by FpXQXQ_powers(x,n,S,T,p).

GEN FpXQXQ_div(GEN x, GEN y, GEN S, GEN T, GEN p), x, y and S being FpXQXs, returns x*y !
modulo S.

GEN FpXQXQ_inv(GEN x, GEN S, GEN T, GEN p), x and S being FpXQXs, returns x~! modulo S.

GEN FpXQXQ_invsafe(GEN x, GEN S, GEN T, GEN p), as FpXQXQ_inv, returning NULL if x is not
invertible.

GEN FpXQXQ_mul(GEN x, GEN y, GEN S, GEN T, GEN p), x, y and S being FpXQXs, returns xy
modulo S.

GEN FpXQXQ_sqr(GEN x, GEN S, GEN T, GEN p), x and S being FpXQXs, returns x> modulo S.

GEN FpXQXQ_pow(GEN x, GEN n, GEN S, GEN T, GEN p), x and S being FpXQXs, returns x*
modulo S.

GEN FpXQXQ_powers(GEN x, long n, GEN S, GEN T, GEN p), x and S being FpXQXs, returns
[xY...,x"] as a t_VEC of FpXQXQs.

GEN FpXQXQ_halfFrobenius(GEN A, GEN S, GEN T, GEN p) returns A(X)©@=1/2  (mod S(X))
over the finite field F, defined by 7" and p, thus ¢ = p™ where n is the degree of T'.

GEN FpXQXQ_minpoly(GEN x, GEN S, GEN T, GEN p), as FpXQ_minpoly

GEN FpXQXQ_matrix_pow(GEN x, long m, long n, GEN S, GEN T, GEN p) returns the same
powers of x as FpXQXQ_powers(x,n — 1, 5,7, p), but as an m x n matrix.
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GEN FpXQXQ_autpow(GEN a, long n, GEN S, GEN T, GEN p) ¢ being the automorphism defined
by 0(X) =a[l] (mod T'(X)), o(Y) =a[2] (mod S(X,Y),T(X)), returns [¢"(X),c™(Y)].

GEN FpXQXQ_autsum(GEN a, long n, GEN S, GEN T, GEN p) o being the automorphism
defined by o(X) = a[l] (mod T'(X)), o(Y) = a[2] (mod S(X,Y),T(X)), returns the vector
[0™(X),0™(Y),bo(b)...c" 1(b)] where b = a[3].

GEN FpXQXQ_auttrace(GEN a, long n, GEN S, GEN T, GEN p) o being the automorphism
defined by o(X) = X (mod T(X)), o(Y) = a[l] (mod S(X,Y),T(X)), returns the vector
[0™(X),0™(Y), b+ a(b) + ...+ o™ 1(b)] where b = a[2].

GEN FqXQ_add(GEN x, GEN y, GEN S, GEN T, GEN p), x, y and S being FqXs, returns x +y
modulo S.

GEN FqXQ_sub(GEN x, GEN y, GEN S, GEN T, GEN p), x, y and S being FgXs, returns x — y
modulo S.

GEN FqXQ_mul(GEN x, GEN y, GEN S, GEN T, GEN p), x, y and S being FqXs, returns xy modulo
S.

GEN FgXQ_div(GEN x, GEN y, GEN S, GEN T, GEN p), x and S being FqXs, returns x/y modulo
S.

GEN FqXQ_inv(GEN x, GEN S, GEN T, GEN p), x and S being FqXs, returns x~! modulo S.

GEN FgXQ_invsafe(GEN x, GEN S, GEN T, GEN p) , as FqXQ_inv, returning NULL if x is not
invertible.

GEN FqXQ_sqr(GEN x, GEN S, GEN T, GEN p), x and S being FqXs, returns x> modulo S.
GEN FqXQ_pow(GEN x, GEN n, GEN S, GEN T, GEN p), x and S being FgXs, returns x* modulo S.

GEN FqXQ_powers(GEN x, long n, GEN S, GEN T, GEN p), x and S being FgXs, returns [x", ... x"]
as a t_VEC of FgXQs.

GEN FqXQ_matrix_pow(GEN x, long m, long n, GEN S, GEN T, GEN p) returns the same powers
of x as FqXQ_powers(z,n — 1, 5,7, p), but as an m X n matrix.

GEN FqV_roots_to_pol(GEN V, GEN T, GEN p, long v), V being a vector of Fgs, returns the
monic FgX [, (pol_x[v] — V[i]).

7.3.15.3 Miscellaneous operations.

GEN init_Fq(GEN p, long n, long v) returns an irreducible polynomial of degree n > 0 over

F,, in variable v.
int FgX_is_squarefree(GEN P, GEN T, GEN p)

GEN FpXQX_roots(GEN f, GEN T, GEN p) return the roots of f in F,,[X]/(T). Assumes p is prime
and T irreducible in F,[X].

GEN FgX_roots(GEN f, GEN T, GEN p) same but allow T = NULL.

GEN FpXQX_factor(GEN f, GEN T, GEN p) same output convention as FpX_factor. Assumes p is
prime and T irreducible in F,[X].

GEN FgX_factor(GEN f, GEN T, GEN p) same but allow T = NULL.
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GEN FpXQX_factor_squarefree(GEN f, GEN T, GEN p) squarefree factorization of f modulo

(T, p); same output convention as FpX_factor_squarefree. Assumes p is prime and T irreducible
in F,[X].

GEN FgX_factor_squarefree(GEN f, GEN T, GEN p) same but allow T = NULL.
GEN FpXQX_ddf(GEN f, GEN T, GEN p) as FpX_ddf

GEN FgX_ddf(GEN f, GEN T, GEN p) same but allow T = NULL.

long FpXQX_ddf_degree(GEN f, GEN XP, GEN T, GEN p), as FpX_ddf _degree.
GEN FpXQX_degfact(GEN f, GEN T, GEN p), as FpX_degfact.

GEN FgX_degfact(GEN f, GEN T, GEN p) same but allow T = NULL.

GEN FpXQX_split_part(GEN f, GEN T, GEN p) returns the largest totally split squarefree factor
of f.

long FpXQX_ispower (GEN f, ulong k, GEN T, GEN p, GEN *pt) return 1 if the FpXQX f is a
k-th power, 0 otherwise. If pt is not NULL, set it to g such that ¢g* = f.

long FgX_ispower(GEN f, ulong k, GEN T, GEN p, GEN *pt) same but allow T = NULL.

GEN FpX_factorff(GEN P, GEN T, GEN p). Assumes p prime and T irreducible in F,[X]. Factor
the FpX P over the finite field F),[Y]/(T(Y)). See FpX_factorff_irred if P is known to be irreducible
of F).

GEN FpX_rootsff(GEN P, GEN T, GEN p). Assumes p prime and T irreducible in F,[X]. Returns
the roots of the FpX P belonging to the finite field F,[Y]/(T(Y)).

GEN FpX_factorff_irred(GEN P, GEN T, GEN p). Assumes p prime and T irreducible in F,[X].
Factors the irreducible FpX P over the finite field F,,[Y]/(T(Y')) and returns the vector of irreducible
FgXs factors (the exponents, being all equal to 1, are not included).

GEN FpX_ffisom(GEN P, GEN Q, GEN p). Assumes p prime, P, Q are ZXs, both irreducible mod p,
and deg(P) | deg Q. Outputs a monomorphism between F,[X]/(P) and F,[X]/(Q), as a polynomial
R such that Q | P(R) in F,,[X]. If P and Q have the same degree, it is of course an isomorphism.

void FpX_ffintersect(GEN P, GEN Q, long n, GEN p, GEN *SP, GEN *SQ, GEN MA, GEN MB)
Assumes p is prime, P, Q are ZXs, both irreducible mod p, and n divides both the degree of P and
Q. Compute SP and SQ such that the subfield of F,[X]/(P) generated by SP and the subfield of
F,[X]/(Q) generated by SQ are isomorphic of degree n. The polynomials P and Q do not need to
be of the same variable. If MA (resp. MB) is not NULL, it must be the matrix of the Frobenius map

in Fp[X]/(P) (resp. F,[X]/(Q)).

GEN FpXQ_ffisom_inv(GEN S, GEN T, GEN p). Assumes p is prime, T a ZX, which is irreducible
modulo p, S a ZX representing an automorphism of F, := F,[X]/(T). (S(X) is the image of X by
the automorphism.) Returns the inverse automorphism of S, in the same format, i.e. an FpX H
such that H(S) = X modulo (T, p).

long FpXQX_nbfact(GEN S, GEN T, GEN p) returns the number of irreducible factors of the
polynomial S over the finite field F, defined by T and p.

long FpXQX_nbfact_Frobenius(GEN S, GEN Xq, GEN T, GEN p) as FpXQX_nbfact where Xq is
FpXQX_Frobenius(S, T, p).

long FgX_nbfact(GEN S, GEN T, GEN p) as above but accept T=NULL.
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long FpXQX_nbroots(GEN S, GEN T, GEN p) returns the number of roots of the polynomial S
over the finite field F, defined by 7" and p.

long FgX_nbroots(GEN S, GEN T, GEN p) as above but accept T=NULL.
GEN FpXQX_Frobenius(GEN S, GEN T, GEN p) returns X7 (mod S(X)) over the finite field F,,
defined by T and p, thus ¢ = p"™ where n is the degree of T.

7.3.16 Flx. Let p be an ulong, not assumed to be prime unless mentioned otherwise (e.g., all
functions involving Euclidean divisions and factorizations), to be given the function arguments; an
F1 is an ulong belonging to [0,p — 1], an Flx z is a t_VECSMALL representing a polynomial with
small integer coefficients. Specifically z[0] is the usual codeword, z[1] = evalvarn(wv) for some
variable v, then the coefficients by increasing degree. An F1xX is a t_POL whose coefficients are
Flxs.

In the following, an argument called sv is of the form evalvarn(v) for some variable number v.
7.3.16.1 Preconditioned reduction.

For faster reduction, the modulus T can be replaced by an extended modulus (F1xT) in all
Flxg-classes functions, and in Flx_divrem.

GEN Flx_get_red(GEN T, ulong p) returns the extended modulus eT.

GEN Flx_get_red_pre(GEN T, wulong p, ulong pi) as Flx get_red. We assume pi is the
pseudoinverse of p, or 0 in which case we assume SMALL_ULONG(p).

To write code that works both with plain and extended moduli, the following accessors are
defined:

GEN get_Flx_mod(GEN eT) returns the underlying modulus T.
GEN get_Flx_var(GEN eT) returns the variable number of the modulus.
GEN get_Flx_degree(GEN eT) returns the degree of the modulus.

Furthermore, ZXT_to_F1xT allows to convert an extended modulus for a FpX to an extended
modulus for the corresponding F1x.

7.3.16.2 Basic operations.
In this section, pi is the pseudoinverse of p, or 0 in which case we assume SMALL_ULONG(p).

ulong Flx_lead(GEN x) returns the leading coefficient of x as a ulong (return 0 for the zero
polynomial).

ulong Flx_constant (GEN x) returns the constant coefficient of x as a ulong (return 0 for the zero
polynomial).

GEN Flx_red(GEN z, ulong p) converts from zx with nonnegative coefficients to F1x (by reducing
them mod p).

int Flx_equall(GEN x) returns 1 (true) if the Flx z is equal to 1, 0 (false) otherwise.

int Flx_equal(GEN x, GEN y) returns 1 (true) if the F1x x and y are equal, and 0 (false) otherwise.
GEN Flx_copy(GEN x) returns a copy of x.

GEN Flx_add(GEN x, GEN y, ulong p)
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GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

Flx_F1l_add(GEN y, ulong x, ulong p)

Flx_neg(GEN x, ulong p)

Flx_neg_inplace(GEN x, ulong p), same as Flx_neg, in place (x is destroyed).
Flx_sub(GEN x, GEN y, ulong p)

Flx_F1_sub(GEN y, ulong x, ulong p)

Flx_halve(GEN x, ulong p) returns z such that 2z = 2 modulo p assuming such z exists.
Flx_mul (GEN x, GEN y, ulong p)

Flx_mul_pre(GEN x, GEN y, ulong p, ulong pi)

Flx_F1_mul(GEN y, ulong x, ulong p)

Flx_double(GEN y, ulong p) returns 2y.

Flx_triple(GEN y, ulong p) returns 3y.

Flx_mulu(GEN y, ulong x, ulong p) as F1x_F1l mul but do not assume that x < p.

Flx_F1l_mul_to_monic(GEN y, ulong x, ulong p) returns yz assuming the result is monic

of the same degree as y (in particular = # 0).

GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

Flx_sqr(GEN x, ulong p)

Flx_sqr_pre(GEN x, ulong p, ulong pi)

Flx_powu(GEN x, ulong n, ulong p) return z”.

Flx_powu_pre(GEN x, ulong n, ulong p, ulong pi)
Flx_divrem(GEN x, GEN y, ulong p, GEN *pr), here p must be prime
Flx_divrem_pre(GEN x, GEN y, ulong p, ulong pi, GEN *pr)
Flx_div(GEN x, GEN y, ulong p), here p must be prime.
Flx_div_pre(GEN x, GEN y, ulong p, ulong pi)

Flx_rem(GEN x, GEN y, ulong p), here p must be prime.
Flx_rem_pre(GEN x, GEN y, ulong p)

Flx_deriv(GEN z, ulong p)

Flx_integ(GEN z, ulong p), here p must be prime
Flx_translatel(GEN P, ulong p) return P(x + 1), p must be prime. Asymptotically fast

(quasi-linear in the degree of P).

GEN

Flx_translatel_basecase(GEN P, ulong p) return P(z + 1), p need not be prime. Not

asymptotically fast (quadratic in the degree of P).

GEN

zlx_translatel(GEN P, ulong p, long e) return P(z+ 1) modulo p¢ for prime p. Asymp-

totically fast (quasi-linear in the degree of P).

GEN
GEN

Flx_diff1(GEN P, ulong p) return P(z + 1) — P(x); p must be prime

Flx_digits(GEN x, GEN B, ulong p) returns a vector of F1x [co, ..., c,] of degree less than

the degree of B and such that z = > ¢; B".
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GEN F1xV_Flx_fromdigits(GEN v, GEN B, ulong p) where v = [cg,...,¢,] is a vector of Flx,
returns » ., ¢; B

GEN Flx_Frobenius(GEN T, ulong p) here p must be prime.
GEN Flx_Frobenius_pre(GEN T, ulong p, ulong pi)

GEN Flx_matFrobenius(GEN T, ulong p) here p must be prime.
GEN Flx_matFrobenius_pre(GEN T, ulong p, ulong pi)

GEN Flx_gcd(GEN a, GEN b, ulong p) returns a (not necessarily monic) greatest common divisor
of z and y. Here p must be prime.

GEN Flx_gcd_pre(GEN a, GEN b, ulong p)

GEN Flx_halfgcd(GEN x, GEN y, ulong p) returns a two-by-two F1xM M with determinant +1
such that the image (a,b) of (x,y) by M has the property that dega > de% > degb. Assumes
that p is prime.

GEN Flx_halfgcd_pre(GEN a, GEN b, ulong p)
GEN Flx_extgcd(GEN a, GEN b, ulong p, GEN *ptu, GEN *ptv), here p must be prime.
GEN Flx_extgcd_pre(GEN a, GEN b, ulong p, ulong pi, GEN *ptu, GEN *ptv)

GEN Flx_roots(GEN f, ulong p) returns the vector of roots of f (without multiplicity, as a
t_VECSMALL). Assumes that p is prime.

GEN Flx_roots_pre(GEN f, ulong p, ulong pi)

ulong Flx_oneroot(GEN f, ulong p) returns one root 0 < r < p of the Flx f in Z/pZ. Return
p if no root exists. Assumes that p is prime.

GEN Flx_oneroot_pre(GEN f, ulong p), as Flx_oneroot

ulong Flx_oneroot_split(GEN f, ulong p) as Flx_oneroot but assume f is totally split. As-
sumes that p is prime.

ulong Flx_oneroot_split_pre(GEN f, ulong p, ulong pi)

long Flx_ispower(GEN f, ulong k, ulong p, GEN *pt) return 1 if the Flx f is a k-th power,
0 otherwise. If pt is not NULL, set it to g such that g¥ = f.

GEN Flx_factor(GEN f, ulong p) Assumes that p is prime.
GEN Flx_ddf (GEN f, ulong p) Assumes that p is prime.
GEN Flx_ddf_pre(GEN f, ulong p, ulong pi)

GEN Flx_factor_squarefree(GEN f, ulong p) returns the squarefree factorization of f modulo
p. This is a vector [uq,...,u] of pairwise coprime Flx such that uy # 1 and f = [Ju!. Shallow
function. Assumes that p is prime.

GEN Flx_factor_squarefree_pre(GEN f, ulong p, ulong pi)
GEN Flx_mod_Xn1(GEN T, ulong n, ulong p) return 7" modulo (X" + 1, p). Shallow function.
GEN Flx_mod_Xnml1l(GEN T, ulong n, ulong p) return 7' modulo (X" — 1,p). Shallow function.

GEN Flx_degfact(GEN f, ulong p) as FpX_degfact. Assumes that p is prime.

140



GEN Flx_factorff_irred(GEN P, GEN Q, ulong p) as FpX_factorff_irred. Assumes that p is
prime.

GEN Flx_rootsff(GEN P, GEN T, ulong p) as FpX_rootsff. Assumes that p is prime.

GEN Flx_factcyclo(ulong n, ulong p, ulong m) returns the factors of the n-th cyclotomic
polynomial over Fp. if m = 1 returns a single factor.

GEN Flx_ffisom(GEN P, GEN Q, ulong 1) as FpX_ffisom. Assumes that p is prime.
7.3.16.3 Miscellaneous operations.

GEN polO_Flx(long sv) returns a zero Flx in variable v.

GEN zero_Flx(long sv) alias for pol0_Flx

GEN poll_Flx(long sv) returns the unit Flx in variable v.

GEN polx_Flx(long sv) returns the variable v as degree 1 Flx.

GEN polxn_Flx(long n, long sv) Returns the monomial of degree n as a Flx in variable v;
assume that n > 0.

GEN monomial_Flx(ulong a, long d, long sv) returns the Flx aX¢ in variable v.

GEN init_Flxq(ulong p, long n, long sv) returns an irreducible polynomial of degree n > 0
over F,, in variable v.

GEN Flx_normalize(GEN z, ulong p), as FpX_normalize.

GEN Flx_rescale(GEN P, ulong h, ulong p) returns h4€(") P(x/h), P is a F1x and h is a nonzero
integer.

GEN random_F1lx(long d, long sv, ulong p) returns a random F1lx in variable v, of degree less
than d.

GEN Flx_recip(GEN x), returns the reciprocal polynomial

ulong Flx_resultant(GEN a, GEN b, ulong p), returns the resultant of a and b. Assumes that
p is prime.

ulong Flx_resultant_pre(GEN a, GEN b, ulong p, ulong pi)

ulong Flx_extresultant(GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV) given two Flx a and
b, returns their resultant and sets Bezout coefficients (if the resultant is 0, the latter are not set).
Assumes that p is prime.

GEN Flx_invBarrett(GEN T, ulong p), returns the Barrett inverse M of T' defined by M (x) x
2"T(1/r) =1 (mod 2"~ ') where n is the degree of T. Assumes that p is prime.

GEN Flx_renormalize(GEN x, long 1), as FpX_renormalize, where 1 = 1g(x), in place.
GEN Flx_shift(GEN T, long n) returns Txz™ if n > 0, and T\z~" otherwise.
long Flx_val(GEN x) returns the valuation of x, i.e. the multiplicity of the 0 root.

long Flx_valrem(GEN x, GEN *Z) as RgX_valrem, returns the valuation of x. In particular, if the
valuation is 0, set *Z to x, not a copy.

GEN Flx_div_by_X_x(GEN A, ulong a, ulong p, ulong *rem), returns the Euclidean quotient
of the F1x A by X — a, and sets rem to the remainder A(a).
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ulong Flx_eval(GEN x, ulong y, ulong p), as FpX_eval.
ulong Flx_eval_pre(GEN x, ulong y, ulong p, ulong pi)

ulong Flx_eval_powers_pre(GEN P, GEN y, ulong p, ulong pi). Let y be the t_VECSMALL
(1,a,...,a™), where n is the degree of the F1x P, return P(a).

GEN Flx_Flv_multieval(GEN P, GEN v, ulong p) returns the vector [P(v[1]),..., P(v[n])] as a
Flv.

ulong Flx_dotproduct(GEN x, GEN y, ulong p) returns the scalar product of the coefficients
of x and y.

ulong Flx_dotproduct_pre(GEN x, GEN y, ulong p, ulong pi).

GEN Flx_deflate(GEN P, long d) assuming P is a polynomial of the form Q(X%), return Q.
GEN Flx_inflate(GEN P, long d) returns P(X?).

GEN Flx_splitting(GEN P, long k), as RgX_splitting.

GEN Flx_blocks(GEN P, long n, long m), as RgX_blocks.

int Flx_is_squarefree(GEN z, ulong p). Assumes that p is prime.

int Flx_is_irred(GEN f, ulong p), as FpX_is_irred. Assumes that p is prime.

int Flx_is_totally_split(GEN f, wulong p) returns 1 if the Flx f splits into a product of
distinct linear factors, 0 otherwise. Assumes that p is prime.

int Flx_is_smooth(GEN f, long r, ulong p) return 1 if all irreducible factors of f are of degree
at most r, 0 otherwise. Assumes that p is prime.

int Flx_is_smooth_pre(GEN f, long r, ulong p, ulong pi)

long Flx_nbroots(GEN f, ulong p), as FpX_nbroots. Assumes that p is prime.
long Flx_nbfact(GEN z, ulong p), as FpX_nbfact. Assumes that p is prime.
long Flx_nbfact_pre(GEN z, ulong p, ulong pi)

long Flx_nbfact_Frobenius(GEN f, GEN XP, ulong p), as FpX_nbfact Frobenius. Assumes
that p is prime.

long Flx_nbfact_Frobenius_pre(GEN f, GEN XP, ulong p, ulong pi)
GEN Flx_degfact(GEN f, ulong p), as FpX_degfact. Assumes that p is prime.

GEN Flx_nbfact_by_degree(GEN z, long #*nb, ulong p) Assume that the Flx z is squarefree
mod the prime p. Returns a t_VECSMALL D with degz entries, such that D[i] is the number of
irreducible factors of degree i. Set nb to the total number of irreducible factors (the sum of the
DJi]). Assumes that p is prime.

void Flx_ffintersect(GEN P, GEN Q, long n, ulong p, GEN*SP, GEN*SQ, GEN MA, GEN MB)

)

as FpX_ffintersect. Assumes that p is prime.
GEN Flx_Laplace(GEN x, ulong p)
GEN Flx_invLaplace(GEN x, ulong p)

GEN Flx_Newton(GEN x, long n, ulong p)
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GEN Flx_fromNewton(GEN x, ulong p)

GEN Flx_Teichmuller(GEN P, ulong p, long n) Return a ZX ) such that P =@ (mod p) and
Q(XP)=0 (mod @,p™). Assumes that p is prime.

GEN Flv_polint(GEN x, GEN y, ulong p, long sv) as FpV_polint, returning an Flx in variable
v. Assumes that p is prime.

GEN Flv_Flm_polint(GEN x, GEN V, ulong p, long sv) equivalent (but faster) to applying
Flv_polint(x,...) to all the elements of the vector V (thus, returns a F1xV). Assumes that p is
prime.

GEN Flv_invVandermonde(GEN L, ulong d, ulong p) L being a Flv of length n, return the
inverse M of the Vandermonde matrix attached to the elements of L, multiplied by 4. If A is a
Flv and B = M A, then the polynomial P =Y | B[i]X""! verifies P(L[i]) = dA[i] for 1 <i < n.
Assumes that p is prime.

GEN Flv_roots_to_pol(GEN a, ulong p, long sv) as FpV_roots_to_pol returning an Flx in
variable v.

7.3.17 F1xV. See FpXV operations.

GEN F1xV_Flc_mul(GEN V, GEN W, ulong p), as FpXV_FpC_mul.

GEN F1xV_red(GEN V, ulong p) reduces each components with Flx_red.

GEN F1xV_prod(GEN V, ulong p), V being a vector of Flx, returns their product.

ulong F1xC_eval_powers_pre(GEN x, GEN y, ulong p, ulong pi) apply Flx_eval _powers_pre
to all elements of x.

GEN F1xV_Flv_multieval(GEN F, GEN v, wulong p) assuming F' is a vector of Flx with m

entries and v is a F1v with m entries, returns the n-components vector (F1vV) whose j-th entry is
[F5 (1)), .-, Fj(v[n])], with F; = F[j].

GEN F1xC_neg(GEN x, ulong p)
GEN F1xC_sub(GEN x, GEN y, ulong p)

GEN zero_F1xC(long n, long sv)

7.3.18 F1xM. See FpXM operations.

ulong F1xM_eval_powers_pre(GEN M, GEN y, wulong p, ulong pi) this function applies
F1xC_eval_powers_pre to all entries of M.

GEN F1xM_neg(GEN x, ulong p)
GEN F1xM_sub(GEN x, GEN y, ulong p)

GEN zero_FlxM(long r, long c, long sv)

7.3.19 F1xT. See FpXT operations.

GEN F1xT_red(GEN V, ulong p) reduces each leaf with Flx_red.
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7.3.20 Flxn. See FpXn operations. In this section, pi is the pseudoinverse of p, or 0 in which case
we assume SMALL_ULONG(p).

GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

Flxn_mul (GEN a, GEN b, long n, ulong p) returns ab modulo X".
Flxn_mul_pre(GEN a, GEN b, long n, ulong p, ulong pi)
Flxn_sqr(GEN a, long n, ulong p) returns a® modulo X".
Flxn_sqr_pre(GEN a, long n, ulong p, ulong pi)

Flxn_inv(GEN a, long n, ulong p) returns 1/a modulo X™.
Flxn_div(GEN a, GEN b, long n, ulong p) returns a/b modulo X".
Flxn_div_pre(GEN a, GEN b, long n, ulong p, ulong pi)
Flxn_red(GEN a, long n) returns a modulo X".

Flxn_exp(GEN x, long n, ulong p) return exp(z) as a composition of formal power series.

It is required that the valuation of x is positive and that p > n.

GEN

Flxn_expint(GEN f, long n, ulong p) return exp(F') where F' is the primitive of f that

vanishes at 0. It is required that p > n.

7.3.21 Flxq. See FpXQ operations. In this section, p¢ is the pseudoinverse of p, or 0 in which case
we assume SMALL_ULONG(p).

GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

Flxq_add(GEN x, GEN y, GEN T, ulong p)

Flxq_sub(GEN x, GEN y, GEN T, ulong p)

Flxq_mul (GEN x, GEN y, GEN T, ulong p)
Flxq_mul_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
Flxq_sqr(GEN y, GEN T, ulong p)

Flxq_sqr_pre(GEN y, GEN T, ulong p)

Flxq_inv(GEN x, GEN T, ulong p)

Flxq_inv_pre(GEN x, GEN T, ulong p, ulong pi)
Flxq_invsafe(GEN x, GEN T, ulong p)
Flxq_invsafe_pre(GEN x, GEN T, ulong p, ulong pi)
Flxq_div(GEN x, GEN y, GEN T, ulong p)
Flxq_div_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
Flxq_pow(GEN x, GEN n, GEN T, ulong p)
Flxq_pow_pre(GEN x, GEN n, GEN T, ulong p, ulong pi)
Flxq_powu(GEN x, ulong n, GEN T, ulong p)
Flxq_powu_pre(GEN x, ulong n, GEN T, ulong p)
FlxqV_factorback(GEN L, GEN e, GEN Tp, ulong p)
Flxq_pow_init(GEN x, GEN n, long k, GEN T, ulong p)
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GEN Flxq_pow_init_pre(GEN x, GEN n, long k, GEN T, ulong p, ulong pi)

GEN Flxq_pow_table(GEN R, GEN n, GEN T, ulong p)

GEN Flxq_pow_table_pre(GEN R, GEN n, GEN T, ulong p, ulong pi)

GEN Flxq_powers(GEN x, long n, GEN T, ulong p)

GEN Flxq_powers_pre(GEN x, long n, GEN T, ulong p, ulong pi)

GEN Flxq_matrix_pow(GEN x, long m, long n, GEN T, ulong p), see FpXQ matrix pow.
GEN Flxq_matrix_pow_pre(GEN x, long m, long n, GEN T, ulong p, ulong pi)

GEN Flxq_autpow(GEN a, long n, GEN T, ulong p) see FpXQ_autpow.

GEN Flxq_autpow_pre(GEN a, long n, GEN T, ulong p, ulong pi)

GEN Flxq_autpowers(GEN a, long n, GEN T, ulong p) return [X,o(X),...,0"(X)], assuming
a = 0(X) where o is an automorphism of the algebra F,[X]/T(X).

GEN Flxq_autsum(GEN a, long n, GEN T, ulong p) see FpXQ_autsum.

GEN Flxq_auttrace(GEN a, ulong n, GEN T, ulong p) see FpXQ_auttrace.
GEN Flxq_auttrace_pre(GEN a, ulong n, GEN T, ulong p, ulong pi)
GEN Flxq_ffisom_inv(GEN S, GEN T, ulong p), as FpXQ_ffisom_inv.

GEN Flx_Flxq_eval(GEN f, GEN x, GEN T, ulong p) returns f(x).

GEN Flx_Flxq_eval_pre(GEN f, GEN x, GEN T, ulong p, ulong pi)

GEN Flx_FlxqV_eval(GEN f, GEN x, GEN T, ulong p), see FpX FpXQV_eval.
GEN Flx_FlxqV_eval_pre(GEN f, GEN x, GEN T, ulong p, ulong pi)

GEN F1xC_Flxq_eval(GEN C, GEN x, GEN T, ulong p), see FpXC_FpXQ_eval.
GEN F1xC_Flxq_eval_pre(GEN C, GEN x, GEN T, ulong p, ulong pi)

GEN F1xC_F1lxqV_eval(GEN C, GEN V, GEN T, ulong p) see FpXC_FpXQV_eval.
GEN F1xC_F1lxqV_eval_pre(GEN C, GEN V, GEN T, ulong p, ulong pi)

GEN FlxqV_roots_to_pol(GEN V, GEN T, ulong p, long v) as FqV_roots_to_pol returning an
FlxgX in variable v.

int Flxq_issquare(GEN x, GEN T, ulong p) returns 1 if z is a square and 0 otherwise. Assume
that T is irreducible mod p.

int Flxq_is2npower(GEN x, long n, GEN T, ulong p) returns 1 if x is a 2"-th power and 0
otherwise. Assume that T is irreducible mod p.

GEN Flxq_order(GEN a, GEN ord, GEN T, ulong p) as FpXQ_order.
GEN Flxq_log(GEN a, GEN g, GEN ord, GEN T, ulong p) as FpXQ_log
GEN Flxq_sqrtn(GEN x, GEN n, GEN T, ulong p, GEN *zn) as FpXQ_sqrtn.

GEN Flxq_sqrt(GEN x, GEN T, ulong p) returns a square root of x. Return NULL if x is not a
square.

GEN Flxq_lroot(GEN a, GEN T, ulong p) returns x such that xP = a.
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GEN Flxq_lroot_pre(GEN a, GEN T, ulong p, ulong pi)

GEN Flxq_lroot_fast(GEN a, GEN V, GEN T, ulong p) assuming that V=Flxq_powers(s,p-
1,T,p) where s(x)P = (mod T'(x),p), returns b such that b = a. Only useful if p is less than
the degree of T

GEN Flxq_lroot_fast_pre(GEN a, GEN V, GEN T, ulong p, ulong pi)

GEN Flxq_charpoly(GEN x, GEN T, ulong p) returns the characteristic polynomial of x
GEN Flxq_minpoly(GEN x, GEN T, ulong p) returns the minimal polynomial of x

GEN Flxq_minpoly_pre(GEN x, GEN T, ulong p, ulong pi)

ulong Flxq_norm(GEN x, GEN T, ulong p) returns the norm of x

ulong Flxq_trace(GEN x, GEN T, ulong p) returns the trace of x

GEN Flxq_conjvec(GEN x, GEN T, ulong p) returns the conjugates h;af,xpi...,xpn | where
n is the degree of T'.

GEN gener_F1xq(GEN T, ulong p, GEN *po) returns a primitive root modulo (7, p). T is an Flx
assumed to be irreducible modulo the prime p. If po is not NULL it is set to [o, fa], where o is the
order of the multiplicative group of the finite field, and fa is its factorization.

7.3.22 F1xX. See FpXX operations. In this section, we assume pi is the pseudoinverse of p, or 0 in
which case we assume SMALL_ULONG(p).

GEN poll_FlxX(long vX, long sx) returns the unit F1xX as a t_POL in variable vX which only
coefficient is pol1l Flx(sx).

GEN polx_F1xX(long vX, long sx) returns the variable X as a degree 1 t_POL with Flx coeffi-
cients in the variable x.

long FlxY_degreex(GEN P) return the degree of P with respect to the secondary variable.
GEN FlxX_add(GEN P, GEN Q, ulong p)

GEN FlxX_sub(GEN P, GEN Q, ulong p)

GEN F1xX_F1l_mul(GEN x, ulong y, ulong p)

GEN F1xX_double(GEN x, ulong p)

GEN Fl1xX_triple(GEN x, ulong p)

GEN F1xX_neg(GEN x, ulong p)

GEN F1xX_Flx_add(GEN x, GEN y, ulong p)

GEN F1xX_Flx_sub(GEN x, GEN y, ulong p)

GEN FlxX_Flx_mul(GEN x, GEN y, ulong p)

GEN FlxY_Flx_div(GEN x, GEN y, ulong p) divides the coefficients of x by y using Flx div.
GEN FlxX_deriv(GEN P, ulong p) returns the derivative of P with respect to the main variable.
GEN F1xX_Laplace(GEN x, ulong p)

GEN Fl1xX_invLaplace(GEN x, ulong p)
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GEN F1xY_evalx(GEN P, ulong z, ulong p) P being an F1xY, returns the Flx P(z,Y’), where
Y is the main variable of P.

GEN FlxY_evalx_pre(GEN P, ulong z, ulong p, ulong pi)

GEN FlxX_translatel(GEN P, ulong p, long n) P being an F1xX with all coefficients of degree
at most n, return (P(z,Y + 1), where Y is the main variable of P.

GEN zlxX_translatel(GEN P, ulong p, long e, long n) P being an z1xX with all coefficients
of degree at most n, return (P(x,Y + 1) modulo p® for prime p , where Y is the main variable of
P.

GEN F1xY_Flx_translate(GEN P, GEN f, ulong p) P being an F1xY and f being an F1x, return
(P(z,Y + f(z)), where Y is the main variable of P.

ulong F1xY_evalx_powers_pre(GEN P, GEN xp, ulong p, ulong pi), xp being the vector
[1,z,...,2"], where n is larger or equal to the degree of P in X, return P(z,Y), where Y is the
main variable of Q.

ulong F1xY_eval_powers_pre(GEN P, GEN xp, GEN yp, ulong p, ulong pi), xp being the
vector [1,z,...,2"], where n is larger or equal to the degree of P in X and yp being the vector
[1,y,...,y™], where m is larger or equal to the degree of P in Y return P(z,y).

GEN F1lxY_Flxq_evalx(GEN x, GEN y, GEN T, ulong p) as FpXY_FpXQ_evalx.

GEN F1xY_Flxq_evalx_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)

GEN F1xY_F1lxqV_evalx(GEN x, GEN V, GEN T, ulong p) as FpXY FpXQV_evalx.

GEN F1xY_FlxqV_evalx_pre(GEN x, GEN V, GEN T, ulong p, ulong pi)

GEN F1xX_renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.

GEN F1lxX_resultant(GEN u, GEN v, ulong p, long sv) Returns Resx(u,v), which is an Flx.
The coefficients of u and v are assumed to be in the variable v.

GEN Flx_F1xY_resultant(GEN a, GEN b, ulong p) Returns Res;(a,b), which is an Flx in the
main variable of b.

GEN F1xX_blocks(GEN P, long n, long m, long sv), as RgX_blocks, where v is the secondary
variable.

GEN F1xX_shift(GEN a, long n, long sv), as RgX_shift_shallow, where v is the secondary
variable.

GEN F1xX_swap(GEN x, long n, long ws), as RgXY_swap.

GEN FlxYqq_pow(GEN x, GEN n, GEN S, GEN T, ulong p), as FpXYQQ_pow.

7.3.23 F1xXV, F1xXC, F1xXM. See FpXX operations.

GEN F1xXC_sub(GEN x, GEN y, ulong p)
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7.3.24 F1xgX. See FpXQX operations.
7.3.24.1 Preconditioned reduction.

For faster reduction, the modulus S can be replaced by an extended modulus, which is an
F1xgXT, in all F1xgXQ-classes functions, and in FlxqX_rem and F1xqX_divrem.

GEN FlxgX_get_red(GEN S, GEN T, ulong p) returns the extended modulus eS.

GEN FlxqX_get_red_pre(GEN S, GEN T, ulong p, ulong pi), where pi is a pseudoinverse of p,
or 0 in which case we assume SMALL_ULONG(p).

To write code that works both with plain and extended moduli, the following accessors are
defined:

GEN get_FlxqX_mod(GEN eS) returns the underlying modulus S.
GEN get_FlxgX_var(GEN eS) returns the variable number of the modulus.
GEN get_FlxqX_degree(GEN eS) returns the degree of the modulus.
7.3.24.2 basic functions.
In this section, pi is a pseudoinverse of p, or 0 in which case we assume SMALL_ULONG(p).

GEN random_FlxqX(long d, long v, GEN T, ulong p) returns a random F1xgX in variable v, of
degree less than d.

GEN zxX_to_Kronecker (GEN P, GEN Q) assuming P(X,Y) is a polynomial of degree in X strictly
less than n, returns P(X, X2**~ 1) the Kronecker form of P.

GEN Kronecker_to_F1xgX(GEN z, GEN T, ulong p). Let n = degT and let P(X,Y) € Z[X,Y]
lift a polynomial in K[Y], where K :=F,[X]/(T) and degy P < 2n—1 — such as would result from
multiplying minimal degree lifts of two polynomials in K[Y]. Let z = P(t,t>*"~!) be a Kronecker
form of P, this function returns @ € Z[X,t] such that @ is congruent to P(X,¢) mod (p,T(X)),
degy @ < n, and all coefficients are in [0, p[. Not stack-clean. Note that ¢ need not be the same
variable as Y'!

GEN Kronecker_to_FlxqX_pre(GEN z, GEN T, ulong p, ulong pi)
GEN FlxqX_red(GEN z, GEN T, ulong p)

GEN FlxgX_red_pre(GEN z, GEN T, ulong p, ulong pi)

GEN FlxgX_normalize(GEN z, GEN T, ulong p)

GEN FlxqgX_normalize_pre(GEN z, GEN T, ulong p, ulong pi)

GEN FlxqX_mul(GEN x, GEN y, GEN T, ulong p)

GEN FlxqX_mul_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)

GEN FlxqX_Flxq_mul(GEN P, GEN U, GEN T, ulong p)

GEN FlxqX_Flxq_mul_pre(GEN P, GEN U, GEN T, ulong p, ulong pi)

GEN FlxgX_Flxq_mul_to_monic(GEN P, GEN U, GEN T, ulong p) returns P x U assuming the
result is monic of the same degree as P (in particular U # 0).

GEN FlxqX_Flxq_mul_to_monic_pre(GEN P, GEN U, GEN T, ulong p, ulong pi)
GEN F1xqX_sqr(GEN x, GEN T, ulong p)
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GEN FlxgX_sqr_pre(GEN x, GEN T, ulong p, ulong pi)

GEN FlxgX_powu(GEN x, ulong n, GEN T, ulong p)

GEN FlxgX_powu_pre(GEN x, ulong n, GEN T, ulong p, ulong pi)
GEN FlxgX_divrem(GEN x, GEN y, GEN T, ulong p, GEN *pr)

GEN FlxgX_divrem_pre(GEN x, GEN y, GEN T, ulong p, ulong pi, GEN *pr)
GEN FlxqX_div(GEN x, GEN y, GEN T, ulong p)

GEN FlxqX_div_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
GEN FlxqX_rem(GEN x, GEN y, GEN T, ulong p)

GEN FlxqX_rem_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)
GEN FlxgX_invBarrett(GEN T, GEN Q, ulong p)

GEN FlxqgX_invBarrett_pre(GEN T, GEN Q, ulong p, ulong pi)

GEN FlxqX_gcd(GEN x, GEN y, wulong p) returns a (not necessarily monic) greatest common
divisor of x and y.

GEN FlxqX_gcd_pre(GEN x, GEN y, ulong p, ulong pi)

GEN FlxqX_extgcd(GEN x, GEN y, GEN T, ulong p, GEN *ptu, GEN *ptv)

GEN FlxqX_extgcd_pre(GEN x, GEN y, GEN T, ulong p, ulong pi, GEN *ptu, GEN *ptv)
GEN Fl1xqX_halfgcd(GEN x, GEN y, GEN T, ulong p), see FpX_halfgcd.

GEN FlxgX_halfgcd_pre(GEN x, GEN y, GEN T, ulong p, ulong pi)

GEN FlxqgX_resultant(GEN x, GEN y, GEN T, ulong p)

GEN FlxgX_saferesultant(GEN P, GEN Q, GEN T, ulong p) Returns the resultant of P and
Q@ if Euclid’s algorithm succeeds and NULL otherwise. In particular, if p is not prime or 7" is not
irreducible over F,[X], the routine may still be used (but will fail if noninvertible leading terms
occur).

GEN FlxqX_disc(GEN x, GEN T, ulong p)
GEN F1xqXV_prod(GEN V, GEN T, ulong p)

GEN FlxgX_safegcd(GEN P, GEN Q, GEN T, wulong p) Returns the monic GCD of P and
if Euclid’s algorithm succeeds and NULL otherwise. In particular, if p is not prime or 7' is not
irreducible over F,[X], the routine may still be used (but will fail if noninvertible leading terms
occur).

GEN FlxgX_dotproduct(GEN x, GEN y, GEN T, wulong p) returns the scalar product of the
coefficients of x and y.

GEN FlxqX_Newton(GEN x, long n, GEN T, ulong p)

GEN FlxqX_Newton_pre(GEN x, long n, GEN T, ulong p, ulong pi)

GEN FlxgX_fromNewton(GEN x, GEN T, ulong p)

GEN FlxqX_fromNewton_pre(GEN x, GEN T, ulong p, ulong pi) We assume pi is a pseudoin-
verse of p, or 0 in which case we assume SMALL _ULONG(p).
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long FlxgX_is_squarefree(GEN S, GEN T, ulong p), as FpX_is_squarefree.

long FlxgX_ispower (GEN f, ulong k, GEN T, ulong p, GEN *pt) return 1 if the F1xqX f is a
k-th power, 0 otherwise. If pt is not NULL, set it to g such that g* = f.

GEN FlxgX_Frobenius(GEN S, GEN T, ulong p), as FpXQX_Frobenius
GEN FlxgX_Frobenius_pre(GEN S, GEN T, ulong p, ulong pi)

GEN FlxqX_roots(GEN f, GEN T, ulong p) return the roots of £ in F,[X]/(T"). Assumes p is
prime and T irreducible in F,[X].

GEN FlxqX_factor(GEN f, GEN T, wulong p) return the factorization of £ over F,[X]/(T).
Assumes p is prime and T irreducible in F,[X].

GEN FlxqgX_factor_squarefree(GEN f, GEN T, ulong p) returns the squarefree factorization of
f, see FpX_factor_squarefree.

GEN FlxqgX_factor_squarefree_pre(GEN f, GEN T, ulong p, ulong pi)

GEN FlxqX_ddf(GEN £, GEN T, ulong p) as FpX_ddf.

long FlxqX_ddf_degree(GEN f, GEN XP, GEN T, GEN p), as FpX_ddf _degree.

GEN FlxqX_degfact(GEN f, GEN T, ulong p), as FpX_degfact.

long FlxgX_nbroots(GEN S, GEN T, ulong p), as FpX_nbroots.

long FlxgX_nbfact(GEN S, GEN T, ulong p), as FpX_nbfact.

long FlxgX_nbfact_Frobenius(GEN S, GEN Xq, GEN T, ulong p), as FpX_nbfact_Frobenius.

GEN FlxgX_nbfact_by_degree(GEN z, long *nb, GEN T, ulong p) Assume that the F1xgX z
is squarefree mod the prime p. Returns a t_VECSMALL D with deg z entries, such that D[i] is the

number of irreducible factors of degree i. Set nb to the total number of irreducible factors (the sum
of the D[i]).

GEN F1xqX_F1xqXQ_eval(GEN Q, GEN x, GEN S, GEN T, ulong p) as FpX_FpXQ_eval.

GEN FlxgX_F1lxqXQ_eval_pre(GEN Q, GEN x, GEN S, GEN T, ulong p, ulong pi)

GEN FlxqX_F1xqXQV_eval(GEN P, GEN V, GEN S, GEN T, ulong p) as FpX_FpXQV_eval.
GEN FlxgX_F1xqXQV_eval_pre(GEN P, GEN V, GEN S, GEN T, ulong p, ulong pi)

GEN F1xqXC_F1xqXQ_eval(GEN Q, GEN x, GEN S, GEN T, ulong p) as FpXC_FpXQ_eval.
GEN F1xgqXC_FlxqXQ_eval_pre(GEN Q, GEN x, GEN S, GEN T, ulong p, ulong pi)

GEN F1xqXC_F1xqXQV_eval(GEN P, GEN V, GEN S, GEN T, ulong p) as FpXC_FpXQV_eval.

GEN F1xqXC_FlxqXQV_eval_pre(GEN P, GEN V, GEN S, GEN T, ulong p, ulong pi)
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7.3.25 F1xgXQ. See FpXQXQ operations. In this section, pi is a pseudoinverse of p, or 0 in which
case we assume SMALL_ULONG(p).

GEN FlxqXQ_mul(GEN x, GEN y, GEN S, GEN T, ulong p)

GEN FlxqXQ_mul_pre(GEN x, GEN y, GEN S, GEN T, ulong p, ulong pi)

GEN F1xqXQ_sqr(GEN x, GEN S, GEN T, ulong p)

GEN FlxqXQ_sqr_pre(GEN x, GEN S, GEN T, ulong p, ulong pi)

GEN F1xqXQ_inv(GEN x, GEN S, GEN T, ulong p)

GEN FlxqXQ_inv_pre(GEN x, GEN S, GEN T, ulong p, ulong pi)

GEN FlxqXQ_invsafe(GEN x, GEN S, GEN T, ulong p)

GEN F1xqXQ_invsafe_pre(GEN x, GEN S, GEN T, ulong p, ulong pi)
GEN F1xqXQ_div(GEN x, GEN y, GEN S, GEN T, ulong p)
GEN FlxqXQ_div_pre(GEN x, GEN y, GEN S, GEN T, ulong p, ulong pi)
GEN FlxqXQ_pow(GEN x, GEN n, GEN S, GEN T, ulong p)
GEN FlxgXQ_pow_pre(GEN x, GEN n, GEN S, GEN T, ulong p, ulong pi)
GEN F1xqXQ_powu(GEN x, ulong n, GEN S, GEN T, ulong p)
GEN Fl1xqXQ_powu_pre(GEN x, ulong n, GEN S, GEN T, ulong p, ulong pi)
GEN FlxgXQ_powers(GEN x, long n, GEN S, GEN T, ulong p)

GEN

GEN

GEN

GEN

GEN

GEN

GEN

GEN

GEN

GEN

GEN

FlxqXQ_powers_pre(GEN x, long n,
FlxqXQ_matrix_pow(GEN x, long n,
F1xqXQ_autpow(GEN a, long n, GEN
FlxgXQ_autpow_pre(GEN a, long n,
F1xgXQ_autsum(GEN a, long n, GEN

F1xgXQ_autsum_pre(GEN a, long n,

GEN S, GEN T, ulong p, ulong pi)
long m, GEN S, GEN T, ulong p)

S, GEN T, ulong p) as FpXQXQ_autpow
GEN S, GEN T, ulong p, ulong pi)
S, GEN T, ulong p) as FpXQXQ_autsum

GEN S, GEN T, ulong p, ulong pi)

FlxqXQ_auttrace(GEN a, long n, GEN S, GEN T, ulong p) as FpXQXQ_auttrace

FlxgXQ_auttrace_pre(GEN a, long n, GEN S, GEN T, ulong p, ulong pi)

F1xqXQ_halfFrobenius(GEN A, GEN S, GEN T, ulong p), as FpXQXQ_-halfFrobenius

F1xqXQ_minpoly(GEN x, GEN S, GEN T, ulong p), as FpXQ_minpoly

F1xqXQ_minpoly_pre(GEN x, GEN S, GEN T, ulong p, ulong pi)
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7.3.26 FlxgXn. See FpXn operations. In this section, we assume pi is the pseudoinverse of p, or 0
in which case we assume SMALL_ULONG(p).

GEN FlxXn_red(GEN a, long n) returns ¢ modulo X™.

GEN FlxqXn_mul(GEN a, GEN b, long n, GEN T, ulong p)

GEN FlxgXn_mul_pre(GEN a, GEN b, long n, GEN T, ulong p, ulong pi)

GEN FlxgqXn_sqr(GEN a, long n, GEN T, ulong p)

GEN FlxgXn_sqr_pre(GEN a, long n, GEN T, ulong p, ulong pi)

GEN FlxgXn_inv(GEN a, long n, GEN T, ulong p)

GEN FlxgXn_inv_pre(GEN a, long n, GEN T, ulong p, ulong pi)

GEN FlxgXn_expint(GEN a, long n, GEN T, ulong p)

GEN FlxqXn_expint_pre(GEN a, long n, GEN T, ulong p, ulong pi)

7.3.27 F2x. An F2x z is a t_VECSMALL representing a polynomial over Fy[X]. Specifically z[0] is

the usual codeword, z[1] = evalvarn(w) for some variable v and the coefficients are given by the
bits of remaining words by increasing degree.

7.3.27.1 Preconditioned reduction.

For faster reduction, the modulus T can be replaced by an extended modulus (F1xT) in all
Flxg-classes functions, and in Flx_divrem.

GEN F2x_get_red(GEN T) returns the extended modulus eT.

To write code that works both with plain and extended moduli, the following accessors are
defined:

GEN get_F2x_mod(GEN eT) returns the underlying modulus T.

GEN get_F2x_var(GEN eT) returns the variable number of the modulus.
GEN get_F2x_degree(GEN eT) returns the degree of the modulus.
7.3.27.2 Basic operations.

ulong F2x_coeff (GEN x, long i) returns the coeflicient ¢ > 0 of z.
void F2x_clear(GEN x, long i) sets the coefficient ¢ > 0 of x to 0.
void F2x_flip(GEN x, long i) adds 1 to the coeflicient ¢ > 0 of x.
void F2x_set(GEN x, long i) sets the coefficient i > 0 of x to 1.
GEN F2x_copy(GEN x)

GEN Flx_to_F2x(GEN x)

GEN Z_to_F2x(GEN x, long sv)

GEN ZX_to_F2x(GEN x)

GEN F2v_to_F2x(GEN x, long sv)

GEN F2x_to_F1x(GEN x)
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GEN F2x_to_F2xX(GEN x, long sv)

GEN F2x_to_ZX(GEN x)

GEN polO_F2x(long sv) returns a zero F2x in variable v.

GEN zero_F2x(long sv) alias for pol0_F2x.

GEN polil_F2x(long sv) returns the F2x in variable v constant to 1.
GEN polx_F2x(long sv) returns the variable v as degree 1 F2x.

GEN monomial_F2x(long d, long sv) returns the F2x X? in variable v.
GEN random_F2x(long d, long sv) returns a random F2x in variable v, of degree less than d.
long F2x_degree(GEN x) returns the degree of the F2x x. The degree of 0 is defined as —1.
GEN F2x_recip(GEN x)

int F2x_equall(GEN x)

int F2x_equal(GEN x, GEN y)

GEN F2x_1_add(GEN y) returns y+1 where y is a Flx.

GEN F2x_add(GEN x, GEN y)

GEN F2x_mul(GEN x, GEN y)

GEN F2x_sqr(GEN x)

GEN F2x_divrem(GEN x, GEN y, GEN *pr)

GEN F2x_rem(GEN x, GEN y)

GEN F2x_div(GEN x, GEN y)

GEN F2x_renormalize(GEN x, long 1x)

GEN F2x_deriv(GEN x)

GEN F2x_deflate(GEN x, long d)

ulong F2x_eval(GEN P, ulong u) returns P(u).

void F2x_shift(GEN x, long d) as RgX_shift

void F2x_even_odd(GEN P, GEN *pe, GEN #*po) as RgX_even_odd
long F2x_valrem(GEN x, GEN *Z)

GEN F2x_extgcd(GEN a, GEN b, GEN #*ptu, GEN *ptv)

GEN F2x_gcd(GEN a, GEN b)

GEN F2x_halfgcd(GEN a, GEN b)

int F2x_issquare(GEN x) returns 1 if x is a square of a F2x and 0 otherwise.
int F2x_is_irred(GEN f), as FpX_is_irred.

GEN F2x_degfact(GEN f) as FpX_degfact.

GEN F2x_sqrt(GEN x) returns the squareroot of z, assuming x is a square of a F2x.
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GEN F2x_Frobenius(GEN T)

GEN F2x_matFrobenius(GEN T)

GEN F2x_factor(GEN f)

GEN F2x_factor_squarefree(GEN f)

GEN F2x_ddf (GEN f)

GEN F2x_Teichmuller(GEN P, long n) Return a ZX ) such that P =@ (mod 2) and Q(X?) =0
(mod @,2™).

7.3.28 F2xq. See FpXQ operations.

GEN F2xq_mul (GEN x, GEN y, GEN T)

GEN F2xq_sqr(GEN x, GEN T)

GEN F2xq_div(GEN x, GEN y, GEN T)

GEN F2xq_inv(GEN x, GEN T)

GEN F2xq_invsafe(GEN x, GEN T)

GEN F2xq_pow(GEN x, GEN n, GEN T)

GEN F2xq_powu(GEN x, ulong n, GEN T)

GEN F2xq_pow_init(GEN x, GEN n, long k, GEN T)
GEN F2xq_pow_table(GEN R, GEN n, GEN T)

ulong F2xq_trace(GEN x, GEN T)

2 277.71]

GEN F2xq_conjvec(GEN x, GEN T) returns the vector of conjugates [z, ,xzi...,x where n

is the degree of T'.

GEN F2xq_log(GEN a, GEN g, GEN ord, GEN T)

GEN F2xq_order(GEN a, GEN ord, GEN T)

GEN F2xq_Artin_Schreier(GEN a, GEN T) returns a solution of 22 + x = a, assuming it exists.
GEN F2xq_sqrt(GEN a, GEN T)

GEN F2xq_sqrt_fast(GEN a, GEN s, GEN T) assuming that s> = 2 (mod T(z)), computes
b=a(s) (mod T) so that b = a.

GEN F2xq_sqrtn(GEN a, GEN n, GEN T, GEN *zeta)

GEN gener_F2xq(GEN T, GEN *po)

GEN F2xq_powers(GEN x, long n, GEN T)

GEN F2xq_matrix_pow(GEN x, long m, long n, GEN T)

GEN F2x_F2xq_eval(GEN f, GEN x, GEN T)

GEN F2x_F2xqV_eval (GEN f, GEN x, GEN T), see FpX_FpXQV_eval.

GEN F2xq_autpow(GEN a, long n, GEN T) computes o”(X) assuming a = o(X) where o is an
automorphism of the algebra Fy[X]/T(X).
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7.3.29 F2xn. See FpXn operations.

GEN F2xn_red(GEN a, long n)

GEN F2xn_div(GEN x, GEN y, long e)
GEN F2xn_inv(GEN x, long e)

7.3.30 F2xqV, F2xgM.. See FqV, FgM operations.
GEN F2xgM_F2xqC_gauss(GEN a, GEN b, GEN T)
GEN F2xgM_F2xqC_invimage (GEN a, GEN b, GEN T)
GEN F2xgM_F2xqC_mul(GEN a, GEN b, GEN T)
GEN F2xgM_deplin(GEN x, GEN T)

GEN F2xgM_det(GEN a, GEN T)

GEN F2xgM_gauss(GEN a, GEN b, GEN T)

GEN F2xgM_image (GEN x, GEN T)

GEN F2xgM_indexrank(GEN x, GEN T)

GEN F2xqM_inv(GEN a, GEN T)

GEN F2xgM_invimage(GEN a, GEN b, GEN T)
GEN F2xqgM_ker (GEN x, GEN T)

GEN F2xgM_mul (GEN a, GEN b, GEN T)

long F2xgM_rank(GEN x, GEN T)

GEN F2xgM_suppl(GEN x, GEN T)

GEN matid_F2xqM(long n, GEN T)

7.3.31 F2xX.. See FpXX operations.

GEN ZXX_to_F2xX(GEN x, long v)

GEN F1xX_to_F2xX(GEN x)

GEN F2xX_to_F1xX(GEN B)

GEN F2xX_to_F2xC(GEN B, long N, long sv)
GEN F2xXV_to_F2xM(GEN B, long N, long sv)
GEN F2xX_to_ZXX(GEN B)

GEN F2xX_renormalize(GEN x, long 1x)

long F2xY_degreex(GEN P) return the degree of P with respect to the secondary variable.
GEN poll_F2xX(long v, long sv)

GEN polx_F2xX(long v, long sv)

GEN F2xX_add(GEN x, GEN y)
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GEN F2xX_F2x_add(GEN x, GEN y)

GEN F2xX_F2x_mul(GEN x, GEN y)

GEN F2xX_deriv(GEN P) returns the derivative of P with respect to the main variable.
GEN Kronecker_to_F2xqX(GEN z, GEN T)

GEN F2xX_to_Kronecker(GEN z, GEN T)

GEN F2xY_F2xq_evalx(GEN x, GEN y, GEN T) as FpXY_FpXQ_evalx.

GEN F2xY_F2xqV_evalx(GEN x, GEN V, GEN T) as FpXY_FpXQV_evalx.

7.3.32 F2xXV/F2xXC.. See FpXXV operations.
GEN F1xXC_to_F2xXC(GEN B)
GEN F2xXC_to_ZXXC(GEN B)

7.3.33 F2xqgX.. See F1xgX operations.
7.3.33.1 Preconditioned reduction.

For faster reduction, the modulus S can be replaced by an extended modulus, which is an
F2xqXT, in all F2xgXQ-classes functions, and in F2xqX_rem and F2xqX_divrem.

GEN F2xqX_get_red(GEN S, GEN T) returns the extended modulus eS.

To write code that works both with plain and extended moduli, the following accessors are
defined:

GEN get_F2xqX_mod(GEN eS) returns the underlying modulus S.

GEN get_F2xqX_var(GEN eS) returns the variable number of the modulus.
GEN get_F2xqX_degree(GEN eS) returns the degree of the modulus.
7.3.33.2 basic functions.

GEN random_F2xqX(long d, long v, GEN T, ulong p) returns a random F2xqgX in variable v, of
degree less than d.

GEN F2xqX_red(GEN z, GEN T)

GEN F2xgX_normalize(GEN z, GEN T)

GEN F2xqX_F2xq_mul(GEN P, GEN U, GEN T)

GEN F2xqX_F2xq_mul_to_monic(GEN P, GEN U, GEN T)
GEN F2xqX_mul(GEN x, GEN y, GEN T)

GEN F2xqX_sqr(GEN x, GEN T)

GEN F2xqX_powu(GEN x, ulong n, GEN T)

GEN F2xqX_rem(GEN x, GEN y, GEN T)

GEN F2xqX_div(GEN x, GEN y, GEN T)

GEN F2xqX_divrem(GEN x, GEN y, GEN T, GEN *pr)
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GEN

GEN

GEN

GEN

GEN

GEN

GEN

GEN

F2xqXQ_inv(GEN x, GEN S, GEN T)

F2xqXQ_invsafe(GEN x, GEN S, GEN T)
F2xgX_invBarrett (GEN T, GEN Q)

F2xqX_extgcd(GEN x, GEN y, GEN T, GEN *ptu, GEN *ptv)
F2xqX_gcd (GEN x, GEN y, GEN T)

F2xgX_halfgcd(GEN x, GEN y, GEN T)
F2xqX_resultant (GEN x, GEN y, GEN T)

F2xqX_disc(GEN x, GEN T)

long F2xqX_ispower (GEN f, ulong k, GEN T, GEN *pt)

GEN

GEN

GEN

F2xqX_F2xqXQ_eval (GEN Q, GEN x, GEN S, GEN T) as FpX_FpXQ_eval.
F2xqX_F2xqXQV_eval (GEN P, GEN V, GEN S, GEN T) as FpX_FpXQV_eval.

F2xgX_roots(GEN f, GEN T) return the roots of £ in F5[X]/(T"). Assumes T irreducible in

Fa[X].

GEN

F2xqX_factor(GEN f, GEN T) return the factorization of £ over F3[X]/(T). Assumes T

irreducible in Fy[X].

GEN

GEN

GEN

F2xgX_factor_squarefree(GEN f, GEN T) as FlxgX_factor_squarefree.
F2xgX_ddf (GEN f, GEN T) as FpX_ddf

F2xgX_degfact (GEN f, GEN T) as FpX_degfact.

7.3.34 F2xqXQ.. See F1xqXQ operations.

GEN

GEN

GEN

GEN

GEN

GEN

GEN

GEN

F1xqXQ_inv(GEN x, GEN S, GEN T)

Fl1xqXQ_invsafe(GEN x, GEN S, GEN T)

F2xqXQ_mul (GEN x, GEN y, GEN S, GEN T)

F2xqXQ_sqr (GEN x, GEN S, GEN T)

F2xqXQ_pow(GEN x, GEN n, GEN S, GEN T)

F2xqXQ_powers(GEN x, long n, GEN S, GEN T)
F2xqXQ_autpow(GEN a, long n, GEN S, GEN T) as FpXQXQ_autpow

F2xqXQ_auttrace(GEN a, long n, GEN S, GEN T). Let o be the automorphism de-

fined by o(X) = a[l] (mod T'(X)) and o(Y) = a[2] (mod S(X,Y),T(X)); returns the vector
[0™(X),0™(Y), b+ a(b) + ...+ " 1(b)] where b = a[3].

GEN

F2xqXQV_red (GEN x, GEN S, GEN T)
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7.3.35 Functions returning objects with t_INTMOD coefficients.

Those functions are mostly needed for interface reasons: t_INTMODs should not be used in
library mode since the modular kernel is more flexible and more efficient, but GP users do not have
access to the modular kernel. We document them for completeness:

GEN Fp_to_mod(GEN z, GEN p), z a t_INT. Returns z * Mod(1,p), normalized. Hence the re-
turned value is a t_INTMOD.

GEN FpX_to_mod(GEN z, GEN p), z a ZX. Returns z * Mod(1,p), normalized. Hence the returned
value has t_INTMOD coefficients.

GEN FpC_to_mod(GEN z, GEN p), z a ZC. Returns Col(z) * Mod(1,p), a t_COL with t_INTMOD
coefficients.

GEN FpV_to_mod(GEN z, GEN p), z a ZV. Returns Vec(z) * Mod(1,p), a t_VEC with t_INTMOD
coefficients.

GEN FpVV_to_mod(GEN z, GEN p), z a ZVV. Returns Vec(z) * Mod(1,p), a t_VEC of t_VEC with
t_INTMOD coeflicients.

GEN FpM_to_mod(GEN z, GEN p), z a ZM. Returns z * Mod(1,p), with t_INTMOD coefficients.
GEN F2c_to_mod(GEN x)

GEN F3c_to_mod(GEN x)

GEN F2m_to_mod (GEN x)

GEN F3m_to_mod(GEN x)

GEN Flc_to_mod(GEN z)

GEN Flm_to_mod(GEN z)

GEN FqC_to_mod(GEN z, GEN T, GEN p)
GEN FqM_to_mod(GEN z, GEN T, GEN p)
GEN FpXC_to_mod(GEN V, GEN p)

GEN FpXM_to_mod(GEN V, GEN p)

GEN FpXQC_to_mod(GEN V, GEN T, GEN p) V being a vector of FpXQ, converts each entry to a
t_POLMOD with t_INTMOD coefficients, and return a t_COL.

GEN FpXQX_to_mod(GEN P, GEN T, GEN p) P being a FpXQX, converts each coefficient to a
t_POLMOD with t_INTMOD coefficients.

GEN FgX_to_mod(GEN P, GEN T, GEN p) same but allow T = NULL.
GEN FgXC_to_mod(GEN P, GEN T, GEN p)
GEN FqXM_to_mod(GEN P, GEN T, GEN p)

GEN QXQ_to_mod_shallow(GEN x, GEN T) z a QXQ, which is a lifted representative of elements
of Q[X]/(T) (number field elements in most applications) and 7" is in Z[X]. Convert it to a
t_POLMOD modulo T’; no reduction mod T is attempted: the representatives should be already
reduced. Shallow function.
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GEN QXQV_to_mod(GEN V, GEN T) V a vector of QXQ, which are lifted representatives of elements
of Q[X]/(T) (number field elements in most applications) and T is in Z[X]. Return a vector where
all nonrational entries are converted to t_POLMOD modulo T'; no reduction mod 7' is attempted: the
representatives should be already reduced. Used to normalize the output of nfroots.

GEN QXQX_to_mod_shallow(GEN P, GEN T) P a polynomial with QXQ coefficients; replace them by
mkpolmod(.,T). Shallow function.

GEN QXQC_to_mod_shallow(GEN V, GEN T) V a vector with QXQ coefficients; replace them by
mkpolmod(.,T). Shallow function.

GEN QXQM_to_mod_shallow(GEN M, GEN T) M a matrix with QXQ coefficients; replace them by
mkpolmod(.,T). Shallow function.

GEN QXQXV_to_mod(GEN V, GEN T) V a vector of polynomials whose coefficients are QXQ. Analogous
to QXQV_to_mod. Used to normalize the output of nffactor.

The following functions are obsolete and should not be used: they receive a polynomial with
arbitrary coefficients, apply a conversion function to map them to a finite field, a function from the
modular kernel, then *_to_mod:

GEN rootmod(GEN f, GEN p), applies FpX_roots.

GEN rootmod2(GEN f, GEN p), (now) identical to rootmod.

GEN rootmodO(GEN f, GEN p, long flag), (now) identical to rootmod; ignores flag.
GEN factmod(GEN f, GEN p) applies *_factor.

GEN simplefactmod(GEN f, GEN p) applies *_degfact.

7.3.36 Slow Chinese remainder theorem over Z. The routines in this section have quadratic
time complexity with respect to the input size; see the routines in the next two sections for quasi-
linear time variants.

GEN Z_chinese(GEN a, GEN b, GEN A, GEN B) returns the integer in [0,lcm(A, B)[ congruent
to a mod A and b mod B, assuming it exists; in other words, that ¢ and b are congruent mod
ged(A, B).

GEN Z_chinese_all(GEN a, GEN b, GEN A, GEN B, GEN *pC) as Z_chinese, setting *pC to the
lem of A and B.

GEN Z_chinese_coprime(GEN a, GEN b, GEN A, GEN B, GEN C), as Z_chinese, assuming that
ged(A, B) = 1 and that C' = lem(A, B) = AB.

ulong u_chinese_coprime(ulong a, ulong b, ulong A, ulong B, ulong C), as
Z_chinese_coprime for ulong inputs and output.

void Z_chinese_pre(GEN A, GEN B, GEN *pC, GEN *pU, GEN *pd) initializes chinese remainder
computations modulo A and B. Sets *pC to lem(A, B), *pd to ged(A, B), *pU to an integer
congruent to 0 mod (A/d) and 1 mod (B/d). It is allowed to set pd = NULL, in which case, d is
still computed, but not saved.

GEN Z_chinese_post(GEN a, GEN b, GEN C, GEN U, GEN d) returns the solution to the chinese
remainder problem x congruent to a mod A and b mod B, where C, U, d were set in Z_chinese_pre.
If d is NULL, assume the problem has a solution. Otherwise, return NULL if it has no solution.
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The following pair of functions is used in homomorphic imaging schemes, when reconstructing
an integer from its images modulo pairwise coprime integers. The idea is as follows: we want to
discover an integer H which satisfies |H| < B for some known bound B; we are given pairs (Hp,p)
with H congruent to H, mod p and all p pairwise coprime.

Given H congruent to H, modulo a number of p, whose product is ¢, and a new pair (Hp,p), p
coprime to ¢, the following incremental functions use the chinese remainder theorem (CRT) to find
a new H, congruent to the preceding one modulo ¢, but also to Hp modulo p. It is defined uniquely
modulo ¢p, and we choose the centered representative. When P is larger than 2B, we have H = H,
but of course, the value of H may stabilize sooner. In many applications it is possible to directly
check that such a partial result is correct.

GEN Z_init_CRT(ulong Hp, ulong p) given a F1 Hp in [0, p—1], returns the centered representative
H congruent to Hp modulo p.

int Z_incremental _CRT(GEN *H, ulong Hp, GEN *q, ulong p) given a t_INT *H, centered
modulo *q, a new pair (Hp, p) with p coprime to g, this function updates *H so that it also becomes
congruent to (Hp, p), and *q to the productgp = p - *q. It returns 1 if the new value is equal to the
old one, and 0 otherwise.

GEN chinesel_coprime_Z(GEN v) an alternative divide-and-conquer implementation: v is a vector
of t_INTMOD with pairwise coprime moduli. Return the t_INTMOD solving the corresponding chinese
remainder problem. This is a streamlined version of

GEN chinesel(GEN v), which solves a general chinese remainder problem (not necessarily over Z,
moduli not assumed coprime).

As above, for H a ZM: we assume that H and all Hp have dimension > 0. The original *H is
destroyed.

GEN ZM_init_CRT(GEN Hp, ulong p)
int ZM_incremental CRT(GEN #H, GEN Hp, GEN *q, ulong p)

As above for H a ZX: note that the degree may increase or decrease. The original *H is
destroyed.

GEN ZX_init_CRT(GEN Hp, ulong p, long v)
int ZX_incremental CRT(GEN *H, GEN Hp, GEN *q, ulong p)

As above, for H a matrix whose coefficient are ZX. The original *H is destroyed. The entries
of H are not normalized, use ZX_renormalize for this.

GEN ZXM_init_CRT(GEN Hp, long deg, ulong p) where deg is the maximal degree of all the Hp

int ZXM_incremental CRT(GEN *H, GEN Hp, GEN *q, ulong p)
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7.3.37 Fast remainders.
The routines in these section are asymptotically fast (quasi-linear time in the input size).

GEN Z_ZV_mod(GEN A, GEN P) given a t_INT A and a vector P of positive pairwise coprime
integers of length n > 1, return a vector B of the same length such that B[i] = A (mod Pl[i])
and 0 < BJ[i] < P[i] for all 1 <4 < n. The vector P may be a t_VEC or a t_VECSMALL (treated as
ulongs) and B has the same type as P.

GEN Z_nv_mod(GEN A, GEN P) given a t_INT A and a t_VECSMALL P of positive pairwise coprime
integers of length n > 1, return a t_VECSMALL B of the same length such that B[i] = A (mod P[i])
and 0 < B[i] < P[i] for all 1 <4 < n. The entries of P and B are treated as ulongs.

The following low level functions allow precomputations:

GEN ZV_producttree(GEN P) where P is a vector of integers (or t_VECSMALL) of length n > 1, re-
turn the vector of t_VECs [f(P), f2(P),..., f*(P)] where f is the transformation [py, pa, ..., pm] —

[P1p2,P3P4; - - -, Pm—1Pm] if m is even and [p1p2,p3pa, ... Pm—2Pm—1,Pm| if m is odd, and k =
O(logm) is minimal so that f¥(P) has length 1; in other words, f*(P) = [p1p2 ... DPm]-

GEN Z_ZV_mod_tree(GEN A, GEN P, GEN T) as Z_ZV_mod where T is the tree ZV_producttree (P).

GEN ZV_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZV and P a t_VECSMALL of length
n > 1, the elements of P being pairwise coprime, return the vector of Flv [A (mod P[1]),..., A
(mod P[n])], where T is the tree ZV_producttree(P).

GEN ZM_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZM and P a t_VECSMALL of length
n > 1, the elements of P being pairwise coprime, return the vector of Flm [A (mod P[1]),..., A
(mod PIn])], where T is the tree ZV_producttree (P).

GEN ZX_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZX and P a t_VECSMALL of length
n > 1, the elements of P being pairwise coprime, return the vector of Flx polynomials [A
(mod P[1]),...,A (mod P[n])], where T is the tree ZV_producttree(P).

GEN ZXC_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZXC and P a t_VECSMALL of length
n > 1, the elements of P being pairwise coprime, return the vector of F1xC [A (mod P[1]),..., A
(mod PIn])], where T is the tree ZV_producttree (P).

GEN ZXM_nv_mod_tree(GEN A, GEN P, GEN T) A being a ZXM and P a t_VECSMALL of length
n > 1, the elements of P being pairwise coprime, return the vector of F1xM [A (mod P[1]),..., A
(mod P[n])], where T is the tree ZV_producttree(P).

GEN ZXX_nv_mod_tree(GEN A, GEN P, GEN T, 1long v) A being a ZXX, and P a t_VECSMALL
of length n > 1, the elements of P being pairwise coprime, return the vector of F1xX [A
(mod P[1]),..., A (mod PIn])], where T is assumed to be the tree created by ZV_producttree (P).
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7.3.38 Fast Chinese remainder theorem over Z. The routines in these section are asymptot-
ically fast (quasi-linear time in the input size) and should be used whenever the moduli are known
from the start.

The simplest function is

GEN ZV_chinese(GEN A, GEN P, GEN #*pM) let P be a vector of positive pairwise coprime integers,
let A be a vector of integers of the same length n > 1 such that 0 < A[i] < P[i] for all i, and let
M be the product of the elements of P. Returns the integer in [0, M| congruent to A[i] mod P[i]
for all 1 < i <n. If pM is not NULL, set *pM to M. We also allow t_VECSMALLs for A and P (seen
as vectors of unsigned integers).

GEN ZV_chinese_center (GEN A, GEN P, GEN *pM) As ZV_chinese but return integers in
[—M /2, M /2| instead.

The following functions allow to solve many Chinese remainder problems simultaneously, for
a given set of moduli:

GEN nxV_chinese_center (GEN A, GEN P, GEN #*pt_mod) where A is a vector of nx and P a
t_VECSMALL of the same length n > 1, the elements of P being pairwise coprime, and M being
the product of the elements of P, returns the t_POL whose entries are integers in [—M/2, M /2]
congruent to A[i] mod PJi] for all 1 <7 < n. If pt_mod is not NULL, set *pt_mod to M.

GEN ncV_chinese_center (GEN A, GEN P, GEN *pM) where A is a vector of VECSMALLS (seen as
vectors of unsigned integers) and P a t_VECSMALL of the same length n > 1, the elements of P
being pairwise coprime, and M being the product of the elements of P, returns the t_COL whose
entries are integers in [—M /2, M /2[ congruent to A[i] mod P[i] for all 1 < i < n. If pM is not NULL,
set *pt_mod to M.

GEN nmV_chinese_center (GEN A, GEN P, GEN *pM) where A is a vector of MATSMALLS (seen as
matrices of unsigned integers) and P a t_VECSMALL of the same length n > 1, the elements of P
being pairwise coprime, and M being the product of the elements of P, returns the matrix whose
entries are integers in [—M /2, M /2] congruent to A[i]| mod P[i] for all 1 < i < n. If pM is not NULL,
set *pM to M. N.B.: this function uses the parallel GP interface.

GEN nxCV_chinese_center(GEN A, GEN P, GEN *pM) where A is a vector of nxCs and P a
t_VECSMALL of the same length n > 1, the elements of P being pairwise coprime, and M being
the product of the elements of P, returns the t_COL whose entries are integers in [—M /2, M /2]
congruent to A[i] mod P[i| for all 1 < i < n. If pM is not NULL, set *pt_mod to M.

GEN nxMV_chinese_center(GEN A, GEN P, GEN *pM) where A is a vector of nxMs and P a
t_VECSMALL of the same length n > 1, the elements of P being pairwise coprime, and M being
the product of the elements of P, returns the matrix whose entries are integers in [—M /2, M /2]
congruent to A[i] mod P[i] for all 1 <7 < n. If pM is not NULL, set *pM to M. N.B.: this function
uses the parallel GP interface.

The other routines allow for various precomputations :

GEN ZV_chinesetree(GEN P, GEN T) given P a vector of integers (or t_VECSMALL) and a product
tree T' from ZV_producttree(P) for the same P, return a “chinese remainder tree” R, precondi-
tionning the solution of Chinese remainder problems modulo the P[i].

GEN ZV_chinese_tree(GEN A, GEN P, GEN T, GEN R) return ZV_chinese(A, P,NULL), where T’
is created by ZV_producttree(P) and R by ZV_chinesetree(P,T).
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GEN ncV_chinese_center_tree(GEN A, GEN P, GEN T, GEN R) as ncV_chinese_center where
T is assumed to be the tree created by ZV_producttree(P) and R by ZV_chinesetree(P,T).

GEN nmV_chinese_center_tree(GEN A, GEN P, GEN T, GEN R) as nmV_chinese_center where
T is assumed to be the tree created by ZV_producttree(P) and R by ZV_chinesetree(P,T).

GEN nxV_chinese_center_tree(GEN A, GEN P, GEN T, GEN R) as nxV_chinese_center where
T is assumed to be the tree created by ZV_producttree(P) and R by ZV_chinesetree(P,T).

GEN nxCV_chinese_center_tree(GEN A, GEN P, GEN T, GEN R) as nxCV_chinese_center where
T is assumed to be the tree created by ZV_producttree(P) and R by ZV_chinesetree(P,T).

7.3.39 Rational reconstruction.

int Fp_ratlift(GEN x, GEN m, GEN amax, GEN bmax, GEN *a, GEN #*b). Assuming that
0 < x <m, amax > 0, and bmax > 0 are t_INTs, and that 2amaxbmax < m, attempts to recognize
x as a rational a/b, i.e. to find t_INTs a and b such that

e o = bx modulo m,
e |a| < amax, 0 < b < bmax,
e gcd(m, b) = ged(a, b).

If unsuccessful, the routine returns 0 and leaves a, b unchanged; otherwise it returns 1 and sets a

and b.

In almost all applications, we actually know that a solution exists, as well as a nonzero multiple
B of b, and m = p’ is a prime power, for a prime p chosen coprime to B hence to b. Under the
single assumption ged(m, b) = 1, if a solution a, b exists satisfying the three conditions above, then
it is unique.

GEN FpM_ratlift(GEN M, GEN m, GEN amax, GEN bmax, GEN denom) given an FpM modulo m
with reduced or Fp_center-ed entries, reconstructs a matrix with rational coefficients by applying
Fp_ratlift to all entries. Assume that all preconditions for Fp_ratlift are satisfied, as well
ged(m, b) = 1 (so that the solution is unique if it exists). Return NULL if the reconstruction fails,
and the rational matrix otherwise. If denom is not NULL check further that all denominators divide
denom.

The function is not stack clean if one of the coefficients of M is negative (centered residues),
but still suitable for gerepileupto.

GEN FpX_ratlift(GEN P, GEN m, GEN amax, GEN bmax, GEN denom) as FpM_ratlift, where P
is an FpX.

GEN FpC_ratlift(GEN P, GEN m, GEN amax, GEN bmax, GEN denom) as FpM_ratlift, where P
is an FpC.
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7.3.40 Zp.

GEN Zp_invl1ift(GEN b, GEN a, GEN p, long e) let p be a prime t_INT, a be a t_INT and b a
t_INT such that ab = 1 mod p. Returns an t_INT A such that A =a (mod p) and Ab = 1mod p°.

GEN Zp_inv(GEN b, GEN p, long e) let p be a prime t_INT and b be a t_INT Returns an t_INT
A such that Ab = 1mod p°.

GEN Zp_div(GEN a, GEN b, GEN p, long e) let p be a prime t_INT and a and b be a t_INT
Returns an t_INT ¢ such that ¢b = a mod p°.

GEN Zp_sqrt(GEN b, GEN p, long e) b and p being t_INTs, with p a prime (possibly 2), returns
a t_INT a such that a®> = bmod p°.

GEN Z2_sqrt(GEN b, long e) b being a t_INTs returns a t_INT a such that a? = bmod 2°.

GEN Zp_sqrtlift(GEN b, GEN a, GEN p, long e) let a,b,p be t_INTs, with p > 2, such that
a®? = bmod p. Returns a t_INT A such that A? = bmod p®. Special case of Zp_sqrtnlift.

GEN Zp_sqrtnlift(GEN b, GEN n, GEN a, GEN p, long e) let a,b,n,p be t_INTs, with n,p > 1,
and p coprime to n, such that ¢” = bmod p. Returns a t_INT A such that A™ = bmod p¢. Special
case of ZpX_liftroot.

GEN Zp_teichmuller(GEN x, GEN p, long e, GEN pe) for p an odd prime, x a t_INT coprime
to p, and pe = p°, returns the (p — 1)-th root of 1 congruent to  modulo p, modulo p¢. For
convenience, p = 2 is also allowed and we return 1 (z is 1 mod 4) or 2° — 1 (x is 3 mod 4).

GEN teichmullerinit(long p, long n) returns the values of Zp_teichmuller at all z =
1,...,p—1.

GEN Zp_exp(GEN z, GEN p, ulong e) given a t_INT z (preferably reduced mod p€), return
exp,(a) mod p® (t_INT).

GEN Zp_log(GEN z, GEN p, ulong e) given a t_INT z (preferably reduced mod p¢), such that
a=1 (mod p), return log,(a) mod p°® (t_INT).

7.3.41 ZpM.

GEN ZpM_invlift(GEN M, GEN Np, GEN p, long e) let p be a prime t_INT, Np be a FpM (modulo
p) and M a ZpM such that M Np = 1 mod p. Returns an ZpM N such that N = Np (mod p) and
MN = 1mod p°.

7.3.42 ZpX.

GEN ZpX_roots(GEN f, GEN p, long e) f a ZX with leading term prime to p, and without multiple
roots mod p. Return a vector of t_INTs which are the roots of f mod p°.

GEN ZpX_liftroot(GEN f, GEN a, GEN p, long e) f a ZX with leading term prime to p, and a
a root mod p such that v,(f’(a)) = 0. Return a t_INT which is the root of f mod p® congruent to
a mod p.

GEN ZX_Zp_root(GEN f, GEN a, GEN p, long e) same as ZpX_liftroot without the assumption
vp(f'(a)) = 0. Return a t_VEC of t_INTs, which are the p-adic roots of f congruent to a mod p
(given modulo p€). Assume that 0 < a < p.

GEN ZpX_liftroots(GEN f, GEN S, GEN p, long e) f a ZX with leading term prime to p, and S
a vector of simple roots mod p. Return a vector of t_INTs which are the root of f mod p® congruent
to the S[i] mod p.
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GEN ZpX_liftfact(GEN A, GEN B, GEN pe, GEN p, long e) is the routine underlying pol-
hensellift. Here, p is prime defines a finite field F),. A is a polynomial in Z[X], whose leading
coefficient is nonzero in F,. B is a vector of monic FpX, pairwise coprime in F,[X], whose product
is congruent to A/lc(A) in F,[X]. Lifts the elements of B mod pe = p°.

GEN ZpX_Frobenius(GEN T, GEN p, ulong e) returns the p-adic lift of the Frobenius automor-
phism of F,,[X]/(T) to precision e.

long ZpX_disc_val(GEN f, GEN p) returns the valuation at p of the discriminant of f. Assume
that f is a monic separable ZX and that p is a prime number. Proceeds by dynamically increasing
the p-adic accuracy; infinite loop if the discriminant of f is 0.

long ZpX_resultant_val(GEN f, GEN g, GEN p, long M) returns the valuation at p of Res(f,g).
Assume f,g are both ZX, and that p is a prime number coprime to the leading coefficient of
f. Proceeds by dynamically increasing the p-adic accuracy. To avoid an infinite loop when the
resultant is 0, we return M if the Sylvester matrix mod p™ still does not have maximal rank.

GEN ZpX_gcd(GEN f, GEN g, GEN p, GEN pm) f a monic ZX, g a ZX, pm = p™ a prime power.
There is a unique integer » > 0 and a monic h € Q,[X] such that

P"hZp[X] + p"Zp[X] = fZy[X] + 9Zy[X] + p™" Zy[X].

Return the 0 polynomial if » > m and a monic h € Z[1/p][X] otherwise (whose valuation at p is
> —m).

GEN ZpX_reduced_resultant(GEN f, GEN g, GEN p, GEN pm) f a monic ZX, g a ZX, pm = p™
a prime power. The p-adic reduced resultant of f and g is 0 if f, g not coprime in Z,[X], and
otherwise the generator of the form p? of

(fZp[X] + 9Zy[X]) N Zy,.

Return the reduced resultant modulo p™.

GEN ZpX_reduced_resultant_fast(GEN f, GEN g, GEN p, long M) f a monic ZX, g a ZX, p
a prime. Returns the p-adic reduced resultant of f and g modulo p™. This function computes
resultants for a sequence of increasing p-adic accuracies (up to M p-adic digits), returning as soon
as it obtains a nonzero result. It is very inefficient when the resultant is 0, but otherwise usually
more efficient than computations using a priori bounds.

GEN ZpX_monic_factor(GEN f, GEN p, long M) f a monic ZX, p a prime, return the p-adic
factorization of f, modulo p™. This is the underlying low-level recursive function behind factor-
padic (using a combination of Round 4 factorization and Hensel lifting); the factors are not sorted
and the function is not gerepile-clean.

GEN ZpX_primedec(GEN T, GEN p) 7T a monic separable ZX, p a prime, return as a factorization
matrix the shape of the prime ideal decomposition of (p) in Q[X]/(T): the first column contains
inertia degrees, the second columns contains ramification degrees.
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7.3.43 ZpXQ.

GEN ZpXQ_invlift(GEN b, GEN a, GEN T, GEN p, long e) let p be a prime t_INT, a be a FpXQ
(modulo (p,T)) and b a ZpXQ such that ab = 1 mod (p,T"). Returns an ZpXQ A such that A = a
(mod p) and Ab = 1mod (p¢,T).

GEN ZpXQ_inv(GEN b, GEN T, GEN p, long e) let p be a prime t_INT and b be a FpXQ (modulo
T,p¢). Returns an FpXQ A such that Ab = 1 mod (p°, T).

GEN ZpXQ_div(GEN a, GEN b, GEN T, GEN q, GEN p, long e) let p be a prime t_INT and a
and b be a FpXQ (modulo T, p®). Returns an FpXQ ¢ such that ¢cb = amod (p¢,T'). The parameter ¢
must be equal to p€.

GEN ZpXQ_sqrtnlift(GEN b, GEN n, GEN a, GEN T, GEN p, long e) let n,p be t_INTs, with
n,p > 1 and p coprime to n, and a,b be FpXQs (modulo 7') such that a™ = bmod (p,T"). Returns
an Fq A such that A™ = bmod (p©,T).

GEN ZpXQ_sqrt(GEN b, GEN T, GEN p, long e) let p being a odd prime and b be a FpXQ (modulo
T,p®), returns a such that o = bmod (p¢, T).

GEN ZpX_ZpXQ_liftroot(GEN f, GEN a, GEN T, GEN p, long e) as ZpXQX_liftroot, but f is
a polynomial in Z[X].

GEN ZpX_ZpXQ_liftroot_ea(GEN f, GEN a, GEN T, GEN p, long e, void *E, GEN early(void
*E, GEN x, GEN q)) as ZpX_ZpXQ_liftroot with early abort: the function early(E,x,q) will be
called with = is a root of f modulo ¢ = p™ for some n. If early returns a non-NULL value z, the
function returns z immediately.

GEN ZpXQ_log(GEN a, GEN T, GEN p, long e) T being a ZpX irreducible modulo p, return the
logarithm of a in Z,[X]/(T) to precision e, assuming that a =1 (mod pZ,[X]) if p odd or a =1
(mod 4Z,[X]) if p = 2.

7.3.44 Zq.

GEN Zq_sqrtnlift(GEN b, GEN n, GEN a, GEN T, GEN p, long e)

7.3.45 ZpXQM.

GEN ZpXQM_prodFrobenius(GEN M, GEN T, GEN p, long e) returns the product of matrices
Mo(M)o?(M)...o" (M) to precision e where o is the lift of the Frobenius automorphism over
Z,[X]/(T) and n is the degree of T

7.3.46 ZpXQX.

GEN ZpXQX_liftfact(GEN A, GEN B, GEN T, GEN pe, GEN p, long e) is the routine underlying
polhensellift. Here, p is prime, T(Y') defines a finite field F,. A is a polynomial in Z[X,Y],
whose leading coefficient is nonzero in F,. B is a vector of monic or FgX, pairwise coprime in F,[X],
whose product is congruent to A/lc(A) in F,[X]. Lifts the elements of B mod pe = p°, such that
the congruence now holds mod (7, p®).

GEN ZpXQX_liftroot(GEN f, GEN a, GEN T, GEN p, long e) as ZpX_liftroot, but f is now
a polynomial in Z[X,Y] and lift the root a in the unramified extension of Q, with residue field
F,[Y]/(T), assuming v,(f(a)) > 0 and v,(f'(a)) = 0.
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GEN ZpXQX_liftroot_vald(GEN f, GEN a, long v, GEN T, GEN p, long e) returns the
foots of f as ZpXQX_liftroot, where v is the valuation of the content of f’ and it is required that

vp(f(a)) > v and vy(f'(a)) =v.
GEN ZpXQX_roots(GEN F, GEN T, GEN p, long e)
GEN ZpXQX_liftroots(GEN F, GEN S, GEN T, GEN p, long e)

GEN ZpXQX_divrem(GEN x, GEN Sp, GEN T, GEN q, GEN p, long e, GEN *pr) as FpXQX_divrem.
The parameter ¢ must be equal to p°.

GEN ZpXQX_digits(GEN x, GEN B, GEN T, GEN q, GEN p, long e) As FpXQX_digits. The
parameter ¢ must be equal to p°.

GEN ZpXQX_ZpXQXQ_liftroot(GEN f, GEN a, GEN S, GEN T, GEN p, long e) as
ZpXQX_liftroot, except that a is an element of Z,,[X,Y]/(S(X,Y),T(X)).

7.3.47 ZgX. ZgX are either ZpX or ZpXQX depending whether T is NULL or not.

GEN ZgX_roots(GEN F, GEN T, GEN p, long e)

GEN ZqX_liftfact(GEN A, GEN B, GEN T, GEN pe, GEN p, long e)

GEN ZgX_liftroot(GEN f, GEN a, GEN T, GEN p, long e)

GEN ZqX_ZgXQ_liftroot(GEN f, GEN a, GEN P, GEN T, GEN p, long e)

7.3.48 Other p-adic functions.

GEN ZpM_echelon(GEN M, long early_abort, GEN p, GEN pm) given a ZM M, a prime p and
pm = p"", returns an echelon form E for M mod p™. l.e. there exist a square integral matrix U
with det U coprime to p such that £ = MU modulo p™. I early_abort is nonzero, return NULL
as soon as one pivot in the echelon form is divisible by p™. The echelon form is an upper triangular
HNF, we do not waste time to reduce it to Gauss-Jordan form.

GEN zlm_echelon(GEN M, long early_abort, ulong p, ulong pm) variant of ZpM_echelon, for
a Zlm M.

GEN Z1M_gauss(GEN a, GEN b, ulong p, long e, GEN C) as gauss with the following pe-
culiarities: a and b are ZM, such that a is invertible modulo p. Optional C is an Flm that is an
inverse of a mod p or NULL. Return the matrix = such that az = bmod p® and all elements of = are
in [0,p® — 1]. For efficiency, it is better to reduce a and b mod p® first.

GEN padic_to_Q(GEN x) truncate the t_PADIC to a t_INT or t_FRAC.
GEN padic_to_Q_shallow(GEN x) shallow version of padic_to_Q
GEN QpV_to_QV(GEN v) apply padic_to_Q_shallow

long padicprec(GEN x, GEN p) returns the absolute p-adic precision of the object x, by definition
the minimum precision of the components of . For a nonzero t_PADIC, this returns valp(x) +
precp(x).

long padicprec_relative(GEN x) returns the relative p-adic precision of the t_INT, t_FRAC,
or t_PADIC z (minimum precision of the components of z for t_POL or vector/matrices). For a
t_PADIC, this returns precp(x) if x # 0, and 0 for z = 0.
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7.3.48.1 low-level.

The following technical function returns an optimal sequence of p-adic accuracies, for a given
target accuracy:

ulong quadratic_prec_mask(long n) we want to reach accuracy n > 1, starting from accuracy
1, using a quadratically convergent, self-correcting, algorithm; in other words, from inputs correct
to accuracy [ one iteration outputs a result correct to accuracy 2[. For instance, to reach n = 9,
we want to use accuracies [1,2,3,5,9] instead of [1,2,4,8,9]. The idea is to essentially double the
accuracy at each step, and not overshoot in the end.

Let ap = 1, a1 = 2,...,a; = n, be the desired sequence of accuracies. To obtain it, we work
backwards and set

ar =mn, a;i—1=(a; +1)\2.

This is in essence what the function returns. But we do not want to store the a; explicitly, even
as a t_VECSMALL, since this would leave an object on the stack. Instead, we store a; implicitly in
a bitmask MASK: let ag = 1, if the i-th bit of the mask is set, set a;11 = 2a; — 1, and 2a; otherwise;
in short the bits indicate the places where we do something special and do not quite double the
accuracy (which would be the straightforward thing to do).

In fact, to avoid returning separately the mask and the sequence length k + 1, the function
returns MASK + 2¥*1, so the highest bit of the mask indicates the length of the sequence, and the
following ones give an algorithm to obtain the accuracies. This is much simpler than it sounds,
here is what it looks like in practice:

ulong mask = quadratic_prec_mask(n);

long 1 = 1;

while (mask > 1) { /* here, the result is known to accuracy 1 */
1 =2#1; if (mask & 1) 1--; /* new accuracy 1 for the iteration */
mask >>= 1; /* pop low order bit */
/* ... lift to the new accuracy ... */

}

/* we are done. At this point 1 = n */

We just pop the bits in mask starting from the low order bits, stop when mask is 1 (that last bit
corresponds to the 2¥+! that we added to the mask proper). Note that there is nothing specific to
Hensel lifts in that function: it would work equally well for an Archimedean Newton iteration.

Note that in practice, we rather use an infinite loop, and insert an
if (mask == 1) break;

in the middle of the loop: the loop body usually includes preparations for the next iterations
(e.g. lifting Bezout coefficients in a quadratic Hensel lift), which are costly and useless in the last
iteration.
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7.3.49 Conversions involving single precision objects.
7.3.49.1 To single precision.

ulong Rg_to_F1(GEN z, ulong p), z which can be mapped to Z/pZ: a t_INT, a t_INTMOD
whose modulus is divisible by p, a t_FRAC whose denominator is coprime to p, or a t_PADIC with
underlying prime ¢ satisfying p = ¢ for some n (less than the accuracy of the input). Returns
lift(z * Mod(1,p)), normalized, as an F1.

ulong Rg_to_F2(GEN z), as Rg_to_F1 for p = 2.
ulong padic_to_F1(GEN x, ulong p) special case of Rg_to_F1, for a x a t_PADIC.
GEN RgX_to_F2x(GEN x), x a t_POL, returns the F2x obtained by applying Rg_to_F1 coefficientwise.

GEN RgX_to_F1x(GEN x, ulong p), x a t_POL, returns the Flx obtained by applying Rg_to_F1
coefficientwise.

GEN RgXV_to_F1xV(GEN x, wulong p), x a vector, returns the F1xV obtained by applying
RgX_to_Flx coefficientwise.

GEN Rg_to_F2xq(GEN z, GEN T), z a GEN which can be mapped to Fo[X]/(T'): anything Rg_to_F1
can be applied to, a t_POL to which RgX_to_F2x can be applied to, a t_POLMOD whose modulus is
divisible by T' (once mapped to a F2x), a suitable t_RFRAC. Returns z as an F2xq, normalized.

GEN Rg_to_F1xq(GEN z, GEN T, ulong p), z a GEN which can be mapped to F,,[X]/(T'): anything
Rg_to_F1 can be applied to, a t_POL to which RgX_to_Flx can be applied to, a t_POLMOD whose
modulus is divisible by T' (once mapped to a F1lx), a suitable t_RFRAC. Returns z as an Flxq,
normalized.

GEN RgX_to_F1xqX(GEN z, GEN T, ulong p), z a GEN which can be mapped to F,[z]/(T)[X]:
anything Rg_to_F1lxq can be applied to, a t_POL to which RgX_to_Flx can be applied to, a t_POLMOD
whose modulus is divisible by T (once mapped to a F1x), a suitable t_RFRAC. Returns z as an F1xgX,
normalized.

GEN ZX_to_F1x(GEN x, ulong p) reduce ZX x modulo p (yielding an F1x). Faster than RgX_to_F1x.
GEN ZV_to_F1lv(GEN x, ulong p) reduce ZV x modulo p (yielding an F1v).

GEN ZXV_to_F1xV(GEN v, ulong p), as ZX_to_F1x, repeatedly called on the vector’s coefficients.
GEN ZXT_to_F1xT(GEN v, ulong p), as ZX_to_F1x, repeatedly called on the tree leaves.

GEN ZXX_to_F1xX(GEN B, ulong p, long v), as ZX_to_F1x, repeatedly called on the polynomial’s
coefficients.

GEN zxX_to_F1xX(GEN z, ulong p) as zx_to_F1x, repeatedly called on the polynomial’s coeffi-
cients.

GEN ZXXV_to_F1xXV(GEN V, ulong p, long v), as ZXX_to_F1xX, repeatedly called on the vector’s
coeflicients.

GEN ZXXT_to_F1xXT(GEN V, ulong p, long v), as ZXX_to_F1xX, repeatedly called on the tree
leaves.

GEN RgV_to_F1v(GEN x, ulong p) reduce the t_VEC/t_COL x modulo p, yielding a t_VECSMALL.
GEN RgM_to_F1m(GEN x, ulong p) reduce the t_MAT x modulo p.
GEN ZM_to_F1lm(GEN x, ulong p) reduce ZM x modulo p (yielding an Flm).
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GEN ZXC_to_F1xC(GEN x, ulong p, long sv) reduce ZXC z modulo p (yielding an F1xC). Assume
that sv = evalvarn(v) where v is the variable number of the entries of x. It is allowed for the
entries of x to be t_INT.

GEN ZXM_to_F1xM(GEN x, ulong p, long sv) reduce ZXM z modulo p (yielding an F1xM). Assume
that sv = evalvarn(v) where v is the variable number of the entries of x. It is allowed for the
entries of x to be t_INT.

GEN ZV_to_zv(GEN z), converts coefficients using itos

GEN ZV_to_nv(GEN z), converts coefficients using itou

GEN ZM_to_zm(GEN z), converts coefficients using itos

7.3.49.2 From single precision.

GEN Flx_to_ZX(GEN z), converts to ZX (t_POL of nonnegative t_INTs in this case)
GEN Flx_to_F1xX(GEN z), converts to F1xX (t_POL of constant F1lx in this case).
GEN Flx_to_ZX_inplace(GEN z), same as F1x_to_ZX, in place (z is destroyed).

GEN F1xX_to_ZXX(GEN B), converts an F1xX to a polynomial with ZX or t _INT coefficients (repeated
calls to F1x_to_ZX).

GEN F1xXC_to_ZXXC(GEN B), converts an F1xXC to a t_COL with ZXX coefficients (repeated calls to
F1xX_to_ZXX).

GEN F1xXM_to_ZXXM(GEN B), converts an F1xXM to a t_MAT with ZXX coefficients (repeated calls to
F1xX_to_ZXX).

GEN F1xC_to_ZXC(GEN x), converts a vector of F1x to a column vector of polynomials with t_INT
coefficients (repeated calls to F1x_to_ZX).

GEN F1xV_to_ZXV(GEN x), as above but return a t_VEC.
void F2xV_to_F1xV_inplace(GEN v) v is destroyed.
void F2xV_to_ZXV_inplace(GEN v) v is destroyed.
void F1xV_to_ZXV_inplace(GEN v) v is destroyed.

GEN F1xM_to_ZXM(GEN z), converts a matrix of F1x to a matrix of polynomials with t_INT coeffi-
cients (repeated calls to F1x_to_ZX).

GEN zx_to_ZX(GEN z), as Flx_to_ZX, without assuming the coefficients to be nonnegative.

GEN zx_to_F1x(GEN z, ulong p) as Flx_red without assuming the coefficients to be nonnegative.
GEN Flc_to_ZC(GEN z), converts to ZC (t_COL of nonnegative t_INTs in this case)

GEN Flc_to_ZC_inplace(GEN z), same as Flc_to_ZC, in place (z is destroyed).

GEN Flv_to_ZV(GEN z), converts to ZV (t_VEC of nonnegative t_INTs in this case)

GEN Flm_to_ZM(GEN z), converts to ZM (t_MAT with nonnegative t_INTs coefficients in this case)
GEN Flm_to_ZM_inplace(GEN z), same as Flm_to_ZM, in place (z is destroyed).

GEN zc_to_ZC(GEN z) as Flc_to_ZC, without assuming coefficients are nonnegative.

GEN zv_to_ZV(GEN z) as Flv_to_ZV, without assuming coefficients are nonnegative.
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GEN zm_to_ZM(GEN z) as Flm_ to_ZM, without assuming coefficients are nonnegative.
GEN zv_to_F1v(GEN z, ulong p)
GEN zm_to_F1m(GEN z, ulong p)

7.3.49.3 Mixed precision linear algebra. Assumes dimensions are compatible. Multiply a
multiprecision object by a single-precision one.

GEN RgM_zc_mul(GEN x, GEN y)

GEN RgMrow_zc_mul(GEN x, GEN y, long i)

GEN RgM_zm_mul (GEN x, GEN y)

GEN RgV_zc_mul(GEN x, GEN y)

GEN RgV_zm_mul (GEN x, GEN y)

GEN ZM_zc_mul (GEN x, GEN y)

GEN zv_ZM_mul (GEN x, GEN y)

GEN ZV_zc_mul(GEN x, GEN y)

GEN ZM_zm_mul (GEN x, GEN y)

GEN ZC_z_mul(GEN x, long y)

GEN ZM_nm_mul (GEN x, GEN y) the entries of y are ulongs.
GEN nm_Z_mul (GEN y, GEN c) the entries of y are ulongs.
7.3.49.4 Miscellaneous involving F1.

GEN Fl_to_Flx(ulong x, long evx) converts a unsigned long to a scalar Flx. Assume that
evx = evalvarn(vx) for some variable number vx.

GEN Z_to_F1x(GEN x, ulong p, long sv) converts a t_INT to a scalar F1x polynomial. Assume
that sv = evalvarn(v) for some variable number v.

GEN Flx_to_F1lv(GEN x, long n) converts from Flx to Flv with n components (assumed larger
than the number of coefficients of x).

GEN zx_to_zv(GEN x, long n) as Flx_to_Flv.

GEN Flv_to_F1x(GEN x, long sv) converts from vector (coefficient array) to (normalized) poly-
nomial in variable v.

GEN zv_to_zx(GEN x, long n) as Flv_to_Flx.

GEN Flm_to_F1xV(GEN x, long sv) converts the columns of Flm x to an array of Flx in the
variable v (repeated calls to F1lv_to_Flx).

GEN F1xM_to_F1xXV(GEN V, long v) see RgM_to_RgXV
GEN zm_to_zxV(GEN x, long n) as Flm_ to_F1xV.

GEN Flm_to_F1xX(GEN x, long sw, long sv) same as Flm to F1xV(x,sv) but returns the result
as a (normalized) polynomial in variable w.

GEN F1xV_to_FIm(GEN v, long n) reverse Flm_to_F1xV, to obtain an Flm with n rows (repeated
calls to F1x_to_F1lv).
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GEN F1xX_to_F1x(GEN P) Let P(z, X) be a F1xX, return P(0, X) as a Flx.

GEN F1xX_to_F1m(GEN v, long n) reverse Flm to F1xX, to obtain an Flm with n rows (repeated
calls to F1x_to_F1lv).

GEN F1lxX_to_F1xC(GEN B, long n, long sv) see RgX_to_RgV. The coeflicients of B are assumed
to be in the variable v.

GEN F1lxV_to_F1xX(GEN x, long v) see RgV_to_RgX.

GEN F1xXV_to_F1xM(GEN V, 1long n, long sv) see RgXV_to_RgM. The coefficients of V[i] are
assumed to be in the variable v.

GEN Fly_to_F1xY(GEN a, long sv) convert coefficients of a to constant Flx in variable v.
7.3.49.5 Miscellaneous involving F2x.

GEN F2x_to_F2v(GEN x, long n) converts from F2x to F2v with n components (assumed larger
than the number of coefficients of x).

GEN F2xC_to_ZXC(GEN x), converts a vector of F2x to a column vector of polynomials with t_INT
coefficients (repeated calls to F2x_to_ZX).

GEN F2xC_to_F1xC(GEN x)
GEN F1xC_to_F2xC(GEN x)

GEN F2xV_to_F2m(GEN v, long n) F2x_to_F2v to each polynomial to get an F2m with n rows.

7.4 Higher arithmetic over Z: primes, factorization.

7.4.1 Pure powers.

long Z_issquare(GEN n) returns 1 if the t_INT n is a square, and 0 otherwise. This is tested first
modulo small prime powers, then sqrtremi is called.

long Z_issquareall(GEN n, GEN *sqrtn) as Z_issquare. If n is indeed a square, set sqrtn to
its integer square root. Uses a fast congruence test mod 64 x 63 x 65 x 11 before computing an
integer square root.

long Z_ispow2(GEN x) returns 1 if the t_INT z is a power of 2, and 0 otherwise.

long uissquare(ulong n) as Z_issquare, for an ulong operand n.

long uissquareall(ulong n, ulong *sqrtn) as Z_issquareall, for an ulong operand n.
ulong usqrt(ulong a) returns the floor of the square root of a.

ulong usqrtn(ulong a, ulong n) returns the floor of the n-th root of a.

long Z_ispower (GEN x, ulong k) returns 1 if the t_INT n is a k-th power, and 0 otherwise;
assume that k£ > 1.

long Z_ispowerall(GEN x, ulong k, GEN *pt) as Z_ispower. If n is indeed a k-th power, set
*pt to its integer k-th root.

long Z_isanypower (GEN x, GEN *ptn) returns the maximal & > 2 such that the t_INT 2 = n*

is a perfect power, or 0 if no such k exist; in particular ispower (1), ispower (0), ispower (-1) all
return 0. If the return value k is not 0 (so that # = n*) and ptn is not NULL, set *ptn to n.
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The following low-level functions are called by Z_isanypower but can be directly useful:

int is_357_power(GEN x, GEN *ptn, ulong *pmask) tests whether the integer x > 0 is a 3-rd,
5-th or 7-th power. The bits of *mask initially indicate which test is to be performed; bit 0: 3-rd,
bit 1: 5-th, bit 2: 7-th (e.g. *pmask = 7 performs all tests). They are updated during the call: if
the “i-th power” bit is set to 0 then x is not a k-th power. The function returns 0 (not a 3-rd, 5-th
or 7-th power), 3 (3-rd power, not a 5-th or 7-th power), 5 (5-th power, not a 7-th power), or 7
(7-th power); if an i-th power bit is initially set to 0, we take it at face value and assume x is not
an i-th power without performing any test. If the return value k is nonzero, set *ptn to n such
that « = n*.

int is_pth_power(GEN x, GEN *ptn, forprime_t *T, ulong cutoff) let x > 0 be an integer,
cutoff > 0 and T be an iterator over primes > 11, we look for the smallest prime p such that
x = nP (advancing T as we go along). The 11 is due to the fact that is_357_power and issquare
are faster than the generic version for p < 11.

Fail and return 0 when the existence of p would imply 2¢°*°ff > z1/P meaning that a possible
n is so small that it should have been found by trial division; for maximal speed, you should start
by a round of trial division, but the cut-off may also be set to 1 for a rigorous result without any
trial division.

Otherwise returns the smallest suitable prime power p’ and set *ptn to the p’-th root of x
(which is now not a p-th power). We may immediately recall the function with the same parameters
after setting x = *ptn: it will start at the next prime.

7.4.2 Factorization.

GEN Z_factor(GEN n) factors the t_INT n. The “primes” in the factorization are actually strong
pseudoprimes.

GEN absZ_factor (GEN n) returns Z_factor(absi(n)).

long Z_issmooth(GEN n, ulong lim) returns 1 if all the prime factors of the t_INT n are less or
equal to ltm.

GEN Z_issmooth_fact(GEN n, ulong lim) returns NULL if a prime factor of the t_INT n is > lim,
and returns the factorization of n otherwise, as a t_MAT with t_VECSMALL columns (word-size primes
and exponents). Neither memory-clean nor suitable for gerepileupto.

GEN Z_factor_until(GEN n, GEN lim) as Z_factor, but stop the factorization process as soon
as the unfactored part is smaller than 1im. The resulting factorization matrix only contains the
factors found. No other assumptions can be made on the remaining factors.

GEN Z_factor_1imit(GEN n, ulong 1lim) trial divide n by all primes p < 1im in the precomputed
list of prime numbers and the addprimes prime table. Return the corresponding factorization
matrix. The first column of the factorization matrix may contain a single composite, which may
or may not be the last entry in presence of a prime table.

If 1im = 0, the effect is the same as setting 1im = maxprime()+ 1: use all precomputed primes.
GEN absZ_factor_limit(GEN n, ulong all) returns Z_factor_limit(absi(n)).

GEN absZ_factor_limit_strict(GEN n, ulong all, GEN *pU). This function is analogous to
absZ_factor_limit, with a better interface: trial divide n by all primes p < lim in the precom-
puted list of prime numbers and the addprimes prime table. Return the corresponding factorization
matrix. In this case, a composite cofactor is not included.
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If pU is not NULL, set it to the cofactor, which is either NULL (no cofactor) or [q, k|, where k > 0,
the prime divisors of ¢ are greater than all, ¢ is not a pure power, and ¢* is the largest power of
q dividing n. It may happen that ¢ is prime.

GEN boundfact(GEN x, ulong lim) as Z_factor_limit, applying to t_INT or t_FRAC inputs.

GEN Z_smoothen(GEN n, GEN L, GEN #pP, GEN *pE) given a t_VEC L containing a list of
primes and a t_INT n, trial divide n by the elements of L and return the cofactor. Return NULL
if the cofactor is £1. *P and *E contain the list of prime divisors found and their exponents, as
t_VECSMALLs. Neither memory-clean, nor suitable for gerepileupto.

GEN Z_lsmoothen(GEN n, GEN L, GEN *pP, GEN #*pE) as Z_smoothen where L is a t_VECSMALL
of small primes and both *P and *E are given as t_VECSMALL.

GEN Z_factor_listP(GEN N, GEN L) given a t_INT N, a vector or primes L containing all prime
divisors of N (and possibly others). Return factor(N). Neither memory-clean, nor suitable for
gerepileupto.

GEN factor_pn_1(GEN p, ulong n) returns the factorization of p” — 1, where p is prime and n is
a positive integer.

GEN factor_pn_1_1limit(GEN p, ulong n, ulong B) returns a partial factorization of p™ — 1,
where p is prime and n is a positive integer. Don’t actively search for prime divisors p > B, but
we may find still find some due to Aurifeuillian factorizations. Any entry > B? in the output
factorization matrix is a priori not a prime (but may well be).

GEN factor_Aurifeuille_prime(GEN p, long n) an Aurifeuillian factor of ¢,(p), assuming p
prime and an Aurifeuillian factor exists (p(, is a square in Q((,)).

GEN factor_Aurifeuille(GEN a, long n) an Aurifeuillian factor of ¢,(a), assuming a is a
nonzero integer and n > 2. Returns 1 if no Aurifeuillian factor exists.

GEN odd_prime_divisors(GEN a) t_VEC of all prime divisors of the t_INT a.

GEN factoru(ulong n), returns the factorization of n. The result is a 2-component vector [P, E],
where P and E are t_VECSMALL containing the prime divisors of n, and the v,(n).

GEN factoru_pow(ulong n), returns the factorization of n. The result is a 3-component vector
[P, E,C], where P, E and C are t_VECSMALL containing the prime divisors of n, the v,(n) and the

pUP (n) .

GEN vecfactoru(ulong a, ulong b), returns a t_VEC v containing the factorizations (factoru
format) of a, ..., b; assume that b > a > 0. Uses a sieve with primes up to Vb. Forall ¢, a < ¢ < b,
the factorization of ¢ is given in v[c — a + 1].

GEN vecfactoroddu(ulong a, ulong b), returns a t_VEC v containing the factorizations (factoru
format) of odd integers in a,...,b; assume that b > a > 0 are odd. Uses a sieve with primes up to
Vb. For all odd ¢, a < ¢ < b, the factorization of ¢ is given in in v[(c — a)/2 + 1].

GEN vecfactoru_i(ulong a, ulong b), private version of vecfactoru, not memory clean.
GEN vecfactoroddu_i(ulong a, ulong b), private version of vecfactoroddu, not memory clean.

GEN vecfactorsquarefreeu(ulong a, ulong b) return a t_VEC v containing the prime divisors
of squarefree integers in a,...,b; assume that a < b. Uses a sieve with primes up to v/b. For all
squarefree ¢, a < ¢ < b, the prime divisors of ¢ (as a t_VECSMALL) are given in v[c — a + 1], and
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the other entries are NULL. Note that because of these NULL markers, v is not a valid GEN, it is not
memory clean and cannot be used in garbage collection routines.

GEN vecfactorsquarefreeu_coprime(ulong a, ulong b, GEN P) given a sorted t_VECSMALL of
primes P, return a t_VEC v containing the prime divisors of squarefree integers in a, ..., b coprime
to the elements of P; assume that a < b. Uses a sieve with primes up to v/b. For all squarefree c,
a < ¢ < b, the prime divisors of ¢ (as a t_VECSMALL) are given in v[c — a + 1], and the other entries
are NULL. Note that because of these NULL markers, v is not a valid GEN, it is not memory clean
and cannot be used in garbage collection routines.

GEN vecsquarefreeu(ulong a, ulong b) return a t_VECSMALL v containing the squarefree inte-
gers in a, ...,b. Assume that a < b. Uses a sieve with primes up to v/b.

ulong tridiv_bound(GEN n) returns the trial division bound used by Z_factor(n).
GEN tridiv_boundu(ulong n) returns the trial division bound used by factorun.

GEN Z_pollardbrent(GEN N, long n, long seed) try to factor t_INT N using n > 1 rounds of
Pollard iterations; seed is an integer whose value (mod 8) selects the quadratic polynomial use to
generate Pollard’s (pseudo)random walk. Returns NULL on failure, else a vector of 2 (possibly 3)
integers whose product is N.

GEN Z_ECM(GEN N, long n, long seed, ulong B1) try to factor t_INT NNV using n > 1 rounds of
ECM iterations (on 8 to 64 curves simultaneously, depending on the size of N); seed is an integer
whose value selects the curves to be used: increase it by 64n to make sure that a subsequent call
with a factor of IV uses a disjoint set of curves. Finally B; > 7 determines the computations
performed on the curves: we compute [k]P for some point in E(Z/NZ) and k = q[]p® where
p°?» < By and ¢ < Bs := 110By1; a higher value of By means higher chances of hitting a factor and
more time spent. The computation is deterministic for a given set of parameters. Returns NULL on
failure, else a nontrivial factor or N.

GEN Q_factor(GEN x) as Z_factor, where x is a t_INT or a t_FRAC.

GEN Q_factor_1imit(GEN x, ulong lim) as Z_factor_limit, where = is a t_INT or a t_FRAC.

7.4.3 Coprime factorization.

Given a and b two nonzero integers, let ppi(a,b), ppo(a,b), ppg(a,b), pple(a,b) (powers in a
of primes inside b, outside b, greater than those in b, less than or equal to those in b) be the integers
defined by

® up(ppi) = vp(a)[vy(b) > 0],
vp(ppo) = vp(a)vp(b) = 0],
* vp(ppg) = vp(a)[vp(a) >
o 0, (pPle) = 1y(a)[op(a) < vp(B)].
GEN Z_ppo(GEN a, GEN b) returns ppo(a,b); shallow function.
ulong u_ppo(ulong a, ulong b) returns ppo(a,b).
GEN Z_ppgle(GEN a, GEN b) returns [ppg(a,b), pple(a,b)]; shallow function.
GEN Z_ppio(GEN a, GEN b) returns [gcd(a,b), ppi(a,b), ppo(a,b)]; shallow function.
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GEN Z_cba(GEN a, GEN b) fast natural coprime base algorithm. Returns a vector of coprime
divisors of a and b such that both a and b can be multiplicatively generated from this set. Perfect
powers are not removed, use Z_isanypower if needed; shallow function.

GEN ZV_cba_extend(GEN P, GEN b) extend a coprime basis P by the integer b, the result being a
coprime basis for P U {b}. Perfect powers are not removed; shallow function.

GEN ZV_cba(GEN v) given a vector of nonzero integers v, return a coprime basis for v. Perfect
powers are not removed; shallow function.

7.4.4 Checks attached to arithmetic functions.

Arithmetic functions accept arguments of the following kind: a plain positive integer N
(t_INT), the factorization fa of a positive integer (a t_MAT with two columns containing respectively
primes and exponents), or a vector [N, fa]. A few functions accept nonzero integers (e.g. omega),
and some others arbitrary integers (e.g. factorint, ...).

int is_Z_factorpos(GEN f) returns 1 if f looks like the factorization of a positive integer, and 0
otherwise. Useful for sanity checks but not 100% foolproof. Specifically, this routine checks that f
is a two-column matrix all of whose entries are positive integers. It does not check that entries in
the first column (“primes”) are prime, or even pairwise coprime, nor that they are stricly increasing.

int is_Z_factornonO(GEN f) returns 1 if f looks like the factorization of a nonzero integer, and 0
otherwise. Useful for sanity checks but not 100% foolproof, analogous to is_Z_factorpos. (Entries
in the first column need only be nonzero integers.)

int is_Z_factor(GEN f) returns 1 if f looks like the factorization of an integer, and 0 otherwise.
Useful for sanity checks but not 100% foolproof. Specifically, this routine checks that f is a two-
column matrix all of whose entries are integers. Entries in the second column (“exponents”) are all
positive. Either it encodes the “factorization” 0¢, e > 0, or entries in the first column (“primes”)
are all nonzero.

GEN clean_Z_factor(GEN f) assuming f is the factorization of an integer n, return the factoriza-
tion of |n|, i.e. remove —1 from the factorization. Shallow function.

GEN fuse_Z_factor(GEN f, GEN B) assuming f is the factorization of an integer n, return bound-
fact(n, B),i.e. return a factorization where all primary factors for |p| < B are preserved, and all
others are “fused” into a single composite integer; if that remainder is trivial, i.e. equal to 1, it is
of course not included. Shallow function.

In the following three routines, f is the name of an arithmetic function, and n a supplied
argument. They all raise exceptions if n does not correspond to an integer or an integer factorization
of the expected shape.

GEN check_arith_pos(GEN n, const char *f) check whether n is attached to the factorization
of a positive integer, and return NULL (plain t_INT) or a factorization extracted from n otherwise.
May raise an e_DOMAIN (n < 0) or an e_TYPE exception (other failures).

GEN check_arith_nonO(GEN n, const char *f) check whether n is attached to the factorization
of a nonzero integer, and return NULL (plain t_INT) or a factorization extracted from n otherwise.
May raise an e_TYPE exception.

GEN check_arith_all(GEN n, const char *f) is attached to the factorization of an integer, and
return NULL (plain t_INT) or a factorization extracted from n otherwise.
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7.4.5 Incremental integer factorization.

Routines attached to the dynamic factorization of an integer n, iterating over successive prime
divisors. This is useful to implement high-level routines allowed to take shortcuts given enough
partial information: e.g. moebius(n) can be trivially computed if we hit p such that p? | n. For
efficiency, trial division by small primes should have already taken place. In any case, the functions
below assume that no prime < 2'#4 divides n.

GEN ifac_start(GEN n, int moebius) schedules a new factorization attempt for the integer n.
If moebius is nonzero, the factorization will be aborted as soon as a repeated factor is detected
(Moebius mode). The function assumes that n > 1 is a composite t_INT whose prime divisors
satisfy p > 2'4 and that one can write to n in place.

This function stores data on the stack, no gerepile call should delete this data until the
factorization is complete. Returns partial, a data structure recording the partial factorization
state.

int ifac_next(GEN *partial, GEN *p, long *e) deletes a primary factor p® from partial
and sets p (prime) and e (exponent), and normally returns 1. Whatever remains in the partial
structure is now coprime to p.

Returns 0 if all primary factors have been used already, so we are done with the factorization.
In this case p is set to NULL. If we ran in Moebius mode and the factorization was in fact aborted,
we have e = 1, otherwise e = 0.

int ifac_read(GEN part, GEN *k, long *e) peeks at the next integer to be factored in the list
k¢, where k is not necessarily prime and can be a perfect power as well, but will be factored by the
next call to ifac_next. You can remove this factorization from the schedule by calling:

void ifac_skip(GEN part) removes the next scheduled factorization.

int ifac_isprime(GEN n) given n whose prime divisors are > 2!, returns the decision the fac-
toring engine would take about the compositeness of n: 0 if n is a proven composite, and 1 if we
believe it to be prime; more precisely, n is a proven prime if factor_proven is set, and only a
BPSW-pseudoprime otherwise.

7.4.6 Integer core, squarefree factorization.

long Z_issquarefree(GEN n) returns 1 if the t_INT n is square-free, and 0 otherwise.

long Z_issquarefree_fact(GEN fa) same, where fa is factor(n).

long Z_isfundamental (GEN x) returns 1 if the t_INT x is a fundamental discriminant, and 0
otherwise.

GEN core(GEN n) unique squarefree integer d dividing n such that n/d is a square. The core of 0
is defined to be 0.

GEN core2(GEN n) return [d, f] with d squarefree and n = df?.

GEN corepartial(GEN n, long lim) as core, using boundfact(n,lim) to partially factor n. The
result is not necessarily squarefree, but p? | n implies p > 1im.

GEN core2partial (GEN n, long lim) as core2, using boundfact(n,lim) to partially factor n.
The resulting d is not necessarily squarefree, but p? | n implies p > lim.
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7.4.7 Primes, primality and compositeness tests.
7.4.7.1 Chebyshev’s 7 function, bounds.
ulong uprimepi(ulong n), returns the number of primes p < n (Chebyshev’s 7 function).

double primepi_upper_bound(double x) return a quick upper bound for 7(z), using Dusart
bounds.

GEN gprimepi_upper_bound(GEN x) as primepi_upper_bound, returns a t_REAL.

double primepi_lower_bound(double x) return a quick lower bound for m(x), using Dusart
bounds.

GEN gprimepi_lower_bound(GEN x) as primepi_lower_bound, returns a t_REAL or gen_O.
7.4.7.2 Primes, primes in intervals.

ulong unextprime(ulong n), returns the smallest prime > n. Return 0 if it cannot be represented
as an ulong (n bigger than 264 — 59 or 232 — 5 depending on the word size).

ulong uprecprime(ulong n), returns the largest prime < n. Return 0 if n < 1.

ulong uprime(long n) returns the n-th prime, assuming it fits in an ulong (overflow error other-
wise).

GEN prime(long n) same as utoi(uprime(n)).

GEN primes_zv(long m) returns the first m primes, in a t_VECSMALL.

GEN primes(long m) return the first m primes, as a t_VEC of t_INTs.

GEN primes_interval(GEN a, GEN b) return the primes in the interval [a, b], as a t _VEC of t _INTs.

GEN primes_interval_zv(ulong a, ulong b) return the primes in the interval [a,b], as a
t_VECSMALL of ulongss.

GEN primes_upto_zv(ulong b) return the primes in the interval [2, ], as a t_VECSMALL of ulongss.
7.4.7.3 Tests.
int uisprime(ulong p), returns 1 if p is a prime number and 0 otherwise.

int uisprime_101(ulong p), assuming that p has no divisor < 101, returns 1 if p is a prime
number and 0 otherwise.

int uisprime_661(ulong p), assuming that p has no divisor < 661, returns 1 if p is a prime
number and 0 otherwise.

int isprime(GEN n), returns 1 if the t_INT n is a (fully proven) prime number and 0 otherwise.

long isprimeAPRCL(GEN n), returns 1 if the t_INT n is a prime number and 0 otherwise, using
only the APRCL test — not even trial division or compositeness tests. The workhorse isprime
should be faster on average, especially if nonprimes are included!

long isprimeECPP(GEN n), returns 1 if the t_INT n is a prime number and 0 otherwise, using only
the ECPP test. The workhorse isprime should be faster on average.

long BPSW_psp(GEN n), returns 1 if the t_INT n is a Baillie-Pomerance-Selfridge-Wagstaff pseu-
doprime, and 0 otherwise (proven composite).

178



int BPSW_isprime(GEN x) assuming x is a BPSW-pseudoprime, rigorously prove its primality.
The function isprime is currently implemented as

BPSW_psp(x) && BPSW_isprime(x)

long millerrabin(GEN n, long k) performs k strong Rabin-Miller compositeness tests on the
t_INT n, using k£ random bases. This function also caches square roots of —1 that are encountered
during the successive tests and stops as soon as three distinct square roots have been produced;
we have in principle factored n at this point, but unfortunately, there is currently no way for the
factoring machinery to become aware of it. (It is highly implausible that hard to find factors would
be exhibited in this way, though.) This should be slower than BPSW_psp for k£ > 4 and we expect
it to be less reliable.

GEN ecpp(GEN N) returns an ECPP certificate for t_INT N; underlies primecert.

GEN ecppO(GEN N, long t) returns a (potentially) partial ECPP certificate for t_INT N where
strong pseudo-primes < 2! are included as primes in the certificate. Underlies primecert with ¢
set to the partial argument.

GEN ecppexport(GEN cert, long flag) export a PARI ECPP certificate to MAGMA or Primo
format; underlies primecertexport.

long ecppisvalid(GEN cert) checks whether a PARI ECPP certificate is valid; underlies prime-
certisvalid.

long check_ecppcert(GEN cert) checks whether cert looks like a PARI ECPP certificate, (valid
or invalid) without doing any computation.

7.4.8 Iterators over primes.

int forprime_init(forprime_t *T, GEN a, GEN b) initialize an iterator 7" over primes in [a, b];
over primes > a if b = NULL. Return 0 if the range is known to be empty from the start (as if b < a
or b < 0), and return 1 otherwise. Use forprime_next to iterate over the prime collection.

int forprimestep_init(forprime_t *T, GEN a, GEN b, GEN q) initialize an iterator T over
primes in an arithmetic progression in [a, b]; over primes > a if b = NULL. The argument ¢ is either a
t_INT (p=a (mod q)) or a t_INTMOD Mod(c,N) and we restrict to that congruence class. Return
0 if the range is known to be empty from the start (as if b < a or b < 0), and return 1 otherwise.
Use forprime_next to iterate over the prime collection.

GEN forprime_next(forprime_t #*T) returns the next prime in the range, assuming that 7" was
initialized by forprime_init.

int u_forprime_init(forprime_t *T, ulong a, ulong b)

ulong u_forprime_next(forprime_t *T)

void u_forprime_restrict(forprime_t *T, ulong c) let T an iterator over primes initialized
via u_forprime_init(&T, a, b), possibly followed by a number of calls to u_forprime_next, and
a < ¢ < b. Restrict the range of primes considered to [a, c|.

int u_forprime_arith_init(forprime_t *T, ulong a, ulong b, ulong c, ulong q) initialize
an iterator over primes in [a, b], congruent to ¢ modulo ¢q. Subsequent calls to u_forprime_next
will only return primes congruent to ¢ modulo ¢q. Note that unless (¢, q) = 1 there will be at most
one such prime.
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7.5 Integral, rational and generic linear algebra.

7.5.1 ZC / ZV, ZM. A ZV (resp. a ZM, resp. a ZX) is a t_VEC or t_COL (resp. t_MAT, resp. t_POL)
with t_INT coefficients.

7.5.1.1 ZC / ZV.

void RgV_check_ZV(GEN x, const char *s) Assuming x is a t_VEC or t_COL raise an error if it
is not a ZV (s should point to the name of the caller).

int RgV_is_ZV(GEN x) Assuming x is a t_VEC or t_COL return 1 if it is a ZV, and 0 otherwise.

int RgV_is_ZVpos(GEN x) Assuming x is a t_VEC or t_COL return 1 if it is a ZV with positive
entries, and 0 otherwise.

int RgV_is_ZVnonO(GEN x) Assuming x is a t_VEC or t_COL return 1 if it is a ZV with nonzero
entries, and 0 otherwise.

int RgV_is_QV(GEN P) return 1 if the RgV P has only t_INT and t_FRAC coefficients, and 0
otherwise.

int RgV_is_arithprog(GEN v, GEN *a, GEN *b) assuming z is a t_VEC or t_COL return 1 if its
entries follow an arithmetic progression of the form a +b*n, n = 0,1,... and set a and b. Else
return 0.

int ZV_equalO(GEN x) returns 1 if all entries of the ZV x are zero, and 0 otherwise.

int ZV_cmp(GEN x, GEN y) compare two ZV, which we assume have the same length (lexicographic
order).

int ZV_abscmp(GEN x, GEN y) compare two ZV, which we assume have the same length (lexico-
graphic order, comparing absolute values).

int ZV_equal(GEN x, GEN y) returns 1 if the two ZV are equal and 0 otherwise. A t_COL and a
t_VEC with the same entries are declared equal.

GEN identity_ZV(long n) return the t_VEC [1,2,... n].

GEN ZC_add(GEN x, GEN y) adds x and y.

GEN ZC_sub(GEN x, GEN y) subtracts x and y.

GEN ZC_Z_add(GEN x, GEN y) adds y to x[1].

GEN ZC_Z_sub(GEN x, GEN y) subtracts y to x[1].

GEN Z_ZC_sub(GEN a, GEN x) returns the vector [a — x1, —x2, ..., —2y].
GEN ZC_copy(GEN x) returns a (t_COL) copy of x.

GEN ZC_neg(GEN x) returns —x as a t_COL.

void ZV_neg_inplace(GEN x) negates the ZV x in place, by replacing each component by its
opposite (the type of x remains the same, t_COL or t_COL). If you want to save even more memory
by avoiding the implicit component copies, use ZV_togglesign.

void ZV_togglesign(GEN x) negates x in place, by toggling the sign of its integer components.
Universal constants gen_1, gen m1, gen_2 and gen m2 are handled specially and will not be cor-
rupted. (We use togglesign_safe.)
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GEN ZC_Z_mul(GEN x, GEN y) multiplies the ZC or ZV x (which can be a column or row vector)
by the t_INT y, returning a ZC.

GEN ZC_Z_divexact(GEN x, GEN y) returns z/y assuming all divisions are exact.
GEN ZC_divexactu(GEN x, ulong y) returns x/y assuming all divisions are exact.
GEN ZC_Z_div(GEN x, GEN y) returns z/y, where the resulting vector has rational entries.

GEN ZV_ZV_mod(GEN a, GEN b). Assuming a and b are two ZV of the same length, returns the
vector whose i-th component is modii(ali], b[i]).

GEN ZV_dotproduct(GEN x, GEN y) as RgV_dotproduct assuming = and y have t_INT entries.
GEN ZV_dotsquare(GEN x) as RgV_dotsquare assuming = has t_INT entries.

GEN ZC_lincomb(GEN u, GEN v, GEN x, GEN y) returns ux + vy, where u, v are t_INT and z,y
are ZC or ZV. Return a ZC

void ZC_lincombl_inplace(GEN X, GEN Y, GEN v) sets X < X + vY, where v is a t_INT and
X,Y are ZC or ZV. (The result has the type of X.) Memory efficient (e.g. no-op if v = 0), but not
gerepile-safe.

void ZC_lincombl_inplace_i(GEN X, GEN Y, GEN v, long n) variant of ZC_lincombl_inplace:
only update X[1],..., X[n], assuming that n < 1g(X).

GEN ZC_ZV_mul(GEN x, GEN y, GEN p) multiplies the ZC x (seen as a column vector) by the ZV y
(seen as a row vector, assumed to have compatible dimensions).

GEN ZV_content (GEN x) returns the GCD of all the components of x.

GEN ZV_extgcd(GEN A) given a vector of n integers A, returns [d, U], where d is the content of A
and U is a matrix in GL,,(Z) such that AU = [D,0,...,0].

GEN ZV_prod(GEN x) returns the product of all the components of x (1 for the empty vector).
GEN ZV_sum(GEN x) returns the sum of all the components of x (0 for the empty vector).
long ZV_max_1g(GEN x) returns the effective length of the longest entry in z.

int ZV_dvd(GEN x, GEN y) assuming z, y are two ZVs of the same length, return 1 if y[i] divides
x[i] for all i and 0 otherwise. Error if one of the y[i] is 0.

GEN ZV_sort(GEN L) sort the ZV L. Returns a vector with the same type as L.
GEN ZV_sort_shallow(GEN L) shallow version of ZV_sort.
void ZV_sort_inplace(GEN L) sort the ZV L, in place.

GEN ZV_sort_uniq(GEN L) sort the ZV L, removing duplicate entries. Returns a vector with the
same type as L.

GEN ZV_sort_uniq_shallow(GEN L) shallow version of ZV_sort_uniq.

long ZV_search(GEN L, GEN y) look for the t_INT y in the sorted ZV L. Return an index % such
that L[i] = y, and 0 otherwise.

GEN ZV_indexsort(GEN L) returns the permutation which, applied to the ZV L, would sort the
vector. The result is a t_VECSMALL.

GEN ZV_union_shallow(GEN x, GEN y) given two sorted ZV (as per ZV_sort, returns the union
of x and y. Shallow function. In case two entries are equal in  and y, include the one from x.

GEN ZC_union_shallow(GEN x, GEN y) as ZV_union_shallow but return a t_COL.
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7.5.1.2 ZM.

void RgM_check_ZM(GEN A, const char *s) Assuming x is a t_MAT raise an error if it is not a
ZM (s should point to the name of the caller).

GEN RgM_rescale_to_int(GEN x) given a matrix x with real entries (t_INT, t_FRAC or t_REAL),
return a ZM wich is very close to Dx for some well-chosen integer D. More precisely, if the input
is exact, D is the denominator of x; else it is a power of 2 chosen so that all inexact entries are
correctly rounded to 1 ulp.

GEN ZM_copy(GEN x) returns a copy of x.

int ZM_equal (GEN A, GEN B) returns 1 if the two ZM are equal and 0 otherwise.
int ZM_equalO(GEN A) returns 1 if the ZM A is identically equal to 0.

GEN ZM_add(GEN x, GEN y) returns x +y (assumed to have compatible dimensions).
GEN ZM_sub(GEN x, GEN y) returns x —y (assumed to have compatible dimensions).
GEN ZM_neg(GEN x) returns —x.

void ZM_togglesign(GEN x) negates x in place, by toggling the sign of its integer components.
Universal constants gen_1, gen m1, gen 2 and gen m2 are handled specially and will not be cor-
rupted. (We use togglesign_safe.)

GEN ZM_mul (GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN ZM2_mul (GEN x, GEN y) multiplies the two-by-two ZM x and y.

GEN ZM_sqr (GEN x) returns z?, where z is a square ZM.

GEN ZM_Z_mul(GEN x, GEN y) multiplies the ZM x by the t_INT y.

GEN ZM_ZC_mul(GEN x, GEN y) multiplies the ZM x by the ZC y (seen as a column vector, assumed
to have compatible dimensions).

GEN ZM_ZX_mul(GEN x, GEN T) returns x X y, where y is RgX_to RgC(7T, 1g(x) — 1).

GEN ZM_diag mul (GEN d, GEN m) given a vector d with integer entries and a ZM m of compatible
dimensions, return diagonal(d) * m.

GEN ZM_mul_diag(GEN m, GEN d) given a vector d with integer entries and a ZM m of compatible
dimensions, return m * diagonal(d).

GEN ZM_multosym(GEN x, GEN y)
GEN ZM_transmultosym(GEN x, GEN y)
GEN ZM_transmul (GEN x, GEN y)

GEN ZMrow_ZC_mul(GEN x, GEN y, long i) multiplies the i-th row of ZM x by the ZC y (seen
as a column vector, assumed to have compatible dimensions). Assumes that x is nonempty and
0 < i< 1g(x[1]).

int ZMrow_equalO(GEN V, long i) returns 1 if the i-th row of the ZM V is zero, and 0 otherwise.
GEN ZV_ZM_mul (GEN x, GEN y) multiplies the ZV x by the ZM y. Returns a t_VEC.
GEN ZM_Z_divexact(GEN x, GEN y) returns z/y assuming all divisions are exact.

GEN ZM_divexactu(GEN x, ulong y) returns x/y assuming all divisions are exact.
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GEN ZM_Z_div(GEN x, GEN y) returns x/y, where the resulting matrix has rational entries.

GEN ZM_ZV_mod(GEN a, GEN b). Assuming a is a ZM whose columns have the same length as the
ZV b, apply ZV_ZV_mod(a[i],b) to all columns.

GEN ZC_Q_mul(GEN x, GEN y) returns z *xy, where y is a rational number and the resulting t_COL
has rational entries.

GEN ZM_Q_mul (GEN x, GEN y) returns x*y, where y is a rational number and the resulting matrix
has rational entries.

GEN ZM_pow(GEN x, GEN n) returns x", assuming x is a square ZM and n > 0.
GEN ZM_powu(GEN x, ulong n) returns x*, assuming x is a square ZM and n > 0.

GEN ZM_det(GEN M) if M is a ZM, returns the determinant of M. This is the function underlying
matdet whenever M is a ZM.

GEN ZM_permanent (GEN M) if M is a ZM, returns its permanent. This is the function underlying mat-
permanent whenever M is a ZM. It assumes that the matrix is square of dimension < BITS_IN_LONG.

GEN ZM_detmult(GEN M) if M is a ZM, returns a multiple of the determinant of the lattice generated
by its columns. This is the function underlying detint.

GEN ZM_supnorm(GEN x) return the sup norm of the ZM z.

GEN ZM_charpoly (GEN M) returns the characteristic polynomial (in variable 0) of the ZM M.
GEN ZM_imagecompl(GEN x) returns matimagecompl (x).

long ZM_rank(GEN x) returns matrank(x).

GEN ZM_ker(GEN x) returns the primitive part of matker (x); in other words the Q-basis vectors
are made integral and primitive.

GEN ZM_indexrank(GEN x) returns matindexrank(x).
GEN ZM_indeximage (GEN x) returns gel(ZM_indexrank(x), 2).
long ZM_max_lg(GEN x) returns the effective length of the longest entry in x.

GEN ZM_inv(GEN M, GEN #pd) if M is a ZM, return a primitive matrix H such that M H is d times
the identity and set *pd to d. Uses a multimodular algorithm up to Hadamard’s bound. If you
suspect that the denominator is much smaller than det M, you may use ZM_inv_ratlift.

GEN ZM_inv_ratlift(GEN M, GEN xpd) if M is a ZM, return a primitive matrix H such that M H
is d times the identity and set *pd to d. Uses a multimodular algorithm, attempting rational
reconstruction along the way. To be used when you expect that the denominator of M ! is much
smaller than det M else use ZM_inv.

GEN SL2_inv_shallow(GEN M) return the inverse of M € SLs(Z). Not gerepile-safe.

GEN ZM_pseudoinv(GEN M, GEN *pv, GEN xpd) if M is a nonempty ZM, let v = [y, z] returned
by indexrank and let M; be the corresponding square invertible matrix. Return a primitive left-
inverse H such that HM; is d times the identity and set *pd to d. If pv is not NULL, set *pv to v.
Not gerepile-safe.

GEN ZM_gauss(GEN a, GEN b) as gauss, where a and b coefficients are t_INTs.
GEN ZM_det_triangular(GEN x) returns the product of the diagonal entries of x (its determinant

if it is indeed triangular).
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int ZM_isidentity(GEN x) return 1 if the ZM z is the identity matrix, and 0 otherwise.
int ZM_isdiagonal (GEN x) return 1 if the ZM «x is diagonal, and 0 otherwise.

int ZM_isscalar(GEN x, GEN s) given a ZM z and a t_INT s, return 1 if = is equal to s times the
identity, and 0 otherwise. If s is NULL, test whether x is an arbitrary scalar matrix.

long ZC_is_ei(GEN x) return i if the ZC x has 0 entries, but for a 1 at position 4.

int ZM_ishnf (GEN x) return 1 if x is in HNF form, i.e. is upper triangular with positive diagonal
coefficients, and for j > ¢, x;; > x; ; > 0.

7.5.2 QM.

GEN QM_charpoly_ZX(GEN M) returns the characteristic polynomial (in variable 0) of the QM M,
assuming that the result has integer coefficients.

GEN QM_charpoly_ZX_bound(GEN M, long b) as QM_charpoly_ZX assuming that the sup norm of
the (integral) result is < 2°.

GEN QM_gauss(GEN a, GEN b) as gauss, where a and b coeflicients are t_FRACs.

GEN QM_gauss_i(GEN a, GEN b, long flag) as QM_gauss if flagis 0. Else, no longer assume that
a is left-invertible and return a solution of Pax = Pb where P is a row-selection matrix such that
A = Pa() is square invertible of maximal rank, for some column-selection matrix (Q; in particular,
x is a solution of the original equation ax = b if and only if a solution exists.

GEN QM_indexrank(GEN x) returns matindexrank(x).
GEN QM_inv(GEN M) return the inverse of the QM M.
long QM_rank(GEN x) returns matrank(x).

GEN QM_image(GEN x) returns an integral matrix with primitive columns generating the image of
x.

GEN QM_image_shallow(GEN A) shallow version of the previous function, not suitable for gerepile.

7.5.3 Qevproj.

GEN Qevproj_init(GEN M) let M be a n x d ZM of maximal rank d < n, representing the basis of
a Q-subspace V of Q™. Return a projector on V', to be used by Qevproj_apply. The interface
details may change in the future, but this function currently returns [M, B, D, p|, where p is a
t_VECSMALL with d entries such that the submatrix A = rowpermute(M,p) is invertible, B is a ZM
and d a t_INT such that AB = DId,.

GEN Qevproj_apply(GEN T, GEN pro) let T' be an n x n QM, stabilizing a Q-subspace V C Q" of
dimension d, and let pro be a projector on that subspace initialized by Qevproj_init(M). Return
the d x d matrix representing 7}y on the basis given by the columns of M.

GEN Qevproj_apply_vecei(GEN T, GEN pro, long k) as Qevproj_apply, return only the image
of the k-th basis vector M k] (still on the basis given by the columns of M).

GEN Qevproj_down(GEN T, GEN pro) given a ZC (resp. a ZM) T representing an element (resp. a
vector of elements) in the subspace V' return a QC (resp. a QM) U such that T'= MU.
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7.5.4 zv, zm.

GEN identity_zv(long n) return the t_VECSMALL [1,2,...,n].
GEN random_zv(long n) returns a random zv with n components.
GEN zv_abs(GEN x) return [|z[1]],..., |z[n]|] as a zv.

GEN zv_neg(GEN x) return —z. No check for overflow is done, which occurs in the fringe case
where an entry is equal to 2BITS-IN-LONG—1

GEN zv_neg_inplace(GEN x) negates x in place and return it. No check for overflow is done, which
occurs in the fringe case where an entry is equal to 2BITS-IN-LONG—1

GEN zm_zc_mul (GEN x, GEN y)

GEN zm_mul (GEN x, GEN y)

GEN zv_z_mul(GEN x, long n) return nz. No check for overflow is done.

long zv_content (GEN x) returns the gcd of the entries of z.

long zv_dotproduct(GEN x, GEN y)

long zv_prod(GEN x) returns the product of all the components of x (assumes no overflow occurs).
GEN zv_prod_Z(GEN x) returns the product of all the components of x; consider all x[i] as ulongs.
long zv_sum(GEN x) returns the sum of all the components of x (assumes no overflow occurs).

long zv_sumpart(GEN v, long n) returns the sum v[l] + ...+ v[n] (assumes no overflow occurs
and 1g(v) > n).

int zv_cmpO(GEN x) returns 1 if all entries of the zv x are 0, and 0 otherwise.
int zv_equal(GEN x, GEN y) returns 1 if the two zv are equal and 0 otherwise.
int zv_equalO(GEN x) returns 1 if all entries are 0, and return 0 otherwise.

long zv_search(GEN L, 1long y) look for y in the sorted zv L. Return an index 7 such that
L[i] =y, and 0 otherwise.

GEN zv_copy(GEN x) as Flv_copy.

GEN zm_transpose(GEN x) as Flm transpose.

GEN zm_copy(GEN x) as Flm_copy.

GEN zero_zm(long m, long n) as zero_Flm.

GEN zero_zv(long n) as zero_Flv.

GEN zm_row(GEN A, long x0) as Flm_row.

GEN zv_diagonal (GEN v) return the square zm whose diagonal is given by the entries of v.

GEN zm_permanent (GEN M) return the permanent of M. The function assumes that the matrix is
square of dimension < BITS_IN_LONG.

int zvV_equal(GEN x, GEN y) returns 1 if the two zvV (vectors of zv) are equal and 0 otherwise.
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7.5.5 ZMV / zmV (vectors of ZM/zm).

int RgV_is_ZMV(GEN x) Assuming x is a t_VEC or t_COL return 1 if its components are ZM, and 0
otherwise.

GEN ZMV_to_zmV(GEN z)
GEN zmV_to_ZMV(GEN z)
GEN ZMV_to_F1mV(GEN z, ulong m)

7.5.6 QC / QV, QM.

GEN QM_mul (GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN QM_sqr (GEN x) returns the square of x (assumed to be square).

GEN QM_QC_mul(GEN x, GEN y) multiplies x and y (assumed to have compatible dimensions).
GEN QM_det (GEN M) returns the determinant of M.

GEN QM_ker(GEN x) returns matker (x).

7.5.7 RgC / RgV, RgM.

RgC and RgV routines assume the inputs are VEC or COL of the same dimension. RgM assume
the inputs are MAT of compatible dimensions.

7.5.7.1 Matrix arithmetic.

void RgM_dimensions(GEN x, long *m, long *n) sets m, resp. n, to the number of rows,
resp. columns of the t_MAT x.

GEN RgC_add(GEN x, GEN y) returns x + y as a t_COL.
GEN RgC_neg(GEN x) returns —x as a t_COL.

GEN RgC_sub(GEN x, GEN y) returns z —y as a t_COL.
GEN RgV_add(GEN x, GEN y) returns z + y as a t_VEC.
GEN RgV_neg(GEN x) returns —z as a t_VEC.

GEN RgV_sub(GEN x, GEN y) returns x —y as a t_VEC.
GEN RgM_add(GEN x, GEN y) return x + y.

GEN RgM_neg(GEN x) returns —z.

GEN RgM_sub(GEN x, GEN y) returns z —y.

GEN RgM_Rg_add(GEN x, GEN y) assuming z is a square matrix and y a scalar, returns the square
matrix = + y * Id.

GEN RgM_Rg_add_shallow(GEN x, GEN y) as RgM_Rg add with much fewer copies. Not suitable
for gerepileupto.

GEN RgM_Rg_sub(GEN x, GEN y) assuming x is a square matrix and y a scalar, returns the square
matrix x — y * Id.

GEN RgM_Rg_sub_shallow(GEN x, GEN y) as RgM_Rg_sub with much fewer copies. Not suitable
for gerepileupto.
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GEN RgC_Rg_add(GEN x, GEN y) assuming z is a nonempty column vector and y a scalar, returns
the vector [z1 + y, T2, ..., ZTp].

GEN RgC_Rg_sub(GEN x, GEN y) assuming z is a nonempty column vector and y a scalar, returns
the vector [z1 — y, T2, ..., Zp].

GEN Rg_RgC_sub(GEN a, GEN x) assuming z is a nonempty column vector and a a scalar, returns
the vector [a — x1, —xa, ..., —Tp,].

GEN RgC_Rg_div(GEN x, GEN y)

GEN RgM_Rg_div(GEN x, GEN y) returns z/y (y treated as a scalar).
GEN RgC_Rg_mul(GEN x, GEN y)

GEN RgV_Rg_mul (GEN x, GEN y)

GEN RgM_Rg_mul(GEN x, GEN y) returns x X y (y treated as a scalar).
GEN RgV_RgC_mul (GEN x, GEN y) returns z X y.

GEN RgV_RgM_mul(GEN x, GEN y) returns x X y.

GEN RgM_RgC_mul(GEN x, GEN y) returns x X y.

GEN RgM_RgX_mul (GEN x, GEN T) returns z X y, where y is RgX_toRgC(T’, 1g(x) — 1).
GEN RgM_mul (GEN x, GEN y) returns x X y.

GEN RgM_ZM_mul (GEN x, GEN y) returns x X y assuming that y is a ZM.
GEN RgM_transmul (GEN x, GEN y) returns x~ X y.

GEN RgM_multosym(GEN x, GEN y) returns x Xy, assuming the result is a symmetric matrix (about
twice faster than a generic matrix multiplication).

GEN RgM_transmultosym(GEN x, GEN y) returns z~ Xy, assuming the result is a symmetric matrix
(about twice faster than a generic matrix multiplication).

GEN RgMrow_RgC_mul (GEN x, GEN y, long i) multiplies the i-th row of RgM x by the RgC y (seen
as a column vector, assumed to have compatible dimensions). Assumes that x is nonempty and
0 < i< 1g(x[1]).

GEN RgM_mulreal (GEN x, GEN y) returns the real part of x X y (whose entries are t_INT, t_FRAC,
t_REAL or t_COMPLEX).

GEN RgM_sqr (GEN x) returns z2.
GEN RgC_RgV_mul (GEN x, GEN y) returns z X y (the matrix (z;y;)).

GEN RgC_RgV_mulrealsym(GEN x, GEN y) returns the real part of  x y (whose entries are t_INT,
t_FRAC, t_REAL or t_COMPLEX), assuming the result is symmetric.

The following two functions are not well defined in general and only provided for convenience
in specific cases:

GEN RgC_RgM_mul(GEN x, GEN y) returns x x y[1,] if y is a row matrix 1 x n, error otherwise.
GEN RgM_RgV_mul (GEN x, GEN y) returns = X y[, 1] if y is a column matrix n x 1, error otherwise.
GEN RgM_powers(GEN x, long n) returns [x’,...,x"] as a t_VEC of RgMs.
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GEN RgV_sum(GEN v) sum of the entries of v
GEN RgV_prod(GEN v) product of the entries of v, using a divide and conquer strategy
GEN RgV_sumpart(GEN v, long n) returns the sum v[l] + ...+ v[n] (assumes that 1g(v) > n).

GEN RgV_sumpart2(GEN v, long m, long n) returns the sum v[m]+ ...+ v[n] (assumes that
1g(v) > n and m > 0). Returns gen_0 when m > n.

GEN RgM_sumcol(GEN v) returns a t_COL, sum of the columns of the t_MAT wv.
GEN RgV_dotproduct(GEN x, GEN y) returns the scalar product of x and y
GEN RgV_dotsquare(GEN x) returns the scalar product of z with itself.

GEN RgV_killO(GEN v) returns a shallow copy of v where entries matched by gequalO are replaced
by NULL. The return value is not a valid GEN and must be handled specially. The idea is to pre-treat
a vector of coefficients to speed up later linear combinations or scalar products.

GEN gram_matrix(GEN v) returns the Gram matrix (v; - vj) attached to the entries of v (matrix,
or vector of vectors).

GEN RgV_polint(GEN X, GEN Y, long v) X and Y being two vectors of the same length, returns
the polynomial 7" in variable v such that T'(X[i]) = Y[i] for all i. The special case X = NULL
corresponds to X = [1,2,...,n], where n is the length of Y. This is the function underlying
polint for formal interpolation.

GEN polintspec(GEN X, GEN Y, GEN t, long n, long *pe) return P(t) where P is the Lagrange
interpolation polynomial attached to the n points (X[0],Y][0]),...,(X[n —1],Y[n — 1]). If pe is
not NULL and ¢ is a complex numeric value, *pe contains an error estimate for the returned value
(Neville’s algorithm, see polinterpolate). In extrapolation algorithms, e.g., Romberg integration,
this function is usually called on actual GEN vectors with offsets: x+ & and y+ k so as to interpolate
on z[k..k + n — 1] without having to use vecslice. This is the function underlying polint for
numerical interpolation.

GEN polint_i(GEN X, GEN Y, GEN t, long *pe) as polintspec, where X and Y are actual GEN
vectors.

GEN vandermondeinverse(GEN r, GEN T, GEN d, GEN V) Given a vector r of n scalars and the
t_POL T = [/, (X —r;), return dM ", where M = () ~")1<; j<n is the van der Monde matrix; V is
NULL or a vector containing the 7”(r;), as returned by vandermodeinverseinit. The demonimator
d may be set to NULL (handled as 1). If ¢ is the k-column of the result, it is essentially d times
the k-th Lagrange interpolation polynomial: we have ) y ciry 1 = d6;_j. This is the function
underlying RgV_polint when the base field is not Z/pZ: it uses O(n?) scalar operations and is
asymptotically slower than variants using multi-evaluation such as FpV_polint; it is also accurate
over inexact fields.

GEN vandermondeinverseinit(GEN r) Given a vector r of n scalars, let T" be the t_POL T =
[1;—,(X —r;). This function returns the 7"(r;) computed stably via products of difference: the
i-th entry is 77(r;) = [[;4(ri — ;). It is asymptotically slow (uses O(n?) scalar operations,
where multi-evaluation achieves quasi-linear running time) but allows accurate computation at low
accuracies when 7' has large complex coefficients.
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7.5.7.2 Special shapes.

The following routines check whether matrices or vectors have a special shape, using gequall
and gequalO to test components. (This makes a difference when components are inexact.)

int RgV_isscalar (GEN x) return 1 if all the entries of x are 0 (as per gequalO), except possibly the
first one. The name comes from vectors expressing polynomials on the standard basis 1,7, ..., 7" !,
or on nf.zk (whose first element is 1).

int QV_isscalar(GEN x) as RgV_isscalar, assuming z is a QV (t_INT and t_FRAC entries only).
int ZV_isscalar(GEN x) as RgV_isscalar, assuming z is a ZV (t_INT entries only).

int RgM_isscalar(GEN x, GEN s) return 1 if x is the scalar matrix equal to s times the identity,
and 0 otherwise. If s is NULL, test whether z is an arbitrary scalar matrix.

int RgM_isidentity(GEN x) return 1 if the t_MAT x is the identity matrix, and O otherwise.
int RgM_isdiagonal(GEN x) return 1 if the t_MAT x is a diagonal matrix, and 0 otherwise.
long RgC_is_ei(GEN x) return ¢ if the t_COL x has 0 entries, but for a 1 at position 4.

int RgM_is_ZM(GEN x) return 1 if the t_MAT x has only t_INT coefficients, and 0 otherwise.

long qfiseven(GEN M) return 1 if the square symmetric typZM x is an even quadratic form (all
diagonal coefficients are even), and 0 otherwise.

int RgM_is_QM(GEN x) return 1 if the t_MAT z has only t_INT or t_FRAC coeflicients, and 0
otherwise.

long RgV_isin(GEN v, GEN x) return the first index ¢ such that v[i] = x if it exists, and 0
otherwise. Naive search in linear time, does not assume that v is sorted.

long RgV_isin_i(GEN v, GEN x, long n) return the first index i legn such that v[i] = = if it
exists, and 0 otherwise. Naive search in linear time, does not assume that v is sorted. Assume that
n < 1g(v).

GEN RgM_diagonal (GEN m) returns the diagonal of m as a t_VEC.
GEN RgM_diagonal_shallow(GEN m) shallow version of RgM_diagonal
7.5.7.3 Conversion to floating point entries.

GEN RgC_gtofp(GEN x, GEN prec) returns the t_COL obtained by applying gtofp(gel(x,i),
prec) to all coefficients of x.

GEN RgV_gtofp(GEN x, GEN prec) returns the t_VEC obtained by applying gtofp(gel(x,i),
prec) to all coefficients of z.

GEN RgC_gtomp(GEN x, long prec) returns the t_COL obtained by applying gtomp(gel(x,1i),
prec) to all coefficients of x.

GEN RgC_fpnorml2(GEN x, long prec) returns (a stack-clean variant of)
gnorml2( RgC_gtofp(x, prec) )

GEN RgM_gtofp(GEN x, GEN prec) returns the t_MAT obtained by applying gtofp(gel(x,i),
prec) to all coefficients of z.

GEN RgM_gtomp(GEN x, long prec) returns the t_MAT obtained by applying gtomp(gel(x,i),
prec) to all coefficients of x.
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GEN RgM_fpnorml2(GEN x, long prec) returns (a stack-clean variant of)
gnorml2( RgM_gtofp(x, prec) )
7.5.7.4 Linear algebra, linear systems.

GEN RgM_inv(GEN a) returns a left inverse of a (which needs not be square), or NULL if this turns
out to be impossible. The latter happens when the matrix does not have maximal rank (or when
rounding errors make it appear so).

GEN RgM_inv_upper(GEN a) as RgM_inv, assuming that a is a nonempty invertible upper triangular
matrix, hence a little faster.

GEN RgM_RgC_invimage (GEN A, GEN B) returns a t_COL X such that AX = B if one such exists,
and NULL otherwise.

GEN RgM_invimage (GEN A, GEN B) returns a t_MAT X such that AX = B if one such exists, and
NULL otherwise.

GEN RgM_Hadamard(GEN a) returns a upper bound for the absolute value of det(a). The bound is
a t_INT.

GEN RgM_solve(GEN a, GEN b) returns a~'b where a is a square t_MAT and b is a t_COL or t_MAT.
Returns NULL if a~! cannot be computed, see RgM_inv.

If b = NULL, the matrix a need no longer be square, and we strive to return a left inverse for a
(NULL if it does not exist).

GEN RgM_solve_realimag(GEN M, GEN b) M being a t_MAT with r+r, rows and r; +2r9 columns,
y a t_COL or t_MAT such that the equation Mz = y makes sense, returns x under the following
simplifying assumptions: the first 71 rows of M and y are real (the ry others are complex), and
x is real. This is stabler and faster than calling RgM_solve(M,b) over C. In most applications,
M approximates the complex embeddings of an integer basis in a number field, and x is actually
rational.

GEN split_realimag(GEN x, long rl, long r2) z is a t_COL or t_MAT with r; 472 rows, whose
first 71 rows have real entries (the o others are complex). Return an object of the same type as x
and 1 + 2ry rows, such that the first r; 4+ ro rows contain the real part of x, and the ro following
ones contain the imaginary part of the last r, rows of z. Called by RgM_solve_realimag.

GEN RgM_det_triangular (GEN x) returns the product of the diagonal entries of = (its determinant
if it is indeed triangular).

GEN Frobeniusform(GEN V, long n) given the vector V of elementary divisors for M —zlId, where
M is an n X n square matrix. Returns the Frobenius form of M.

int RgM_QR_init(GEN x, GEN *pB, GEN *pQ, GEN *pL, long prec) QR-decomposition of a
square invertible t_MAT x with real coefficients. Sets *pB to the vector of squared lengths of the z[i],
*pL to the Gram-Schmidt coefficients and *pQ to a vector of successive Householder transforms.
If R denotes the transpose of L and @ is the result of applying *pQ to the identity matrix, then
x = QR is the QR decomposition of . Returns 0 is x is not invertible or we hit a precision problem,
and 1 otherwise.

int QR_init(GEN x, GEN *pB, GEN *pQ, GEN *pL, long prec) as RgM_QR_init, assuming
further that  has t_INT or t_REAL coefficients.
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GEN R_from_QR(GEN x, long prec) assuming that x is a square invertible t_MAT with t_INT or
t_REAL coefficients, return the upper triangular R from the QR docomposition of x. Not memory
clean. If the matrix is not known to have t_INT or t_REAL coefficients, apply RgM_gtomp first.

GEN gaussred_from_QR(GEN x, long prec) assuming that = is a square invertible t_MAT with
t_INT or t_REAL coefficients, returns qfgaussred (x~* x); this is essentially the upper triangular
R matrix from the QR decomposition of x, renormalized to accomodate gfgaussred conventions.
Not memory clean.

GEN RgM_gram_schmidt (GEN e, GEN *ptB) naive (unstable) Gram-Schmidt orthogonalization of
the basis (e;) given by the columns of t_MAT e. Return the e} (as columns of a t_MAT) and set *ptB
to the vector of squared lengths |e|?.

GEN RgM_Babai(GEN M, GEN y) given a t_MAT M of maximal rank n and a t_COL y of the same
dimension, apply Babai’s nearest plane algorithm to return an integral x such that y— Max has small
Lo norm. This yields an approximate solution to the closest vector problem: if M is LLL-reduced,
then

ly — Mazlls < 2(2/v/3)"|ly — MX]|5

for all X € Z™.

7.5.8 ZG.

Let G be a multiplicative group with neutral element 15 whose multiplication is supported by
gmul and where equality test is performed using gidentical, e.g. a matrix group. The following
routines implement basic computations in the group algebra Z[G]. All of them are shallow for
efficiency reasons. A ZG is either

e a t_INT n, representing n[lq]

e or a “factorization matrix” with two columns [g,e]: the first one contains group elements,
sorted according to cmp_universal, and the second one contains integer “exponents”, representing

>_eilgil.
Note that to_famat and to_famat_shallow(g,e) allow to build the ZG e[g] from e € Z and
g€ qG.

GEN ZG_normalize(GEN x) given a t_INT x or a factorization matrix without assuming that the
first column is properly sorted. Return a valid (sorted) ZG. Shallow function.

GEN ZG_add(GEN x, GEN y) return x + y; shallow function.

GEN ZG_neg(GEN x) return —ux; shallow function.

GEN ZG_sub(GEN x, GEN y) return z — y; shallow function.

GEN ZG_mul (GEN x, GEN y) return zy; shallow function.

GEN ZG_G_mul(GEN x, GEN y) given a ZG z and y € G, return xy; shallow function.
GEN G_ZG_mul(GEN x, GEN y) given a ZG y and = € G, return xy; shallow function.
GEN ZG_Z_mul(GEN x, GEN n) given a ZG z and y € Z, return zy; shallow function.

GEN ZGC_G_mul(GEN v, GEN x) given v a vector of ZG and x € G return the vector (with the same
type as v with entries v[i] - z. Shallow function.

void ZGC_G_mul_inplace(GEN v, GEN x) as ZGC_G_mul, modifying v in place.
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GEN ZGC_Z_mul (GEN v, GEN n) given v a vector of ZG and n € Z return the vector (with the same
type as v with entries n - v[i]. Shallow function.

GEN G_ZGC_mul(GEN x, GEN v) given v a vector of ZG and x € G return the vector of z - v[i].
Shallow function.

GEN ZGCs_add(GEN x, GEN y) add two sparse vectors of ZG elements (see Sparse linear algebra
below).

7.5.9 Sparse and blackbox linear algebra.

A sparse column zCs v is a t_COL with two components C and F which are t _VECSMALL of the
same length, representing ), E|i] * ecy;], where (e;) is the canonical basis. A sparse matrix (zMs)
is a t_VEC of zCs.

FpCs and FpMs are identical to the above, but E[i] is now interpreted as a signed C long integer
representing an element of F,. This is important since p can be so large that p + E[i] would not
fit in a C long.

RgCs and RgMs are similar, except that the type of the components of E is now unspecified.
Functions handling those later objects must not depend on the type of those components.

F2Ms are t_VEC of F2Cs. F2Cs are t_VECSMALL whoses entries are the nonzero coefficients (1).

It is not possible to derive the space dimension (number of rows) from the above data. Thus
most functions take an argument nbrow which is the number of rows of the corresponding col-
umn/matrix in dense representation.

GEN F2Ms_to_F2m(GEN M, long nbrow) convert a F2m to a F2Ms.
GEN F2m_to_F2Ms(GEN M) convert a F2m to a F2Ms.

GEN zCs_to_ZC(GEN C, 1long nbrow) convert the sparse vector C' to a dense ZC of dimension
nbrow.

GEN zMs_to_ZM(GEN M, long nbrow) convert the sparse matrix M to a dense ZM whose columns
have dimension nbrow.

GEN FpMs_FpC_mul(GEN M, GEN B, GEN p) multiply the sparse matrix M (over F,) by the FpC
B. The result is an FpC, i.e. a dense vector.

GEN zMs_ZC_mul(GEN M, GEN B, GEN p) multiply the sparse matrix M by the ZC B (over Z).
The result is an ZC, i.e. a dense vector.

GEN FpV_FpMs_mul(GEN B, GEN M, GEN p) multiply the FpV B by the sparse matrix M (over F)).
The result is an FpV, i.e. a dense vector.

GEN ZV_zMs_mul (GEN B, GEN M, GEN p) multiply the FpV B (over Z) by the sparse matrix M.
The result is an ZV, i.e. a dense vector.

void RgMs_structelim(GEN M, 1long nbrow, GEN A, GEN *p_col, GEN *p_row) M being
a RgMs with nbrow rows, A being a list of row indices, perform structured elimination on M by
removing some rows and columns until the number of effectively present rows is equal to the number
of columns. The result is stored in two t_VECSMALLs, *p_col and *p_row: *p_col is a map from
the new columns indices to the old one. *p_row is a map from the old rows indices to the new one
(0 if removed).
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GEN F2Ms_colelim(GEN M, long nbrow) returns some subset of the columns of M as a t _VECSMALL
of indices, selected such that the dimension of the kernel of the matrix is preserved. The subset is
not guaranteed to be minimal.

GEN F2Ms_ker (GEN M, long nbrow) returns some kernel vectors of M using block Lanczos algo-
rithm.

GEN FpMs_leftkernel_elt(GEN M, long nbrow, GEN p) M being a sparse matrix over F,, return
a nonzero FpV X such that XM components are almost all 0.

GEN FpMs_FpCs_solve(GEN M, GEN B, long nbrow, GEN p) solve the equation M X = B, where
M is a sparse matrix and B is a sparse vector, both over F,,. Return either a solution as a t_COL
(dense vector), the index of a column which is linearly dependent from the others as a t_VECSMALL
with a single component, or NULL (can happen if B is not in the image of M).

GEN FpMs_FpCs_solve_safe(GEN M, GEN B, long nbrow, GEN p) as above, but in the event
that p is not a prime and an impossible division occurs, return NULL.

GEN ZpMs_ZpCs_solve(GEN M, GEN B, long nbrow, GEN p, long e) solve the equation M X = B,
where M is a sparse matrix and B is a sparse vector, both over Z/p°Z. Return either a solution
as a t_COL (dense vector), or the index of a column which is linearly dependent from the others as
a t_VECSMALL with a single component.

GEN gen_FpM_Wiedemann(void *E, GEN (*f)(void*, GEN), GEN B, GEN p) solve the equation
f(X) = B over F),, where B is a FpV, and f is a blackbox endomorphism, where f(E, X) computes
the value of f at the (dense) column vector X. Returns either a solution t_COL, or a kernel vector
as a t_VEC.

GEN gen_ZpM_Dixon_Wiedemann(void *E, GEN (*f)(void*, GEN), GEN B, GEN p, long e)
solve equation f(X) = B over Z/p°Z, where B is a ZV, and f is a blackbox endomorphism, where
f(E, X) computes the value of f at the (dense) column vector X. Returns either a solution t_COL,
or a kernel vector as a t_VEC.

7.5.10 Obsolete functions.

The functions in this section are kept for backward compatibility only and will eventually
disappear.

GEN image2(GEN x) compute the image of x using a very slow algorithm. Use image instead.

7.6 Integral, rational and generic polynomial arithmetic.

7.6.1 ZX.

void RgX_check_ZX(GEN x, const char *s) Assuming x is a t_POL raise an error if it is not a
ZX (s should point to the name of the caller).

GEN ZX_copy(GEN x, GEN p) returns a copy of x.

long ZX_max_lg(GEN x) returns the effective length of the longest component in x.

GEN scalar_ZX(GEN x, long v) returns the constant ZX in variable v equal to the t_INT z.

GEN scalar_ZX_shallow(GEN x, long v) returns the constant ZX in variable v equal to the t_INT

x. Shallow function not suitable for gerepile and friends.
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GEN ZX_renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.

int ZX_equal(GEN x, GEN y) returns 1 if the two ZX have the same degpol and their coefficients
are equal. Variable numbers are not checked.

int ZX_equall(GEN x) returns 1 if the ZX z is equal to 1 and O otherwise.

int ZX_is_monic(GEN x) returns 1 if the ZX x is monic and 0 otherwise. The zero polynomial
considered not monic.

GEN ZX_add(GEN x, GEN y) adds x and y.

GEN ZX_sub(GEN x, GEN y) subtracts x and y.

GEN ZX_neg(GEN x) returns —x.

GEN ZX_Z_add(GEN x, GEN y) adds the integer y to the ZX x.

GEN ZX_Z_add_shallow(GEN x, GEN y) shallow version of ZX_Z_add.

GEN ZX_Z_sub(GEN x, GEN y) subtracts the integer y to the ZX x.

GEN Z_ZX_sub(GEN x, GEN y) subtracts the ZX y to the integer x.

GEN ZX_Z_mul(GEN x, GEN y) multiplies the ZX x by the integer y.

GEN ZX_mulu(GEN x, ulong y) multiplies x by the integer y.

GEN ZX_shifti(GEN x, long n) shifts all coefficients of x by n bits, which can be negative.
GEN ZX_Z_divexact(GEN x, GEN y) returns z/y assuming all divisions are exact.
GEN ZX_divuexact(GEN x, ulong y) returns x/y assuming all divisions are exact.
GEN ZX_remi2n(GEN x, long n) reduces all coeflicients of x to n bits, using remi2n.
GEN ZX_mul (GEN x, GEN y) multiplies x and y.

GEN ZX_sqr(GEN x, GEN p) returns x2.

GEN ZX_mulspec(GEN a, GEN b, long na, long nb). Internal routine: a and b are arrays of
coefficients representing polynomials 2% " a[i] X* and 3 7" b[i] X?. Returns their product (as a
true GEN) in variable 0.

GEN ZX_sqrspec(GEN a, long na). Internal routine: a is an array of coefficients representing
polynomial > 5* ' a[i] X?. Return its square (as a true GEN) in variable 0.

GEN ZX_rem(GEN x, GEN y) returns the remainder of the Euclidean division of £ mod y. Assume
that =, y are two ZX and that y is monic.

GEN ZX_mod_Xnm1(GEN T, ulong n) return 7" modulo X™ — 1). Shallow function.

GEN ZX_div_by_X_1(GEN T, GEN *r) return the quotient of T" by X — 1. If r is not NULL set it to
T(1).

GEN ZX_digits(GEN x, GEN B) returns a vector of ZX [co, ..., cy] of degree less than the degree of
B and such that z = )" ; ¢;B*. Assume that B is monic.

GEN ZXV_ZX_fromdigits(GEN v, GEN B) where v = |[cg,...,c,] is a vector of ZX, returns
Z?:O CZ.BZ

GEN ZX_gcd(GEN x, GEN y) returns a gcd of the ZX x and y. Not memory-clean, but suitable for
gerepileupto.

194



GEN ZX_gcd_all(GEN x, GEN y, GEN *pX) returns a gcd d of z and y. If pX is not NULL, set
*pX to a (nonzero) integer multiple of x/d. If z and y are both monic, then d is monic and *pX is
exactly z/d. Not memory clean.

GEN ZX_radical(GEN x) returns the largest squarefree divisor of the ZX x. Not memory clean.
GEN ZX_content (GEN x) returns the content of the ZX z.

long ZX_val(GEN P) as RgX_val, but assumes P has t_INT coefficients.

long ZX_valrem(GEN P, GEN *z) as RgX_valrem, but assumes P has t_INT coefficients.

GEN ZX_to_monic(GEN q GEN #L) given ¢ a nonzero ZX, returns a monic integral polynomial @
such that Q(x) = Cq(x/L), for some rational C' and positive integer L > 0. If L is not NULL, set *L
to L; if L =1, *L is set to gen_1. Shallow function.

GEN ZX_primitive_to_monic(GEN q, GEN *L) as ZX_to_monic except ¢ is assumed to have trivial
content, which avoids recomputing it. The result is suboptimal if ¢ is not primitive (L larger than
necessary), but remains correct. Shallow function.

GEN ZX_Z_normalize(GEN q, GEN L) a restricted version of ZX_primitive_to.monic, where ¢
is a monic ZX of degree > 0. Finds the largest integer L > 0 such that Q(X) := L~ 9g(Lx) is
integral and return @); this is not well-defined if ¢ is a monomial, in that case, set L =1 and @ = q.
If L is not NULL, set *L to L. Shallow function.

GEN ZX_Q_normalize(GEN q, GEN *L) a variant of ZX_Z_normalize where L > 0 is allowed to be
rational, the monic @ € Z[X] has possibly smaller coefficients. Shallow function.

GEN ZX_Q_mul(GEN x, GEN y) returns z *y, where y is a rational number and the resulting t_POL
has rational entries.

long ZX_deflate_order (GEN P) given a nonconstant ZX P, returns the largest exponent d such
that P is of the form P(z?).

long ZX_deflate_max(GEN P, long *d). Given a nonconstant polynomial with integer coeffi-
cients P, sets d to ZX_deflate_order (P) and returns RgX_deflate(P,d). Shallow function.

GEN ZX_rescale(GEN P, GEN h) returns h9°¢(")P(x/h). P is a ZX and h is a nonzero integer.
Neither memory-clean nor suitable for gerepileupto.

GEN ZX_rescale2n(GEN P, long n) returns 2"98(") P(x >> n) where P is a ZX.

GEN ZX_rescale_1t(GEN P) returns the monic integral polynomial hd"g(P)_lp(x/h), where P is a
nonzero ZX and h is its leading coefficient. Neither memory-clean nor suitable for gerepileupto.

GEN ZX_translate(GEN P, GEN c) assume P is a ZX and ¢ an integer. Returns P(X +c¢) (optimized
for ¢ = +1).

GEN ZX_affine(GEN P, GEN a, GEN b) P is a ZX, a and b are t_INT. Return P(aX +b) (optimized
for b = £1). Not memory clean.

GEN ZX_Z_eval(GEN P, GEN x) evaluate the ZX P at the integer =x.
GEN ZX_unscale(GEN P, GEN h) given a ZX P and a t_INT h, returns P(hz). Not memory clean.
GEN ZX_z_unscale(GEN P, long h) given a ZX P, returns P(hx). Not memory clean.

GEN ZX_unscale2n(GEN P, long n) given a ZX P, returns P(z << n). Not memory clean.
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GEN ZX_unscale_div(GEN P, GEN h) given a ZX P and a t_INT h such that h | P(0), returns
P(hz)/h. Not memory clean.

GEN ZX_unscale_divpow(GEN P, GEN h, long k) given a ZX P, a t_INT h and k > 0, returns
P(hx)/h* assuming the result has integral coefficients. Not memory clean.

GEN ZX_evall(GEN P) returns the integer P(1).

GEN ZX_graeffe(GEN p) returns the Graeffe transform of p, i.e. the ZX ¢ such that p(x)p(—z) =
q(x?).

GEN ZX_deriv(GEN x) returns the derivative of x.

GEN ZX_resultant(GEN A, GEN B) returns the resultant of the ZX A and B.

GEN ZX_disc(GEN T) returns the discriminant of the ZX T.

GEN ZX_factor(GEN T) returns the factorization of the primitive part of T over Q[X] (the content
is lost).

int ZX_is_squarefree(GEN T) returns 1 if the ZX T is squarefree, 0 otherwise.
long ZX_is_irred(GEN T) returns 1 it T is irreducible, and 0 otherwise.

GEN ZX_squff(GEN T, GEN *E) write T'(x) as a product [[ 7" with the e; < ey < --- all distinct
and the T; pairwise coprime. Return the vector of the T;, and set *E to the vector of the e;, as a
t_VECSMALL. For efficiency, powers of x should have been removed from T using ZX_valrem, but
the result is also correct if not. Not memory clean.

GEN ZX_Uspensky(GEN P, GEN ab, long flag, long bitprec) let P be a ZX polynomial whose
real roots are simple and bitprec is the relative precision in bits. For efficiency reasons, P should
not only have simple real roots but actually be primitive and squarefree, but the routine neither
checks nor enforces this, and it returns correct results in this case as well.

o If flag is O returns a list of intervals that isolate the real roots of P. The return value is
a column of elements which are either vectors [a,b] of rational numbers meaning that there is a
single nonrational root in the open interval (a,b) or elements x0 such that x0 is a rational root of
P. Beware that the limits of the open intervals can be roots of the polynomial.

o If flag is 1 returns an approximation of the real roots of P.
o If flag is 2 returns the number of roots.

The argument ab specify the interval in which the roots are searched. The default interval is
(—00,00). If ab is an integer or fraction a then the interval is [a, c0). If ab is a vector [a, b], where
t_INT, t_FRAC or t_INFINITY are allowed for a and b, the interval is [a, b].

long ZX_sturm(GEN P) number of real roots of the nonconstant squarefree ZX P. For efficiency, it
is advised to make P primitive first.

long ZX_sturmpart(GEN P, GEN ab) number of real roots of the nonconstant squarefree ZX P in
the interval specified by ab: either NULL (no restriction) or a t_VEC [a, b] with two real components
(of type t_INT, t_FRAC or t_INFINITY). For efficiency, it is advised to make P primitive first.

long ZX_sturm_irred(GEN P) number of real roots of the ZX P, assumed irreducible over Q[X].
For efficiency, it is advised to make P primitive first.

long ZX_realroots_irred(GEN P, long prec) real roots of the ZX P, assumed irreducible over
Q[X] to precision prec. For efficiency, it is advised to make P primitive first.
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7.6.2 Resultants.

GEN ZX_ZXY_resultant(GEN A, GEN B) under the assumption that A in Z[Y], B in Q[Y][X], and
R = Resy (A, B) € Z[X], returns the resultant R.

GEN ZX_compositum_disjoint(GEN A, GEN B) given two irreducible ZX defining linearly disjoint
extensions, returns a ZX defining their compositum.

GEN ZX_compositum(GEN A, GEN B, long *lambda) given two irreducible ZX, returns an irre-
ducible ZX C defining their compositum and set lambda to a small integer k such that if « is a root
of A and f is a root of B, then ka + (3 is a root of C.

GEN ZX_ZXY_rnfequation(GEN A, GEN B, 1long *lambda), assume A in Z[Y], B in Q[Y][X],
and R = Resy (A, B) € Z[X]. If lambda = NULL, returns R as in ZY_ZXY_resultant. Otherwise,
lambda must point to some integer, e.g. 0 which is used as a seed. The function then finds a
small A € Z (starting from *1lambda) such that Ry (X) := Resy (A, B(X + \Y)) is squarefree, resets
*lambda to the chosen value and returns Rj.

7.6.3 ZXV.

GEN ZXV_equal(GEN x, GEN y) returns 1 if the two vectors of ZX are equal, as per ZX_equal
(variables are not checked to be equal) and 0 otherwise.

GEN ZXV_Z_mul (GEN x, GEN y) multiplies the vector of ZX x by the integer y.
GEN ZXV_remi2n(GEN x, long n) applies ZX_remi2n to all coefficients of x.

GEN ZXV_dotproduct(GEN x, GEN y) as RgV_dotproduct assuming = and y have ZX entries.

7.6.4 ZXT.

GEN ZXT_remi2n(GEN x, long n) applies ZX_remi2n to all leaves of the tree x.

7.6.5 ZXQ.

GEN ZXQ_mul (GEN x, GEN y, GEN T) returns x *y mod 7', assuming that all inputs are ZXs and
that T" is monic.

GEN ZXQ_sqr (GEN x, GEN T) returns 22 mod T, assuming that all inputs are ZXs and that T is
monic.

GEN ZXQ_powu(GEN x, ulong n, GEN T) returns " mod 7', assuming that all inputs are ZXs and
that 71" is monic.

GEN ZXQ_powers(GEN x, long n, GEN T) returns [x°,...,x?] mod T as a t_VEC, assuming that
all inputs are ZXs and that T is monic.

GEN ZXQ_charpoly(GEN A, GEN T, 1long v): let T and A be ZXs, returns the characteristic
polynomial of Mod(A, T). More generally, A is allowed to be a QX, hence possibly has rational
coefficients, assuming the result is a ZX, i.e. the algebraic number Mod (A, T) is integral over Z.

GEN ZXQ_minpoly(GEN A, GEN B, long d, ulong bound) let T and A be ZXs, returns the minimal
polynomial of Mod(A, T) assuming it has degree d and its coefficients are less than 2°°""d. More
generally, A is allowed to be a QX, hence possibly has rational coefficients, assuming the result is a
ZX, i.e. the algebraic number Mod (A, T) is integral over Z.
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7.6.6 ZXn.

GEN ZXn_mul(GEN x, GEN y, long n) return xy (mod X™).

GEN ZXn_sqr(GEN x, long n) return z? (mod X™).

GEN eta_ZXn(long r, long n) return n(X") =J[,.,(1—X"") (mod X"), r > 0.

GEN eta_product_ZXn(GEN DR, 1long n): DR = [D, R] being a vector with two t_VECSMALL
components, return [, n(X%)". Shallow function.

7.6.7 ZXQM.

ZXQM are matrices of ZXQ. All entries must be integers or polynomials of degree strictly less
than the degree of T

GEN ZXQM_mul (GEN x, GEN y, GEN T) returns z *y mod 7T, assuming that all inputs are ZXs and
that 7' is monic.

GEN ZXQM_sqr(GEN x, GEN T) returns z? mod 7', assuming that all inputs are ZXs and that 7 is
monic.
7.6.8 ZXQX.

GEN ZXQX_mul(GEN x, GEN y, GEN T) returns zx * y, assuming that all inputs are ZXQXs and that
T is monic.

GEN ZXQX_ZXQ_mul(GEN x, GEN y, GEN T) returns x * g, assuming that x is a ZXQX, y is a ZXQ
and T is monic.

GEN ZXQX_sqr(GEN x, GEN T) returns 2?2, assuming that all inputs are ZXQXs and that 7" is monic.
GEN ZXQX_gcd(GEN x, GEN y, GEN T) returns the gcd of x and y, assuming that all inputs are
ZXQXs and that T is monic.

7.6.9 ZXX.

void RgX_check_ZXX(GEN x, const char *s) Assuming x is a t_POL raise an error if it one of
its coefficients is not an integer or a ZX (s should point to the name of the caller).

GEN ZXX_renormalize(GEN x, long 1), as normalizepol, where 1 = 1g(x), in place.

long ZXX_max_lg(GEN x) returns the effective length of the longest component in x; assume all
coefficients are t_INT or ZXs.

GEN ZXX_evalx0(GEN P) returns P(X,0).
GEN ZXX_Z_mul(GEN x, GEN y) returns xy.

GEN ZXX_Q_mul(GEN x, GEN y) returns x*y, where y is a rational number and the resulting t_POL
has rational entries.

GEN ZXX_Z_add_shallow(GEN x, GEN y) returns x + y. Shallow function.
GEN ZXX_Z_divexact(GEN x, GEN y) returns x/y assuming all integer divisions are exact.

GEN Kronecker_to_ZXX(GEN z, long n, long v) recover P(X,Y) from its Kronecker form
P(X, X% 1) (see RgXX_to_Kronecker), v is the variable number corresponding to Y. Shallow
function.
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GEN Kronecker_to_ZXQX(GEN z, GEN T). Let n = degT and let P(X,Y) € Z[X, Y] lift a polyno-
mial in K[Y], where K := Z[X]/(T') and degy P < 2n—1 — such as would result from multiplying
minimal degree lifts of two polynomials in K[Y]. Let z = P(¢,t**"~1) be a Kronecker form of P
(see RgXX_to_Kronecker), this function returns @ € Z[X,t] such that @ is congruent to P(X,t)
mod (7'(X)), degx @ < n. Not stack-clean. Note that ¢ need not be the same variable as Y'!

GEN ZXX_mul_Kronecker (GEN P, GEN Q, long n) return ZX_mul applied to the Kronecker forms
P(X,X?" 1 and Q(X,X?" 1) of P and Q. Not memory clean.

GEN ZXX_sqr_Kronecker(GEN P, long n) return ZX_sqr applied to the Kronecker forms
P(X, X?"~1) of P. Not memory clean.
7.6.10 QX.

void RgX_check_QX(GEN x, const char *s) Assuming x is a t_POL raise an error if it is not a
QX (s should point to the name of the caller).

GEN QX_mul(GEN x, GEN y)

GEN QX_sqr(GEN x)

GEN QX_ZX_rem(GEN x, GEN y) y is assumed to be monic.

GEN QX_gcd(GEN x, GEN y) returns a gcd of the QX « and y.

GEN QX_disc(GEN T) returns the discriminant of the QX T.

GEN QX_factor(GEN T) as ZX_factor.

GEN QX_resultant(GEN A, GEN B) returns the resultant of the QX A and B.

GEN QX_complex_roots(GEN p, long 1) returns the complex roots of the QX p at accuracy [, where
real roots are returned as t_REALs. More efficient when p is irreducible and primitive. Special case
of cleanroots.

7.6.11 QXQ.

GEN QXQ_norm(GEN A, GEN B) A being a QX and B being a ZX, returns the norm of the algebraic
number Amod B, using a modular algorithm. To ensure that B is a ZX, one may replace it by
Q_primpart (B), which of course does not change the norm.

If A is not a ZX — it has a denominator —, but the result is nevertheless known to be an
integer, it is much more efficient to call QXQ_intnorm instead.

GEN QXQ_intnorm(GEN A, GEN B) A being a QX and B being a ZX, returns the norm of the algebraic
number Amod B, assuming that the result is an integer, which is for instance the case is Amod B
is an algebraic integer, in particular if A is a ZX. To ensure that B is a ZX, one may replace it by
Q_primpart (B) (which of course does not change the norm).

If the result is not known to be an integer, you must use QXQ_norm instead, which is slower.

GEN QXQ_mul(GEN A, GEN B, GEN T) returns the product of A and B modulo T" where both A
and B are a QX and 7' is a monic ZX.

GEN QXQ_sqr(GEN A, GEN T) returns the square of A modulo 7" where A is a QX and 7T is a monic
ZX.

GEN QXQ_inv(GEN A, GEN B) returns the inverse of A modulo B where A is a QX and B is a ZX.
Should you need this for a QX B, just use
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QXQ_inv(A, Q_primpart(B));

But in all cases where modular arithmetic modulo B is desired, it is much more efficient to replace
B by Q_primpart(B) once and for all.

GEN QXQ_div(GEN A, GEN B, GEN T) returns A/B modulo T" where A and B are QX and T is a
ZX. Use this function when the result is expected to be of the same size as B~! mod T or smaller.
Otherwise, it will be faster to use QXQ_mul (A,QXQ_inv(B,T),T).

GEN QXQ_charpoly(GEN A, GEN T, long v) where A is a QX and T is a ZX, returns the characteristic
polynomial of Mod (A, T). If the result is known to be a ZX, then calling ZXQ_charpoly will be faster.

GEN QXQ_powers(GEN x, long n, GEN T) returns [x",...,x"] as RgXQ_powers would, but in a
more efficient way when x has a huge integer denominator (we start by removing that denominator).
Assume that z is a QX and T is a ZX. Meant to precompute powers of algebraic integers in Q[t]/(T).

GEN QXQ_reverse(GEN f, GEN T) as RgXQ_reverse, assuming f is a QX.

GEN QX_ZXQV_eval(GEN f, GEN nV, GEN dV) as RgX_RgXQV_eval, except that f is assumed to be
a QX, V is given implicitly by a numerator nV (ZV) and denominator dV (a positive t_INT or NULL
for trivial denominator). Not memory clean, but suitable for gerepileupto.

GEN QXV_QXQ_eval(GEN v, GEN a, GEN T) v is a vector of QXs (possibly scalars, i.e. rational
numbers, for convenience), a and T both QX. Return the vector of evaluations at ¢ modulo 7. Not
memory clean, nor suitable for gerepileupto.

GEN QXY_QXQ_evalx(GEN P, GEN a, GEN T) P(X,Y) is a t_POL with QX coefficients (possibly
scalars, i.e. rational numbers, for convenience) , a and T' both QX. Return the QX P(amodT,Y).
Not memory clean, nor suitable for gerepileupto.

7.6.12 QXQX.

GEN QXQX_mul(GEN x, GEN y, GEN T) where 7T is a monic ZX.

GEN QXQX_QXQ_mul (GEN x, GEN y, GEN T) where T is a monic ZX.

GEN QXQX_sqr(GEN x, GEN T) where 7' is a monic ZX

GEN QXQX_powers(GEN x, long n, GEN T) where T is a monic ZX

GEN nfgcd(GEN P, GEN Q, GEN T, GEN den) given P and @ in Z[X,Y], T monic irreducible in
Z[Y], returns the primitive d in Z[X,Y]| which is a ged of P, @ in K[X], where K is the number
field Q[Y']/(T). If not NULL, den is a multiple of the integral denominator of the (monic) ged of
P,Q in K[X].

GEN nfgcd_all(GEN P, GEN Q, GEN T, GEN den, GEN #*Pnew) as nfgcd. If Pnew is not NULL,
set *Pnew to a nonzero integer multiple of P/d. If P and @ are both monic, then d is monic and
*Pnew is exactly P/d. Not memory clean if the ged is 1 (in that case *Pnew is set to P).

GEN QXQX_gcd(GEN x, GEN y, GEN T) returns the ged of x and y, assuming that =z and y are
QXQXs and that T is a monic ZX.

GEN QXQX_homogenous_evalpow(GEN P, GEN a, GEN B, GEN T) Evaluate the homogenous poly-
nomial associated to the univariate polynomial P on (a,b) where B is the vector of powers of b
with exponents 0 to the degree of P (QXQ_powers(b,degpol(P),T)).
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7.6.13 QXQM.

QXQM are matrices of QXQ. All entries must be t_INT, t_FRAC or polynomials of degree strictly
less than the degree of T', which must be a monic ZX.

GEN QXQM_mul(GEN x, GEN y, GEN T) returns z xy mod 7.

GEN QXQM_sqr(GEN x, GEN T) returns 22 mod T.

7.6.14 zx.

GEN zero_zx(long sv) returns a zero zx in variable v.

GEN polx_zx(long sv) returns the variable v as degree 1 Flx.

GEN zx_renormalize(GEN x, long 1), as Flx renormalize, where 1 = 1g(x), in place.
GEN zx_shift(GEN T, long n) return T multiplied by x", assuming n > 0.

long zx_1lval(GEN f, long p) return the valuation of f at p.

GEN zx_z_divexact(GEN x, long y) return x/y assuming all divisions are exact.

7.6.15 RgX.

7.6.15.1 Tests.

long RgX_degree(GEN x, long v) x being a t_POL and v > 0, returns the degree in v of x. Error
if x is not a polynomial in v.

int RgX_isscalar (GEN x) return 1 if z all the coefficients of x of degree > 0 are 0 (as per gequalO).

int RgX_is_rational(GEN P) return 1 if the RgX P has only rational coefficients (t_INT and
t_FRAC), and 0 otherwise.

int RgX_is_QX(GEN P) return 1 if the RgX P has only t_INT and t_FRAC coefficients, and 0
otherwise.

int RgX_is_ZX(GEN P) return 1 if the RgX P has only t_INT coefficients, and 0 otherwise.

int RgX_is_monomial(GEN x) returns 1 (true) if x is a nonzero monomial in its main variable,
0 otherwise.

long RgX_equal(GEN x, GEN y) returns 1 if the t_POLs = and y have the same degpol and their
coefficients are equal (as per gequal). Variable numbers are not checked. Note that this is more
stringent than gequal (x,y), which only checks whether x — y satisfies gequalO; in particular, they
may have different apparent degrees provided the extra leading terms are 0.

long RgX_equal_var(GEN x, GEN y) returns 1 if z and y have the same variable number and
RgX_equal (x,y) is 1.
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7.6.15.2 Coefficients, blocks.

GEN RgX_coeff(GEN P, long n) return the coefficient of 2" in P, defined as gen 0 if n < 0 or
n > degpol(P). Shallow function.

int RgX_blocks(GEN P, 1long n, long m) writes P(X) = ao(X) + X" xa1(X) * X" + ... +
X ”*(m_l)am_l(X ), where the a; are polynomial of degree at most n — 1 (except possibly for the
last one) and returns [ag(X),a1(X),...,amn—1(X)]. Shallow function.

void RgX_even_odd(GEN p, GEN *pe, GEN *po) write p(X) = F(X?) + XO(X?) and set *pe =
E, *po = 0. Shallow function.

GEN RgX_splitting(GEN P, long k) write P(X) = ao(X*) + Xai(X*) +... + XF a1 (XF)
and return [ag(X), a1(X),...,ar—1(X)]. Shallow function.

GEN RgX_copy(GEN x) returns (a deep copy of) x.

GEN RgX_renormalize(GEN x) remove leading terms in x which are equal to (necessarily inexact)
ZEros.

GEN RgX_renormalize_1g(GEN x, long 1x) as setlg(x, 1x) followed by RgX_renormalize(x).
Assumes that 1x < 1g(x).

GEN RgX_recip(GEN P) returns the reverse of the polynomial P, i.e. X9 " P(1/X).
GEN RgX_recip_shallow(GEN P) shallow function of RgX_recip.

GEN RgX_recip_i(GEN P) shallow function of RgX_recip, where we further assume that P(0) # 0,
so that the degree of the output is the degree of P.

long rfracrecip(GEN *a, GEN *b) let *a and *b be such that their quotient F' is a t_RFRAC in
variable X. Write F'(1/X) = XYA/B where A and B are coprime to X and v in Z. Set *a to A,
*b to B and return v.

GEN RgX_deflate(GEN P, long d) assuming P is a polynomial of the form Q(X?), return Q.
Shallow function, not suitable for gerepileupto.

long RgX_deflate_order (GEN P) given a nonconstant polynomial P, returns the largest exponent
d such that P is of the form P(z?) (use gequalO to check whether coefficients are 0).

long RgX_deflate_max(GEN P, long *d) given a nonconstant polynomial P, sets d to
RgX_deflate order(P) and returns RgX_deflate(P,d). Shallow function.

long rfrac_deflate_order(GEN F) as RgX_deflate_order where F' is a nonconstant t_RFRAC.

long rfrac_deflate_max(GEN F, 1long *d) as RgX_deflate max where F' is a nonconstant
t_RFRAC.

GEN rfrac_deflate(GEN F, long m) as RgX_deflate where F' is a t_RFRAC.

GEN RgX_inflate(GEN P, long d) return P(X?). Shallow function, not suitable for gerepile-
upto.

GEN RgX_rescale_to_int(GEN x) given a polynomial z with real entries (t_INT, t_FRAC or
t_REAL), return a ZX wich is very close to Dz for some well-chosen integer D. More precisely,
if the input is exact, D is the denominator of x; else it is a power of 2 chosen so that all inexact
entries are correctly rounded to 1 ulp.
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GEN RgX_homogenize(GEN P, long v) Return the homogenous polynomial associated to P in the
secondary variable v, that is y? * P(z/y) where d is the degree of P, x is the variable of P, and y
is the variable with number v.

GEN RgX_homogenous_evalpow(GEN P, GEN a, GEN B) Evaluate the homogenous polynomial
associated to the univariate polynomial P on (a,b) where B is the vector of powers of b with
exponents 0 to the degree of P (gpowers (b,degpol(P))).

GEN RgXX_to_Kronecker(GEN P, long n) Assuming P(X,Y) is a polynomial of degree in X
strictly less than n, returns P(X, X2*"~1), the Kronecker form of P. Shallow function.

GEN RgXX_to_Kronecker_spec(GEN Q, 1long 1Q, long n) return RgXX_to_Kronecker(P,n),
where P is the polynomial Zigl [i]at.
polynomials into blocks. Shallow function.

To be used when splitting the coefficients of genuine

7.6.15.3 Shifts, valuations.
GEN RgX_shift(GEN x, long n) returns x xt" if n > 0, and x\¢t~" otherwise.
GEN RgX_shift_shallow(GEN x, long n) as RgX_shift, but shallow (coefficients are not copied).

GEN RgX_rotate_shallow(GEN P, long k, long p) returns P * X* (mod XP — 1), assuming
the degree of P is strictly less than p, and k& > 0.

void RgX_shift_inplace_init(long v) v > 0, prepare for a later call to RgX_shift_inplace.
Reserves v words on the stack.

GEN RgX_shift_inplace(GEN x, long v) v > 0, assume that RgX_shift_inplace_init(v)
has been called (reserving v words on the stack), immediately followed by a t_POL x. Return
RgX_shift(x,v) by shifting  in place. To be used as follows

RgX_shift_inplace_init(v);
av = avma;

x = gerepileupto(av, ...); /* a t_POL */
return RgX_shift_inplace(x, v);

long RgX_valrem(GEN P,  GEN *pz) returns the valuation v of the t_POL P with respect
to its main variable X. Check whether coefficients are 0 using isexactzero. Set *pz to
RgX_shift_shallow(P, —v).

long RgX_val(GEN P) returns the valuation v of the t_POL P with respect to its main variable X.
Check whether coefficients are 0 using isexactzero.

long RgX_valrem_inexact(GEN P, GEN *z) as RgX_valrem, using gequalO instead of isex-
actzero.

long RgXV_maxdegree(GEN V) returns the maximum of the degrees of the components of the vector
of t_POLs V.
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7.6.15.4 Basic arithmetic.

GEN RgX_add(GEN x, GEN y) adds x and y.

GEN RgX_sub(GEN x, GEN y) subtracts x and y.

GEN RgX_neg(GEN x) returns —x.

GEN RgX_Rg_add(GEN y, GEN x) returns z + y.

GEN RgX_Rg_add_shallow(GEN y, GEN x) returns z + y; shallow function.
GEN Rg_RgX_sub(GEN x, GEN y)

GEN RgX_Rg_sub(GEN y, GEN x) returns x —y

GEN RgX_Rg_mul(GEN y, GEN x) multiplies the RgX y by the scalar x.

GEN RgX_muls(GEN y, long s) multiplies the RgX y by the long s.

GEN RgX_mul2n(GEN y, long n) multiplies the RgX y by 2".

GEN RgX_Rg_div(GEN y, GEN x) divides the RgX y by the scalar x.

GEN RgX_divs(GEN y, long s) divides the RgX y by the long s.

GEN RgX_Rg_divexact(GEN x, GEN y) exact division of the RgX y by the scalar x.

GEN RgX_Rg_eval_bk(GEN f, GEN x) returns f(x) using Brent and Kung algorithm. (Use poleval
for Horner algorithm.)

GEN RgX_RgV_eval (GEN f, GEN V) as RgX Rg eval bk(f, x), assuming V was output by gpow-
ers(x, n) for some n > 1.

GEN RgXV_RgV_eval(GEN f, GEN V) apply RgX RgV_eval bk(, V) to all the components of the
vector f.

GEN RgX_normalize(GEN x) divides x by its leading coefficient. If the latter is 1, x itself is returned,
not a copy. Leading coefficients equal to 0 are stripped, e.g.

0.*t"3 + Mod(0,3)*t"2 + 2%t
is normalized to t.

GEN RgX_mul(GEN x, GEN y) multiplies the two t_POL (in the same variable) x and y. Detect the
coefficient ring and use an appropriate algorithm.

GEN RgX_mul_i(GEN x, GEN y) multiplies the two t_POL (in the same variable) x and y. Do not
detect the coefficient ring. Use a generic Karatsuba algorithm.

GEN RgX_mul_normalized(GEN A, long a, GEN B, long b) returns (X+A)(X’+B)—X(a+b),
where we assume that deg A < a and deg B < b are polynomials in the same variable X.

GEN RgX_sqr(GEN x) squares the t_POL x. Detect the coefficient ring and use an appropriate
algorithm.

GEN RgX_sqr_i(GEN x) squares the t_POL x. Do not detect the coefficient ring. Use a generic
Karatsuba algorithm.

GEN RgXV_prod(GEN V), V being a vector of RgX, returns their product.
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GEN RgX_divrem(GEN x, GEN y, GEN *r) by default, returns the Euclidean quotient and store the
remainder in r. Three special values of r change that behavior @ NULL: do not store the remainder,
used to implement RgX_div,

e ONLY_REM: return the remainder, used to implement RgX_rem,
e ONLY_DIVIDES: return the quotient if the division is exact, and NULL otherwise.

In the generic case, the remainder is created after the quotient and can be disposed of individ-
ually with a cgiv(r).

GEN RgX_div(GEN x, GEN y)

GEN RgX_div_by_X_x(GEN A, GEN a, GEN *r) returns the quotient of the RgX A by (X — a), and
sets r to the remainder A(a).

GEN RgX_rem(GEN x, GEN y)

GEN RgX_pseudodivrem(GEN x, GEN y, GEN *ptr) compute a pseudo-quotient ¢ and pseudo-
remainder 7 such that 1c(y)des(®)—deeW)+1y — gy + r. Return ¢ and set *ptr to 7.

GEN RgX_pseudorem(GEN x, GEN y) return the remainder in the pseudo-division of x by y.
GEN RgXQX_pseudorem(GEN x, GEN y, GEN T) return the remainder in the pseudo-division of x
by y over R[X]/(T).

int ZXQX_dvd(GEN x, GEN y, GEN T) let T' be a monic irreducible ZX, let x,y be t_POL whose
coefficients are either t_INTs or ZX in the same variable as T. Assume further that the leading
coefficient of y is an integer. Return 1 if y|z in (Z[Y]/(T))[X], and 0 otherwise.

GEN RgXQX_pseudodivrem(GEN x, GEN y, GEN T, GEN *ptr) compute a pseudo-quotient ¢ and
pseudo-remainder r such that 1c(y)de&®@—desW) 1y — gy + 1 in R[X]/(T). Return ¢ and set *ptr
to r.

GEN RgX_mulXn(GEN a, long n) returns a*X". This may be a t_FRAC if n < 0 and the valuation
of a is not large enough.

GEN RgX_addmulXn(GEN a, GEN b, long n) returns a + b* X", assuming that n > 0.
GEN RgX_addmulXn_shallow(GEN a, GEN b, long n) shallow variant of RgX_addmulXn.

GEN RgX_digits(GEN x, GEN B) returns a vector of RgX [co, . .., ¢,] of degree less than the degree
of B and such that z =%, , ¢; B".
7.6.15.5 Internal routines working on coefficient arrays.

These routines operate on coefficient blocks which are invalid GENs A GEN argument a or b
in routines below is actually a coefficient arrays representing the polynomials 21;261 ali] X* and

S5 bli] X, Note that a[0] and b[0] contain coefficients and not the mandatory GEN codeword.
This allows to implement divide-and-conquer methods directly, without needing to allocate wrap-
pers around coefficient blocks.

GEN RgX_mulspec(GEN a, GEN b, long na, long nb). Internal routine: given two coefficient
arrays representing polynomials, return their product (as a true GEN) in variable 0.

GEN RgX_sqrspec(GEN a, long na). Internal routine: given a coefficient array representing a
polynomial r eturn its square (as a true GEN) in variable 0.

GEN RgX_addspec(GEN x, GEN y, long nx, long ny) given two coefficient arrays representing
polynomials, return their sum (as a true GEN) in variable 0.

GEN RgX_addspec_shallow(GEN x, GEN y, long nx, long ny) shallow variant of RgX_addspec.
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7.6.15.6 GCD, Resultant.

GEN RgX_gcd(GEN x, GEN y) returns the GCD of x and y, assumed to be t_POLs in the same
variable.

GEN RgX_gcd_simple(GEN x, GEN y) as RgX_gcd using a standard extended Euclidean algorithm.
Usually slower than RgX_gcd.

GEN RgX_extgcd(GEN x, GEN y, GEN *u, GEN *v) returns d = GCD(x,y), and sets *u, *v to the
Bezout coefficients such that xux + *xvy = d. Uses a generic subresultant algorithm.

GEN RgX_extgcd_simple(GEN x, GEN y, GEN *u, GEN *v) as RgX_extgcd using a standard
extended Euclidean algorithm. Usually slower than RgX_extgcd.

GEN RgX_halfgcd(GEN x, GEN y) assuming x and y are t_POLs in the same variable, returns a
2-components t_VEC [M, V] where M is a 2x2 t_MAT and V' a 2-component t_COL, both with t_POL
entries, such that Mx*[z,y] == V and such that f V = [a, ] , then dega > [max(degz,degy))/2] >
deg b.

GEN RgX_chinese_coprime(GEN x, GEN y, GEN Tx, GEN Ty, GEN Tz) returns an RgX, congruent
to x mod Tx and to y mod Ty. Assumes Tx and Ty are coprime, and Tz = Tx * Ty or NULL (in
which case it is computed within).

GEN RgX_disc(GEN x) returns the discriminant of the t_POL x with respect to its main variable.

GEN RgX_resultant_all(GEN x, GEN y, GEN *sol) returns resultant(x,y). If sol is not NULL,
sets it to the last nonconstant remainder in the polynomial remainder sequence if it exists and to
gen 0 otherwise (e.g. one polynomial has degree 0).

7.6.15.7 Other operations.

GEN RgX_gtofp(GEN x, GEN prec) returns the polynomial obtained by applying
gtofp(gel(x,i), prec)

to all coefficients of z.

GEN RgX_fpnorml2(GEN x, long prec) returns (a stack-clean variant of)
gnorml2( RgX_gtofp(x, prec) )

GEN RgX_deriv(GEN x) returns the derivative of x with respect to its main variable.

GEN RgX_integ(GEN x) returns the primitive of x vanishing at 0, with respect to its main variable.

GEN RgX_rescale(GEN P, GEN h) returns h9°e(") P(z/h). P is an RgX and h is nonzero. (Leaves
small objects on the stack. Suitable but inefficient for gerepileupto.)

GEN RgX_unscale(GEN P, GEN h) returns P(hz). (Leaves small objects on the stack. Suitable
but inefficient for gerepileupto.)

GEN RgXV_unscale(GEN v, GEN h) apply RgX_unscale to a vector of RgX.

GEN RgX_translate(GEN P, GEN c) assume c is a scalar or a polynomials whose main variable
has lower priority than the main variable X of P. Returns P(X + ¢) (optimized for ¢ = £1).

GEN RgX_affine(GEN P, GEN a, GEN b) Return P(aX +b) (optimized for b = £1). Not memory
clean.
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7.6.15.8 Function related to modular forms.

GEN RgX_act_G12Q(GEN g, long k) let R be a commutative ring and g = [a, b; ¢, d] be in GL3(Q),

g acts (on the left) on homogeneous polynomials of degree k — 2 in V := R[X,Y];_5 via
g-P:=P(dX —cY,-bX +aY) = (det )" 2P((X,Y) - g }).

This function returns the matrix in My_;(R) of P+ g - P in the basis (X*72,... Y*72) of V.
GEN RgX_act_ZG12Q(GEN z, 1long k) let G := GL2(Q), acting on R[X,Y],_2 and z € Z[G].
Return the matrix giving P+ z - P in the basis (X*72 ... Y¥~2),

7.6.16 RgXn.

GEN RgXn_red_shallow(GEN x, long n) return x%t", where n > 0. Shallow function.

GEN RgXn_recip_shallow(GEN P) returns X" P(1/X). Shallow function.

GEN RgXn_mul (GEN a, GEN b, long n) returns ab modulo X", where a,b are two t_POL in the
same variable X and n > 0. Uses Karatsuba algorithm (Mulders, Hanrot-Zimmermann variant).

GEN RgXn_sqr(GEN a, long n) returns a? modulo X", where a is a t_POL in the variable X and
n > 0. Uses Karatsuba algorithm (Mulders, Hanrot-Zimmermann variant).

GEN RgX_mulhigh i(GEN f, GEN g, long n) return the Euclidean quotient of f(x) % g(z) by ="
(high product). Uses RgXn_mul applied to the reciprocal polynomials of f and g. Not suitable for
gerepile.

GEN RgX_sqrhigh_i(GEN f, long n) return the Euclidean quotient of f(z)? by ™ (high product).
Uses RgXn_sqr applied to the reciprocal polynomial of f. Not suitable for gerepile.

GEN RgXn_inv(GEN a, long n) returns a~' modulo X™, where a is a t_POL in the variable X and
n > 0. Uses Newton-Raphson algorithm.

GEN RgXn_inv_i(GEN a, long n) as RgXn_inv without final garbage collection (suitable for
gerepileupto).

GEN RgXn_div(GEN a, GEN b, long n) returns a/b modulo X", where a and b are t_POLs in the
variable X and n > 0. Uses Newton-Raphson/Karp-Markstein algorithm.

GEN RgXn_div_i(GEN a, GEN b, long n) as RgXn_div without final garbage collection (suitable
for gerepileupto).

GEN RgXn_powers(GEN x, long m, long n) returns [x°, ..., x"] modulo X" as a t_VEC of RgXns.
GEN RgXn_powu(GEN x, ulong m, long n) returns ™ modulo X".
GEN RgXn_powu_i(GEN x, ulong m, long n) as RgXn_powu, not memory clean.

GEN RgXn_sqrt(GEN a, long n) returns ¢'/? modulo X", where a is a t_POL in the variable X
and n > 0. Assume that a = 1 mod X. Uses Newton algorithm.

GEN RgXn_exp(GEN a, long n) returns exp(a) modulo X", assuming a = 0 mod X.

GEN RgXn_expint (GEN f, long n) return exp(F') where F' is the primitive of f that vanishes at
0.

GEN RgXn_eval(GEN Q, GEN x, long n) special case of RgX_RgXQ_eval, when the modulus is a
monomial: returns Q(x) modulo t", where x € RJ[t].

207



GEN RgX_RgXn_eval(GEN f, GEN x, long n) returns f(x) modulo X".

GEN RgX_RgXnV_eval(GEN f, GEN V, long n) as RgX RgXn eval(f, x, n), assuming V was
output by RgXn_powers(x, m, n) for some m > 1.

GEN RgXn_reverse(GEN f, long n) assuming that f = azrmodx? with a invertible, returns a
t_POL g of degree < n such that (g o f)(z) = x modulo z™.

7.6.17 RgXnV.

GEN RgXnV_red_shallow(GEN x, long n) apply RgXn_red_shallow to all the components of the
vector x.

7.6.18 RgXQ.

GEN RgXQ_mul(GEN y, GEN x, GEN T) computes xy mod T’

GEN RgXQ_sqr(GEN x, GEN T) computes 22 mod T

GEN RgXQ_inv(GEN x, GEN T) return the inverse of x mod 7.

GEN RgXQ_pow(GEN x, GEN n, GEN T) computes " mod T

GEN RgXQ_powu(GEN x, ulong n, GEN T) computes " mod 7', n being an ulong.
GEN RgXQ_powers(GEN x, long n, GEN T) returns [x°,...,x"] as a t_VEC of RgXQs.

GEN RgXQ_matrix_pow(GEN y, long n, long m, GEN P) returns RgXQ_powers(y,m-1,P), as a
matrix of dimension n > deg P.

GEN RgXQ_norm(GEN x, GEN T) returns the norm of Mod(x, T).
GEN RgXQ_trace(GEN x, GEN T) returns the trace of Mod(x, T).

GEN RgXQ_charpoly(GEN x, GEN T, long v) returns the characteristic polynomial of Mod (x, T),
in variable v.

GEN RgXQ_minpoly(GEN x, GEN T, long v) returns the minimal polynomial of Mod(x, T), in
variable v.

GEN RgX_RgXQ_eval(GEN f, GEN x, GEN T) returns f(x) modulo 7'

GEN RgX_RgXQV_eval(GEN f, GEN V, GEN T) as RgX RgXQ_-eval(f, x, T), assuming V was
output by RgXQ_powers(x, n, T) for some n > 1.

int RgXQ_ratlift(GEN x, GEN T, long amax, long bmax, GEN *P, GEN *Q) Assuming that
amax + bmax < deg T, attempts to recognize = as a rational function a/b, i.e. to find t_POLs P and
() such that

e P = (Qx modulo T,
e deg P < amax, deg ) < bmax,
e gcd(T, P) = ged(P, Q).

If unsuccessful, the routine returns 0 and leaves P, () unchanged; otherwise it returns 1 and sets
P and Q.

GEN RgXQ_reverse(GEN f, GEN T) returns a t_POL g of degree < n = deg T such that T'(z)
divides (g o f)(x) — x, by solving a linear system. Low-level function underlying modreverse: it
returns a lift of [modreverse(f,T)]; faster than the high-level function since it needs not compute
the characteristic polynomial of f mod T" (often already known in applications). In the trivial case
where n < 1, returns a scalar, not a constant t_POL.
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7.6.19 RgXQV, RgXQC.

GEN RgXQC_red(GEN z, GEN T) z a vector whose coefficients are RgXs (arbitrary GENs in fact),
reduce them to RgXQs (applying grem coefficientwise) in a t_COL.

GEN RgXQV_red(GEN z, GEN T) z a vector whose coefficients are RgXs (arbitrary GENs in fact),
reduce them to RgXQs (applying grem coefficientwise) in a t_VEC.

GEN RgXQV_RgXQ_mul(GEN z, GEN x, GEN T) z multiplies the RgXQV z by the scalar (RgXQ) x.
GEN RgXQV_factorback(GEN L, GEN e, GEN T) returns [[, L;" mod T where L is a vector of
RgXQs and e a vector of t_INTs.

7.6.20 RgXQM.

GEN RgXQM_red(GEN z, GEN T) z a matrix whose coefficients are RgXs (arbitrary GENs in fact),
reduce them to RgXQs (applying grem coefficientwise).

GEN RgXQM_mul(GEN x, GEN y, GEN T)

7.6.21 RgXQX.

GEN RgXQX_red(GEN z, GEN T) z a t_POL whose coefficients are RgXs (arbitrary GENs in fact),
reduce them to RgXQs (applying grem coefficientwise).

GEN RgXQX_mul(GEN x, GEN y, GEN T)

GEN RgXQX_RgXQ_mul(GEN x, GEN y, GEN T) multiplies the RgXQX y by the scalar (RgXQ) x.
GEN RgXQX_sqr(GEN x, GEN T)

GEN RgXQX_powers(GEN x, long n, GEN T)

GEN RgXQX_divrem(GEN x, GEN y, GEN T, GEN *pr)

GEN RgXQX_div(GEN x, GEN y, GEN T)

GEN RgXQX_rem(GEN x, GEN y, GEN T)

GEN RgXQX_translate(GEN P, GEN c, GEN T) assume the main variable X of P has higher
priority than the main variable Y of 7" and ¢. Return a lift of P(X + Mod(c(Y),T(Y))).

GEN Kronecker_to_mod(GEN z, GEN T) z € R[X] represents an element P(X,Y") in R[X,Y] mod
T(Y) in Kronecker form, i.e. z = P(X, X>*"~1)

Let R be some commutative ring, n = degT and let P(X,Y) € R[X,Y] lift a polynomial
in K[Y], where K := R[X]/(T) and degx P < 2n — 1 — such as would result from multiplying
minimal degree lifts of two polynomials in K[Y]. Let 2 = P(¢,t>*"~!) be a Kronecker form of P,
this function returns the image of P(X,t) in K[t], with t_POLMOD coefficients. Not stack-clean.
Note that ¢ need not be the same variable as Y'!

Chapter &:
Black box algebraic structures

The generic routines like gmul or gadd allow handling objects belonging to a fixed list of basic
types, with some natural polymorphism (you can mix rational numbers and polynomials, etc.), at
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the expense of efficiency and sometimes of clarity when the recursive structure becomes complicated,
e.g. a few levels of t_POLMODs attached to different polynomials and variable numbers for quotient
structures. This is the only possibility in GP.

On the other hand, the Level 2 Kernel allows dedicated routines to handle efficiently objects
of a very specific type, e.g. polynomials with coefficients in the same finite field. This is more
efficient, but imvolves a lot of code duplication since polymorphism is no longer possible.

A third and final option, still restricted to library programming, is to define an arbitrary
algebraic structure (currently groups, fields, rings, algebras and Z,-modules) by providing suitable
methods, then using generic algorithms. For instance naive Gaussian pivoting applies over all base
fields and need only be implemented once. The difference with the first solution is that we no
longer depend on the way functions like gmul or gadd will guess what the user is trying to do. We
can then implement independently various groups / fields / algebras in a clean way.

8.1 Black box groups.

A black box group is defined by a bb_group struct, describing methods available to handle
group elements:

struct bb_group
{

GEN (*mul) (void*, GEN, GEN);

GEN (*pow) (void*, GEN, GEN);

GEN (*rand) (voidx);

ulong (*hash) (GEN) ;

int (*equal) (GEN, GEN);

int (*equall) (GEN);

GEN (*xeasylog) (void *E, GEN, GEN, GEN);
}s

mul (E,x,y) returns the product xy.

pow(E,x,n) returns =" (n integer, possibly negative or zero).

rand (E) returns a random element in the group.

hash(x) returns a hash value for x (hash_GEN is suitable for this field).

equal (x,y) returns one if x = y and zero otherwise.

equall(x) returns one if x is the neutral element in the group, and zero otherwise.

easylog(E,a,g,0) (optional) returns either NULL or the discrete logarithm n such that ¢" =
a, the element g being of order o. This provides a short-cut in situation where a better algorithm
than the generic one is known.

A group is thus described by a struct bb_group as above and auxiliary data typecast to
void*. The following functions operate on black box groups:

GEN gen_Shanks_log(GEN x, GEN g, GEN N, void *E, const struct bb_group *grp)
Generic baby-step/giant-step algorithm (Shanks’s method). Assuming that g has order N, compute
an integer k such that g¥ = z. Return cgetg(l, t_VEC) if there are no solutions. This requires
O(V/N) group operations and uses an auxiliary table containing O(v/N) group elements.
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The above is useful for a one-shot computation. If many discrete logs are desired: GEN
gen_Shanks_init(GEN g, long n, void *E, const struct bb_group *grp) return an auxiliary
data structure T' required to compute a discrete log in base g. Compute and store all powers g°,
1 < n.

GEN gen_Shanks(GEN T, GEN x, ulong N, void *E, const struct bb_group *grp) Let T
be computed by gen_Shanks_init(g,n,...). Return k < nN such that g* = x or NULL if no such
index exist. It uses O(N) operation in the group and fast table lookups (in time O(logn)). The
interface is such that the function may be used when the order of the base g is unknown, and hence
compute it given only an upper bound B for it: e.g. choose n, N such that nN > B and compute
the discrete log [ of g=! in base g, then use gen_order with multiple N = [ + 1.

GEN gen_Pollard_log(GEN x, GEN g, GEN N, void *E, const struct bb_group *grp)
Generic Pollard rho algorithm. Assuming that g has order N, compute an integer k such that
g*¥ = x. This requires O(\/N ) group operations in average and O(1) storage. Will enter an infinite
loop if there are no solutions.

GEN gen_plog(GEN x, GEN g, GEN N, void *E, const struct bb_group) Assuming that
g has prime order N, compute an integer k such that g¥ = z, using either gen_Shanks_log or
gen_Pollard_log. Return cgetg(l, t_VEC) if there are no solutions.

GEN gen_Shanks_sqrtn(GEN a, GEN n, GEN N, GEN *zetan, void *E, const struct bb_group
xgrp) returns one solution of ™ = a in a black box cyclic group of order N. Return NULL if no
solution exists. If zetan is not NULL it is set to an element of exact order n. This function uses
gen_plog for all prime divisors of ged(n, V).

GEN gen_PH_log(GEN a, GEN g, GEN N, void *E, const struct bb_group *grp) returns an
integer k such that ¢g*¥ = z, assuming that the order of ¢ divides N, using Pohlig-Hellman algorithm.
Return cgetg(l, t_VEC) if there are no solutions. This calls gen_plog repeatedly for all prime
divisors p of N.

In the following functions the integer parameter ord can be given in all the formats recognized
for the argument of arithmetic functions, i.e. either as a positive t_INT NV, or as its factorization
matrix faN, or (preferred) as a pair [N, faN].

GEN gen_order(GEN x, GEN ord, void *E, const struct bb_group *grp) computes the order
of x; ord is a multiple of the order, for instance the group order.

GEN gen_factored_order (GEN x, GEN ord, void *E, const struct bb_group *grp) returns
a pair [o, F|, where o is the order of x and F' is the factorization of o0; ord is as in gen_order.

GEN gen_gener (GEN ord, void *E, const struct bb_group *grp) returns a random generator
of the group, assuming it is of order exactly ord.

GEN get_arith_Z(GEN ord) given ord as above in one of the formats recognized for arithmetic
functions, i.e. a positive t_INT N, its factorization faN, or the pair [N, faN], return N.

GEN get_arith_ZZM(GEN ord) given ord as above, return the pair [N, faN]. This may require
factoring V.

GEN gen_select_order(GEN v, void *E, const struct bb_group *grp) Let v be a vector of
possible orders for the group; try to find the true order by checking orders of random points. This
will not terminate if there is an ambiguity.
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8.1.1 Black box groups with pairing.

These functions handle groups of rank at most 2 equipped with a family of bilinear pairings
which behave like the Weil pairing on elliptic curves over finite field. In the descriptions below, the
function pairorder(E, P, Q, m, F) must return the order of the m-pairing of P and @, both of
order dividing m, where F' is the factorization matrix of a multiple of m.

GEN gen_ellgroup(GEN o, GEN d, GEN *pt_m, void *E, const struct bb_group *grp, GEN
pairorder(void *E, GEN P, GEN Q, GEN m, GEN F)) returns the elementary divisors [d1, ds]
of the group, assuming it is of order exactly o > 1, and that dy divides d. If do = 1 then [0] is
returned, otherwise m=#pt_m is set to the order of the pairing required to verify a generating set
which is to be used with gen_ellgens. For the parameter o, all formats recognized by arithmetic
functions are allowed, preferably a factorization matrix or a pair [n, factor(n)].

GEN gen_ellgens(GEN d1, GEN d2, GEN m, void *E, const struct bb_group *grp, GEN
pairorder(void *E, GEN P, GEN Q, GEN m, GEN F)) the parameters d;, ds, m being as
returned by gen_ellgroup, returns a pair of generators [P, Q] such that P is of order d; and the
m-pairing of P and @ is of order m. (Note: @ needs not be of order ds). For the parameter d;, all
formats recognized by arithmetic functions are allowed, preferably a factorization matrix or a pair
[n, factor(n)].

8.1.2 Functions returning black box groups.

const struct bb_group * get_Flxq_star(void **E, GEN T, ulong p)

const struct bb_group * get_FpX(Q_star(void **E, GEN T, GEN p) returns a pointer to the
black box group (F,[z]/(T))*.

const struct bb_group * get_FpE_group(void **pE, GEN a4, GEN a6, GEN p) returns a
pointer to a black box group and set *pE to the necessary data for computing in the group E(F,)
where F is the elliptic curve E : y? = 23 4 a4x + ag, with a4 and ag in F,.

const struct bb_group * get_FpXQE_group(void **pE, GEN a4, GEN a6, GEN T, GEN p)
returns a pointer to a black box group and set *pE to the necessary data for computing in the group

E(F,[X]/(T)) where E is the elliptic curve E : y*> = 23 + a4z + ag, with a4 and ag in F,[X]/(T).

const struct bb_group * get_FlxqE_group(void **pE, GEN a4, GEN a6, GEN T, ulong p)
idem for small p.

const struct bb_group * get_F2xqE_group(void **pE, GEN a2, GEN a6, GEN T) idem for
p=2.
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8.2 Black box fields.

A black box field is defined by a bb_field struct, describing methods available to handle field
elements:

struct bb_field
{
GEN (*red) (void *E ,GEN);
GEN (*add) (void *E ,GEN, GEN);
GEN (*mul) (void *E ,GEN, GEN);
GEN (*neg) (void *E ,GEN);
GEN (*inv) (void *E ,GEN);
int (*equalO) (GEN) ;
GEN (*s) (void *E, long);
};

In contrast of black box group, elements can have non canonical forms, and only red is required
to return a canonical form. For instance a black box implementation of finite fields, all methods
except red may return arbitrary representatives in Z[X] of the correct congruence class modulo

(p, T(X)).
red(E,x) returns the canonical form of x.
add(E,x,y) returns the sum z + y.
mul (E,x,y) returns the product xy.
neg(E,x) returns —x.
inv(E,x) returns the inverse of x.
equalO(x) x being in canonical form, returns one if z = 0 and zero otherwise.
s(n) n being a small signed integer, returns n times the unit element.

A field is thus described by a struct bb_field as above and auxiliary data typecast to voidx.
The following functions operate on black box fields:

GEN gen_Gauss(GEN a, GEN b, void *E, const struct bb_field *ff)

GEN gen_Gauss_pivot(GEN x, long *rr, void *E, const struct bb_field *ff)
GEN gen_det(GEN a, void *E, const struct bb_field *ff)

GEN gen_ker(GEN x, long deplin, void *E, const struct bb_field *ff)

GEN gen_matcolinvimage(GEN a, GEN b, void *E, const struct bb_field *ff)
GEN gen_matcolmul (GEN a, GEN b, void *E, const struct bb_field *ff)

GEN gen_matid(long n, void *E, const struct bb_field *ff)

GEN gen_matinvimage(GEN a, GEN b, void *E, const struct bb_field *ff)

GEN gen_matmul (GEN a, GEN b, void *E, const struct bb_field *ff)
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8.2.1 Functions returning black box fields.

const struct bb_field * get_Fp_field(void **pE, GEN p)

const struct bb_field * get_Fq_field(void **pE, GEN T, GEN p)
const struct bb_field * get_Flxq_field(void **pE, GEN T, ulong p)
const struct bb_field * get_F2xq_field(void **pE, GEN T)

const struct bb_field * get_nf_field(void **pE, GEN nf)

8.3 Black box algebra.

A black box algebra is defined by a bb_algebra struct, describing methods available to handle
algebra elements:

struct bb_algebra

{
GEN (*red) (void *E, GEN x);
GEN (*add) (void *E, GEN x, GEN y);
GEN (*sub) (void *E, GEN x, GEN y);
GEN (*mul) (void *E, GEN x, GEN y);
GEN (*sqr) (void *E, GEN x);
GEN (*omne) (void *E);
GEN (*zero) (void *E);

}s

In contrast with black box groups, elements can have non canonical forms, but only add is allowed
to return a non canonical form.

red(E,x) returns the canonical form of z.
add(E,x,y) returns the sum z + y.
sub(E,x,y) returns the difference = — y.
mul (E,x,y) returns the product xy.
sqr(E,x) returns the square x2.
one (E) returns the unit element.

zero (E) returns the zero element.

An algebra is thus described by a struct bb_algebra as above and auxiliary data typecast to
void*. The following functions operate on black box algebra:

GEN gen_bkeval (GEN P, long d, GEN x, int use_sqr, void *E, const struct bb_algebra
xff, GEN cmul(void *E, GEN P, long a, GEN x)) x being an element of the black box algebra,
and P some black box polynomial of degree d over the base field, returns P(z). The function
cmul (E,P,a,y) must return the coefficient of degree a of P multiplied by y. cmul is allowed to
return a non canonical form; it is also allowed to return NULL instead of an exact 0.

The flag use_sqr has the same meaning as for gen_powers. This implements an algorithm of
Brent and Kung (1978).
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GEN gen_bkeval_powers(GEN P, long d, GEN V, void *E, const struct bb_algebra *ff,
GEN cmul(void *E, GEN P, 1long a, GEN x)) as gen_RgX_bkeval assuming V was output
by gen_powers(z,l, E, ff) for some [ > 1. For optimal performance, [ should be computed by
brent_kung_optpow.

long brent_kung_optpow(long d, long n, long m) returns the optimal parameter [ for the
evaluation of n/m polynomials of degree d. Fractional values can be used if the evaluations are
done with different accuracies, and thus have different weights.

8.3.1 Functions returning black box algebras.

const struct bb_algebra * get_FpX_algebra(void **E, GEN p, long v) return the algebra
of polynomials over F, in variable v.

const struct bb_algebra * get_FpXQ_algebra(void **E, GEN T, GEN p) return the algebra
F,[X1/(T(X)).

const struct bb_algebra * get_FpXQX_algebra(void **E, GEN T, GEN p, long v) return
the algebra of polynomials over F,[X]/(T(X)) in variable v.

const struct bb_algebra * get_F1lxqXQ_algebra(void **E, GEN S, GEN T, ulong p) return
the algebra F,[X,Y]/(S(X,Y),T(X)) (for ulong p).

const struct bb_algebra * get_FpXQXQ_algebra(void **E, GEN S, GEN T, GEN p) return
the algebra F,[X,Y]/(S(X,Y),T(X)).

const struct bb_algebra * get_Rg_algebra(void) return the generic algebra.

8.4 Black box ring.

A black box ring is defined by a bb_ring struct, describing methods available to handle ring
elements:

struct bb_ring

{
GEN (*add) (void *E, GEN x, GEN y);
GEN (*mul) (void *E, GEN x, GEN y);
GEN (*sqr) (void *E, GEN x);

};

add(E,x,y) returns the sum z + y.
mul (E,x,y) returns the product zy.
sqr (E,x) returns the square x2.

GEN gen_fromdigits(GEN v, GEN B, void *E, struct bb_ring *r) where B is a ring element
and v = [cg, ..., Cp—1] a vector of ring elements, return Y., ¢; B’ using binary splitting.

GEN gen_digits(GEN x, GEN B, long n, void *E, struct bb_ring *r, GEN (*div)(void
*E, GEN x, GEN y, GEN *r))

(Require the ring to be Euclidean)

div(E,x,y,&r) performs the Euclidean division of x by y in the ring R, returning the quotient
q and setting r to the residue so that = qy + r holds. The residue must belong to a fixed set of
representatives of R/(y).

215



The argument z being a ring element, gen digits returns a vector of ring elements
[co,---scn_1] such that z = > ¢;B". Furthermore for all i # n — 1, the elements ¢; belong-
ing to the fixed set of representatives of R/(B).

8.5 Black box free Z,-modules.

(Very experimental)

GEN gen_ZpX_Dixon(GEN F, GEN V, GEN q, GEN p, long N, void *E, GEN lin(void *E, GEN
F, GEN z, GEN q), GEN invl(void *E, GEN z))

Let F be a ZpXT representing the coefficients of some abstract linear mapping f over Z,[X]
seen as a free Z,-module, let V be an element of Z,[X] and let ¢ = p". Return y € Z,[X] such
that f(y) =V (mod p~) assuming the following holds for n < N:

e lin(FE,FpX_red(F,p"),z,p") = f(2) (mod p")
e f(invl(FE,2)) =z (mod p)

The rationale for the argument F' being that it allows gen_ZpX Dixon to reduce it to the
required p-adic precision.

GEN gen_ZpX_Newton(GEN x, GEN p, long n, void *E, GEN eval(void *E, GEN a, GEN q),
GEN invd(void *E, GEN b, GEN v, GEN q, long )

Let = be an element of Z,[X] seen as a free Z,-module, and f some differentiable function
over Z,[X] such that f(z) =0 (mod p). Return y such that f(y) =0 (mod p™), assuming the
following holds for all a,b € Z,[X] and M < N:

o v =eval(E,a,p") is a vector of elements of Z,[X],
e w = invd(E,b,v,p™, M) is an element in Z,[X],

e v[l] = f(a) (mod pVZ,[X]),

o df,(w)=b (mod pMZ,[X])

and df, denotes the differential of f at a. Motivation: eval allows to evaluate f and invd allows to
invert its differential. Frequently, data useful to compute the differential appear as a subproduct of
computing the function. The vector v allows eval to provide these to invd. The implementation
of invd will generally involves the use of the function gen_ZpX Dixon.

GEN gen_ZpM_Newton(GEN x, GEN p, long n, void *E, GEN eval(void *E, GEN a, GEN q),
GEN invd(void *E, GEN b, GEN v, GEN q, long N)) as above, with polynomials replaced by
matrices.
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Chapter 9:
Operations on general PARI objects

9.1 Assignment.

It is in general easier to use a direct conversion, e.g. y = stoi(s), than to allocate a target of
correct type and sufficient size, then assign to it:

GEN y = cgeti(3); affsi(s, y);

These functions can still be moderately useful in complicated garbage collecting scenarios but you
will be better off not using them.

void gaffsg(long s, GEN x) assigns the long s into the object x.

void gaffect(GEN x, GEN y) assigns the object x into the object y. Both x and y must be scalar
types. Type conversions (e.g. from t_INT to t_REAL or t_INTMOD) occur if legitimate.

int is_universal_constant (GEN x) returns 1 if x is a global PARI constant you should never
assign to (such as gen_1), and 0 otherwise.

9.2 Conversions.

9.2.1 Scalars.

double rtodbl(GEN x) applied to a t_REAL x, converts x into a double if possible.

GEN dbltor(double x) converts the double x into a t_REAL.

long dblexpo(double x) returns expo(dbltor(x)), but faster and without cluttering the stack.
ulong dblmantissa(double x) returns the most significant word in the mantissa of dbltor (x).

int gisdouble(GEN x) if x is a real number (not necessarily a t_REAL), return 1 if x can be
converted to a double, 0 otherwise.

double gtodouble(GEN x) if x is a real number (not necessarily a t_REAL), converts x into a
double if possible.

long gtos(GEN x) converts the t_INT x to a small integer if possible, otherwise raise an exception.
This function is similar to itos, slightly slower since it checks the type of x.

ulong gtou(GEN x) converts the non-negative t_INT x to an unsigned small integer if possible,
otherwise raise an exception. This function is similar to itou, slightly slower since it checks the
type of x.

double dbllog2r (GEN x) assuming that x is a nonzero t_REAL, returns an approximation to
log2(lxl).

double dblmodulus(GEN x) return an approximation to |x|.
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long gtolong(GEN x) if x is an integer (not necessarily a t_INT), converts x into a long if possible.
GEN fractor(GEN x, long 1) applied to a t_FRAC x, converts x into a t_REAL of length prec.

GEN quadtofp(GEN x, long 1) applied to a t_QUAD x, converts x into a t_REAL or t_COMPLEX
depending on the sign of the discriminant of x, to precision 1 BITS_IN_LONG-bit words.

GEN upper_to_cx(GEN x, long *prec) valid for a t_COMPLEX or t_QUAD belonging to the upper
half-plane. If a t_QUAD, convert it to t_COMPLEX using accuracy *prec. If x is inexact, sets *prec
to the precision of x.

GEN cxtofp(GEN x, long prec) converts the t_COMPLEX x to a a complex whose real and imagi-
nary parts are t_REAL of length prec (special case of gtofp.

GEN cxcompotor(GEN x, long prec) converts the t_INT, t_REAL or t_FRAC x to a t_REAL of
length prec. These are all the real types which may occur as components of a t_COMPLEX; special
case of gtofp (introduced so that the latter is not recursive and can thus be inlined).

GEN cxtoreal(GEN x) converts the complex (t_INT, t_REAL, t_FRAC or t_COMPLEX) x to a real
number if its imaginary part is 0. Shallow function.

converts the t_COMPLEX x to a a complex whose real and imaginary parts are t_REAL of length
prec (special case of gtofp.

GEN gtofp(GEN x, long prec) converts the complex number x (t_INT, t_REAL, t_FRAC, t_QUAD
or t_COMPLEX) to either a t_REAL or t_COMPLEX whose components are t_REAL of precision prec;
not necessarily of length prec: a real 0 may be given as real 0(...)). If the result is a t_COMPLEX
extra care is taken so that its modulus really has accuracy prec: there is a problem if the real part
of the input is an exact 0; indeed, converting it to real_0(prec) would be wrong if the imaginary
part is tiny, since the modulus would then become equal to 0, asin 1.£F —100+0.F —28 = 0.F —28.

GEN gtomp(GEN z, long prec) converts the real number x (t_INT, t_REAL, t_FRAC, real t_QUAD)
to either a t_INT or a t_REAL of precision prec. Not memory clean if z is a t_INT: we return x
itself and not a copy.

GEN gcvtop(GEN x, GEN p, long 1) converts z into a t_PADIC of precision [. Works componen-
twise on recursive objects, e.g. t_POL or t_VEC. Converting 0 yields O(p'); converting a nonzero
number yield a result well defined modulo p?r(®)+,

GEN cvtop(GEN x, GEN p, long 1) as gcvtop, assuming that = is a scalar.

GEN cvtop2(GEN x, GEN y) y being a p-adic, converts the scalar = to a p-adic of the same accuracy.
Shallow function.

GEN cvstop2(long s, GEN y) y being a p-adic, converts the scalar s to a p-adic of the same
accuracy. Shallow function.

GEN gprec(GEN x, long 1) returns a copy of x whose precision is changed to [ digits. The
precision change is done recursively on all components of x. Digits means decimal, p-adic and
X-adic digits for t_REAL, t_SER, t_PADIC components, respectively.

GEN gprec_w(GEN x, long 1) returns a shallow copy of x whose t_REAL components have their
precision changed to [ words. This is often more useful than gprec.

GEN gprec_wtrunc(GEN x, long 1) returns a shallow copy of x whose t_REAL components have
their precision truncated to | words. Contrary to gprec_w, this function may never increase the
precision of .
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GEN gprec_wensure(GEN x, long 1) returns a shallow copy of z whose t_REAL components have
their precision increased to at least | words. Contrary to gprec_w, this function may never decrease
the precision of .

The following functions are obsolete and kept for backward compatibility only:
GEN precisionO(GEN x, long n)

GEN bitprecisionO(GEN x, long n)

9.2.2 Modular objects / lifts.

GEN gmodulo(GEN x, GEN y) creates the object Mod (x,y) on the PARI stack, where x and y are
either both t_INTs, and the result is a t_INTMOD, or x is a scalar or a t_POL and y a t_POL, and
the result is a t_POLMOD.

GEN gmodulgs(GEN x, long y) same as gmodulo except y is a long.

GEN gmodulsg(long x, GEN y) same as gmodulo except x is a long.

GEN gmodulss(long x, long y) same as gmodulo except both x and y are longs.

GEN lift_shallow(GEN x) shallow version of 1ift

GEN liftall_shallow(GEN x) shallow version of 1iftall

GEN liftint_shallow(GEN x) shallow version of 1iftint

GEN liftpol_shallow(GEN x) shallow version of 1iftpol

GEN centerliftO(GEN x, long v) DEPRECATED, kept for backward compatibility only: use
either 1ift0(z,v) or centerlift(x).

9.2.3 Between polynomials and coefficient arrays.

GEN gtopoly(GEN x, long v) converts or truncates the object x into a t_POL with main variable
number v. A common application would be the conversion of coefficient vectors (coefficients are
given by decreasing degree). E.g. [2,3] goes to 2*v + 3

GEN gtopolyrev(GEN x, long v) converts or truncates the object x into a t_POL with main
variable number v, but vectors are converted in reverse order compared to gtopoly (coefficients
are given by increasing degree). E.g. [2,3] goes to 3*xv + 2. In other words the vector represents
a polynomial in the basis (1,v,v%,v3,...).

GEN normalizepol(GEN x) applied to an unnormalized t_POL x (with all coefficients correctly set
except that leading term(x) might be zero), normalizes x correctly in place and returns x. For
internal use. Normalizing means deleting all leading ezact zeroes (as per isexactzero), except if
the polynomial turns out to be 0, in which case we try to find a coefficient ¢ which is a nonrational
zero, and return the constant polynomial ¢. (We do this so that information about the base ring is
not lost.)

GEN normalizepol_1g(GEN x, long 1) applies normalizepol to x, pretending that 1g(x) is [,
which must be less than or equal to 1g(x). If equal, the function is equivalent to normalizepol (x).

GEN normalizepol_approx(GEN x, long 1lx) as normalizepol_lg, with the difference that we
just delete all leading zeroes (as per gequal0O). This rougher normalization is used when we have
no other choice, for instance before attempting a Euclidean division by .
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The following routines do not copy coefficients on the stack (they only move pointers around),
hence are very fast but not suitable for gerepile calls. Recall that an RgV (resp. an RgX, resp. an
RgM) is a t_VEC or t_COL (resp. a t_POL, resp. a t_MAT) with arbitrary components. Similarly, an
RgXV is a t_VEC or t_COL with RgX components, etc.

GEN RgV_to_RgX(GEN x, long v) converts the RgV x to a (normalized) polynomial in variable v
(as gtopolyrev, without copy).

GEN RgV_to_RgX_reverse(GEN x, long v) converts the RgV x to a (normalized) polynomial in
variable v (as gtopoly, without copy).

GEN RgX_to_RgC(GEN x, long N) converts the t_POL x to a t_COL v with N components. Coeffi-
cients of x are listed by increasing degree, so that y[i] is the coefficient of the term of degree i — 1
in x.

GEN Rg_to_RgC(GEN x, long N) as RgX_to_RgV, except that other types than t_POL are allowed

for x, which is then considered as a constant polynomial.

GEN RgM_to_RgXV(GEN x, long v) converts the RgM x to a t_VEC of RgX, by repeated calls to
RgV_to_RgX.

GEN RgM_to_RgXV_reverse(GEN x, long v) converts the RgM x to a t_VEC of RgX, by repeated
calls to RgV_to_RgX_reverse.

GEN RgV_to_RgM(GEN v, long N) converts the vector v to a t_MAT with N rows, by repeated calls
to Rg_to_RgV.

GEN RgXV_to_RgM(GEN v, 1long N) converts the vector of RgX v to a t_MAT with N rows, by
repeated calls to RgX_to_RgV.

GEN RgM_to_RgXX(GEN x, long v, long w) converts the RgM x into a t_POL in variable v, whose
coefficients are t_POLs in variable w. This is a shortcut for

RgV_to_RgX( RgM_to_RgXV(x, w), v );

There are no consistency checks with respect to variable priorities: the above is an invalid object
if varncmp(v,w) > 0.

GEN RgXX_to_RgM(GEN x, long N) converts the t_POL x with RgX (or constant) coefficients to a
matrix with N rows.

long RgXY_degreex(GEN P) return the degree of P with respect to the secondary variable.
GEN RgXY_derivx(GEN P) return the derivative of P with respect to the secondary variable.

GEN RgXY_swap(GEN P, long n, long w) converts the bivariate polynomial P(u,v) (a t_POL with
t_POL or scalar coefficients) to P(pol_x[w],u), assuming n is an upper bound for deg, (P).

GEN RgXY_swapspec(GEN C, long n, long w, long 1P) as RgXY_swap where the coefficients of
P are given by gel(C,0),...,gel(C,1P-1).

GEN RgX_to_ser(GEN x, long 1) convert the t_POL x to a shallow t_SER of length [ > 2. Unless
the polynomial is an exact zero, the coefficient of lowest degree T'¢ of the result is not an exact zero
(as per isexactzero). The remainder is O(T+!=2).

GEN RgX_to_ser_inexact(GEN x, long 1) convert the t_POL x to a shallow t_SER of length [ > 2.
Unless the polynomial is zero, the coefficient of lowest degree T of the result is not zero (as per
gequalO). The remainder is O(T+~2).
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GEN RgV_to_ser(GEN x, long v, long 1) convert the t_VEC x, to a shallow t_SER of length [ > 2.

GEN rfrac_to_ser(GEN F, 1long 1) applied to a t_RFRAC F', creates a t_SER of length [ > 2
congruent to F. Not memory-clean but suitable for gerepileupto.

GEN rfrac_to_ser_i(GEN F, 1long 1) internal variant of rfrac_to_ser, neither memory-clean
nor suitable for gerepileupto.

GEN rfracrecip_to_ser_absolute(GEN F, long d) applied to a t_RFRAC F', creates the t_SER
F(1/t) + O(t%). Note that we use absolute and not relative precision here.

GEN gtoser(GEN s, long v, long d). This function is deprecated, kept for backward compati-
bility: it follows the semantic of Ser(s,v), with d = seriesprecision implied and is hard to use
as a general conversion function. Use gtoser_prec instead.

It converts the object s into a t_SER with main variable number v and d > 0 significant terms,
but the argument d is sometimes ignored. More precisely

e if s is a scalar (with respect to variable v), we return a constant power series with d significant
terms;

e if s is a t_POL in variable v, it is truncated to d terms if needed;

e if s is a vector, the coefficients of the vector are understood to be the coefficients of the power
series starting from the constant term (as in Polrev), and the precision d is ignored;

e if 5 is already a power series in v, we return a copy, and the precision d is again ignored.

GEN gtoser_prec(GEN s, long v, long d) this function is a variant of gtoser following the
semantic of Ser(s,v,d): the precision d is always taken into account.

GEN gtocol(GEN x) converts the object x into a t_COL
GEN gtomat (GEN x) converts the object x into a t_MAT.
GEN gtovec(GEN x) converts the object x into a t_VEC.
GEN gtovecsmall(GEN x) converts the object x into a t_VECSMALL.

GEN normalizeser (GEN x) applied to an unnormalized t_SER x (i.e. type t _SER with all coefficients
correctly set except that x[2] might be zero), normalizes x correctly in place. Returns x. For
internal use.

GEN serchopO(GEN s) given a t_SER of the form zVs(x), with s(0) # 0, return z¥(s—s(0)). Shallow
function.

GEN serchop_i(GEN x, long n) returns a shallow chopy of t_SER x with all terms of degree
strictly less than n removed. Shallow version of serchop.

221



9.3 Constructors.

9.3.1 Clean constructors.
GEN zeropadic(GEN p, long n) creates a 0 t_PADIC equal to O(p®).
GEN zeroser(long v, long n) creates a 0 t_SER in variable v equal to O(X™).

GEN scalarser(GEN x, long v, long prec) creates a constant t_SER in variable v and precision
prec, whose constant coefficient is (a copy of) x, in other words x + O(vP*®¢). Assumes that
prec > 0.

GEN pol_0(long v) Returns the constant polynomial O in variable v.
GEN pol_1(long v) Returns the constant polynomial 1 in variable v.
GEN pol_x(long v) Returns the monomial of degree 1 in variable v.
GEN pol_xn(long n, long v) Returns the monomial of degree n in variable v; assume that n > 0.

GEN pol_xnall(long n, long v) Returns the Laurent monomial of degree n in variable v; n < 0
is allowed.

GEN pol_x_powers(long N, long v) returns the powers of pol x(v), of degree 0 to N — 1, in a
vector with N components.

GEN scalarpol(GEN x, long v) creates a constant t_POL in variable v, whose constant coefficient
is (a copy of) x.

GEN deglpol(GEN a, GEN b, long v) creates the degree 1 t_POL apol x(v) + b
GEN zeropol(long v) is identical pol_0.

GEN zerocol(long n) creates a t_COL with n components set to gen_0.

GEN zerovec(long n) creates a t_VEC with n components set to gen_0.

GEN zerovec_block(long n) as zerovec but return a clone.

GEN col_ei(long n, long i) creates a t_COL with n components set to gen_0, but for the i-th
one which is set to gen_1 (i-th vector in the canonical basis).

GEN vec_ei(long n, long i) creates a t_VEC with n components set to gen_0, but for the i-th
one which is set to gen-1 (i-th vector in the canonical basis).

GEN trivial_fact(void) returns the trivial (empty) factorization Mat ([]~, [1~)
GEN prime_fact(GEN x) returns the factorization Mat ([x]~, [1]-~)

GEN Rg_col_ei(GEN x, long n, long i) creates a t_COL with n components set to gen_0, but
for the i-th one which is set to x.

GEN vecsmall_ei(long n, long i) creates a t_VECSMALL with n components set to 0, but for
the i-th one which is set to 1 (i-th vector in the canonical basis).

GEN scalarcol(GEN x, long n) creates a t_COL with n components set to gen_ 0, but the first
one which is set to a copy of x. (The name comes from RgV_isscalar.)

GEN mkintmodu(ulong x, ulong y) creates the t_INTMOD Mod(x, y). The inputs must satisfy
x <.
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GEN zeromat(long m, long n) creates a t_MAT with m x n components set to gen_0. Note that
the result allocates a single column, so modifying an entry in one column modifies it in all columns.
To fully allocate a matrix initialized with zero entries, use zeromatcopy.

GEN zeromatcopy(long m, long n) creates a t_MAT with m x n components set to gen_0.
GEN matid(long n) identity matrix in dimension n (with components gen_1 andgen_0).
GEN scalarmat(GEN x, long n) scalar matrix, x times the identity.

GEN scalarmat_s(long x, long n) scalar matrix, stoi(x) times the identity.

GEN vecrange(GEN a, GEN b) returns the t_VEC [a..b].

GEN vecrangess(long a, long b) returns the t_VEC [a..b].

See also next section for analogs of the following functions:
GEN mkfracss(long x, long y) creates the t_FRAC x/y. Assumes that y > 1 and (z,y) = 1.
GEN sstoQ(long x, long y) returns the t_INT or t_FRAC z/y; no assumptions.
GEN uutoQ(ulong x, ulong y) returns the t_INT or t_FRAC x/y; no assumptions.

void Qtoss(GEN q, long *n, long *d) given a t_INT or t_FRAC g, set n and d such that ¢ = n/d
with d > 1 and (n,d) = 1. Overflow error if numerator or denominator do not fit into a long integer.

GEN mkfraccopy(GEN x, GEN y) creates the t_FRAC z/y. Assumes that y > 1 and (z,y) = 1.

GEN mkrfraccopy(GEN x, GEN y) creates the t_RFRAC x/y. Assumes that y is a t_POL, = a
compatible type whose variable has lower or same priority, with (z,y) = 1.

GEN mkcolcopy(GEN x) creates a 1-dimensional t_COL containing x.

GEN mkmatcopy(GEN x) creates a 1-by-1 t_MAT wrapping the t_COL x.

GEN mkveccopy(GEN x) creates a 1-dimensional t_VEC containing x.

GEN mkvec2copy(GEN x, GEN y) creates a 2-dimensional t_VEC equal to [x,y].

GEN mkcols(long x) creates a 1-dimensional t_COL containing stoi(x).

GEN mkcol2s(long x, long y) creates a 2-dimensional t_COL containing [stoi(x), stoi(y)]

GEN mkcol3s(long x, long y, long z) creates a 3-dimensional t_COL containing [stoi(x),
stoi(y), stoi(z)]

GEN mkcol4s(long x, long y, 1long z, long t) creates a 4-dimensional t_COL containing
[stoi(x), stoi(y), stoi(z), stoi(t)]

GEN mkvecs(long x) creates a 1-dimensional t_VEC containing stoi(x).
GEN mkvec2s(long x, long y) creates a 2-dimensional t_VEC containing [stoi(x), stoi(y)].

GEN mkmat22s(long a, long b, long c, long d) creates the 2 by 2 t_MAT with successive rows
[stoi(a), stoi(b)] and [stoi(c), stoi(d)].

GEN mkvec3s(long x, long y, long z) creates a 3-dimensional t_VEC containing [stoi(x),
stoi(y), stoi(z)].

GEN mkvec4s(long x, 1long y, 1long z, long t) creates a 4-dimensional t_VEC containing
[stoi(x), stoi(y), stoi(z), stoi(t)].
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GEN mkvecsmall(long x) creates a 1-dimensional t_VECSMALL containing x.
GEN mkvecsmall2(long x, long y) creates a 2-dimensional t_VECSMALL containing [x, y].

GEN mkvecsmall3(long x, long y, long z) creates a 3-dimensional t_VECSMALL containing [x,
y, z].

GEN mkvecsmall4(long x, long y, long z, long t) creates a 4-dimensional t_VECSMALL
containing [x, y, z, t].

GEN mkvecsmall5(long x, 1long y, long z, long t, long u) creates a 5-dimensional
t_VECSMALL containing [x, y, z, t, ul.

GEN mkvecsmalln(long n, ...) returns the t_VECSMALL whose n coefficients (long) follow.
Warning: since this is a variadic function, C type promotion is not performed on the arguments
by the compiler, thus you have to make sure that all the arguments are of type long, in particular
integer constants need to be written with the L suffix: mkvecsmalln(2, 1L, 2L) is correct, but
mkvecsmalln(2, 1, 2) is not.

9.3.2 Unclean constructors.

Contrary to the policy of general PARI functions, the functions in this subsection do not copy
their arguments, nor do they produce an object a priori suitable for gerepileupto. In particular,
they are faster than their clean equivalent (which may not exist). If you restrict their arguments
to universal objects (e.g gen_0), then the above warning does not apply.

GEN mkcomplex(GEN x, GEN y) creates the t_COMPLEX x + iy.

GEN mulcxI(GEN x) creates the t_COMPLEX ix. The result in general contains data pointing back
to the original z. Use gcopy if this is a problem. But in most cases, the result is to be used
immediately, before x is subject to garbage collection.

GEN mulcxmI(GEN x), as mulcxI, but returns —ix.

GEN mulcxpowIs(GEN x, long k), as mulcxI, but returns x - i*.

GEN mkquad(GEN n, GEN x, GEN y) creates the t_QUAD x + yw, where w is a root of n, which is
of the form quadpoly (D).

GEN quadpoly_i(GEN D) creates the canonical quadratic polynomial of discriminant D. Assume
that the t_INT D is congruent to 0,1 mod 4 and not a square.

GEN mkfrac(GEN x, GEN y) creates the t_FRAC z/y. Assumes that y > 1 and (z,y) = 1.

GEN mkrfrac(GEN x, GEN y) creates the t_RFRAC z/y. Assumes that y is a t_POL, x a compatible
type whose variable has lower or same priority, with (z,y) = 1.

GEN mkcol(GEN x) creates a 1-dimensional t_COL containing x.

GEN mkcol2(GEN x, GEN y) creates a 2-dimensional t_COL equal to [x,y].

GEN mkcol3(GEN x, GEN y, GEN z) creates a 3-dimensional t_COL equal to [x,y,z].

GEN mkcol4(GEN x, GEN y, GEN z, GEN t) creates a 4-dimensional t_COL equal to [x,y,z,t].

GEN mkcol5(GEN al, GEN a2, GEN a3, GEN a4, GEN a5) creates the 5-dimensional t_COL equal
to [aly az,as, a4, (15].

GEN mkcol6(GEN x, GEN y, GEN z, GEN t, GEN u, GEN v) creates the 6-dimensional column
vector [x,y,z,t,u,v]

224



GEN mkintmod(GEN x, GEN y) creates the t_INTMOD Mod(x, y). The inputs must be t_INTs
satisfying 0 < z < y.

GEN mkpolmod(GEN x, GEN y) creates the t_POLMOD Mod(x, y). The input must satisfy degx <
deg y with respect to the main variable of the t_POL y.  may be a scalar.

GEN mkmat (GEN x) creates a 1-column t_MAT with column z (a t_COL).

GEN mkmat2(GEN x, GEN y) creates a 2-column t_MAT with columns x, y (t_COLs of the same
length).

GEN mkmat22(GEN a, GEN b, GEN c, GEN d) creates the 2 by 2 t_MAT with successive rows [a, b]
and [c, d].

GEN mkmat3(GEN x, GEN y, GEN z) creates a 3-column t_MAT with columns z, y, z (t_COLs of
the same length).

GEN mkmat4(GEN x, GEN y, GEN z, GEN t) creates a 4-column t_MAT with columns z, y, z, t
(t_COLs of the same length).

GEN mkmat5(GEN x, GEN y, GEN z, GEN t, GEN u) creates a 5-column t_MAT with columns =z,
Y, 2, t, u (t_COLs of the same length).

GEN mkvec(GEN x) creates a 1-dimensional t_VEC containing x.

GEN mkvec2(GEN x, GEN y) creates a 2-dimensional t_VEC equal to [x,y].

GEN mkvec3(GEN x, GEN y, GEN z) creates a 3-dimensional t_VEC equal to [x,y,z].

GEN mkvec4(GEN x, GEN y, GEN z, GEN t) creates a 4-dimensional t_VEC equal to [x,y,z,t].

GEN mkvec5(GEN al, GEN a2, GEN a3, GEN a4, GEN ab) creates the 5-dimensional t_VEC equal
to [a17 a2, as, a4, a5]'

GEN mkqfb(GEN a, GEN b, GEN c, GEN D) creates t_QFB equal to Qfb(a,b,c), assuming that
D =b? — 4ac.
GEN mkerr(long n) returns a t_ERROR with error code n (enum err_list).

It is sometimes useful to return such a container whose entries are not universal objects, but

nonetheless suitable for gerepileupto. If the entries can be computed at the time the result is
returned, the following macros achieve this effect:

GEN retmkvec(GEN x) returns a vector containing the single entry x, where the vector root is
created just before the function argument x is evaluated. Expands to

{
GEN res = cgetg(2, t_VEC);
gel(res, 1) = x; /* or rather, the expansion of © */
return res;

}

For instance, the retmkvec(gcopy(x)) returns a clean object, just like return mkveccopy(x)
would.

GEN retmkvec2(GEN x, GEN y) returns the 2-dimensional t_VEC [x,y].

GEN retmkvec3(GEN x, GEN y, GEN z) returns the 3-dimensional t_VEC [x,y,z].

225



GEN retmkvec4(GEN x, GEN y, GEN z, GEN t) returns the 4-dimensional t_VEC [x,y,z,t].

GEN retmkvec5(GEN x, GEN y, GEN z, GEN t, GEN u) returns the 5-dimensional row vector
[x,y,z,t,ul.

GEN retconst_vec(long n, GEN x) returns the n-dimensional t_VEC whose entries are constant
and all equal to x.

GEN retmkcol(GEN x) returns the 1-dimensional t_COL [x]

GEN retmkcol2(GEN x, GEN y) returns the 2-dimensional t_COL [x,y]

GEN retmkcol3(GEN x, GEN y, GEN z) returns the 3-dimensional t_COL [x,y,z]

GEN retmkcol4(GEN x, GEN y, GEN z, GEN t) returns the 4-dimensional t_COL [x,y,z,t]

GEN retmkcol5(GEN x, GEN y, GEN z, GEN t, GEN u) returns the 5-dimensional column vector
[x,y,z,t,u]

GEN retmkcol6(GEN x, GEN y, GEN z, GEN t, GEN u, GEN v) returns the 6-dimensional column
vector [x,y,z,t,u,v]

GEN retconst_col(long n, GEN x) returns the n-dimensional t_COL whose entries are constant
and all equal to x.

GEN retmkmat (GEN x) returns the 1-column t_MAT with colum x.
GEN retmkmat2(GEN x, GEN y) returns the 2-column t_MAT with columns x, y.
GEN retmkmat3(GEN x, GEN y, GEN z) returns the 3-dimensional t_MAT with columns x, y, z.

GEN retmkmat4(GEN x, GEN y, GEN z, GEN t) returns the 4-dimensional t_MAT with columns x,
v, z, t.

GEN retmkmat5(GEN x, GEN y, GEN z, GEN t, GEN u) returns the 5-dimensional t_MAT with
columns x, y, z, t, u.

GEN retmkcomplex(GEN x, GEN y) returns the t_COMPLEX x + Ixy.
GEN retmkfrac(GEN x, GEN y) returns the t_FRAC x / y. Assume x and y are coprime and y > 1.

GEN retmkrfrac(GEN x, GEN y) returns the t_RFRAC x / y. Assume x and y are coprime and
more generally that the rational function cannot be simplified.

GEN retmkintmod(GEN x, GEN y) returns the t_INTMOD Mod(x, y).
GEN retmkquad(GEN n, GEN a, GEN b).
GEN retmkpolmod(GEN x, GEN y) returns the t_POLMOD Mod(x, y).

GEN mkintn(long n, ...) returns the nonnegative t_INT whose development in base 232 is given
by the following n 32bit-words (unsigned int).

mkintn(3, a2, al, a0);
returns a22% + ;232 + ao.

GEN mkpoln(long n, ...) Returns the t_POL whose n coefficients (GEN) follow, in order of
decreasing degree.

mkpoln(3, gen_1, gen_2, gen_0);
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returns the polynomial X2 + 2X (in variable 0, use setvarn if you want other variable numbers).
Beware that n is the number of coefficients, hence one more than the degree.

GEN mkvecn(long n, ...) returns the t_VEC whose n coefficients (GEN) follow.
GEN mkcoln(long n, ...) returns the t_COL whose n coefficients (GEN) follow.

GEN scalarcol_shallow(GEN x, long n) creates a t_COL with n components set to gen 0, but
the first one which is set to a shallow copy of x. (The name comes from RgV_isscalar.)

GEN scalarmat_shallow(GEN x, long n) creates an n X n scalar matrix whose diagonal is set to
shallow copies of the scalar x.

GEN RgX_sylvestermatrix(GEN f, GEN g) return the Sylvester matrix attached to the two t_POL
in the same variable f and g.

GEN diagonal_shallow(GEN x) returns a diagonal matrix whose diagonal is given by the vector
x. Shallow function.

GEN scalarpol_shallow(GEN a, long v) returns the degree 0 t_POL apol x(v)°.
GEN deglpol_shallow(GEN a, GEN b, long v) returns the degree 1 t_POL apol x(v) + b

GEN deg2pol_shallow(GEN a, GEN b, GEN c, long v) returns the degree 2 t_POL ar® +bx + ¢
where x = pol_x(v).

GEN zeropadic_shallow(GEN p, long n) returns a (shallow) 0 t_PADIC equal to O(p").

9.3.3 From roots to polynomials.

GEN degl_from_roots(GEN L, long v) given a vector L of scalars, returns the vector of monic
linear polynomials in variable v whose roots are the L[i], i.e. the x — L[i].

GEN roots_from_degl(GEN L) given a vector L of monic linear polynomials, return their roots,
i.e. the —L[i](0).

GEN roots_to_pol(GEN L, long v) given a vector of scalars L, returns the monic polynomial in
variable v whose roots are the L[i]. Leaves some garbage on stack, but suitable for gerepileupto.

GEN roots_to_pol_r1(GEN L, long v, long rl) as roots_to_pol assuming the first r; roots
are “real”, and the following ones are representatives of conjugate pairs of “complex” roots. So
if L has r1 4+ ro elements, we obtain a polynomial of degree r; + 2r5. In most applications, the
roots are indeed real and complex, but the implementation assumes only that each “complex” root
z introduces a quadratic factor X? — trace(z)X + norm(z). Leaves some garbage on stack, but
suitable for gerepileupto.
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9.4 Integer parts.

GEN gfloor(GEN x) creates the floor of x, i.e. the (true) integral part.

GEN gfrac(GEN x) creates the fractional part of x, i.e. x minus the floor of x.

GEN gceil(GEN x) creates the ceiling of x.

GEN ground(GEN x) rounds towards 4+oo the components of x to the nearest integers.

GEN grndtoi(GEN x, long *e) same as ground, but in addition sets *e to the binary exponent
of x — ground(z). If this is positive, then significant bits are lost in the rounded result. This kind
of situation raises an error message in ground but not in grndtoi. The parameter e can be set to
NULL if an error estimate is not needed, for a minor speed up.

GEN gtrunc(GEN x) truncates x. This is the false integer part if x is a real number (i.e. the unique
integer closest to x among those between 0 and x). If x is a t_SER, it is truncated to a t_POL; if x
is a t_RFRAC, this takes the polynomial part.

GEN gtrunc2n(GEN x, long n) creates the floor of 2"x, this is only implemented for t_INT,
t_REAL, t_FRAC and t_COMPLEX of those.

GEN gcvtoi(GEN x, long *e) analogous to grndtoi for t_REAL inputs except that rounding is
replaced by truncation. Also applies componentwise for vector or matrix inputs; otherwise, sets *e
to ~HIGHEXPOBIT (infinite real accuracy) and return gtrunc(x).

9.5 Valuation and shift.

GEN gshift[z] (GEN x, 1long n[, GEN z]) yields the result of shifting (the components of)
x left by n (if n is nonnegative) or right by —n (if n is negative). Applies only to t_INT and
vectors/matrices of such. For other types, it is simply multiplication by 2".

GEN gmul2n([z] (GEN x, long n[, GEN z]) yields the product of x and 2®. This is different from
gshift when n is negative and x is a t_INT: gshift truncates, while gmul2n creates a fraction if
necessary.

long gvaluation(GEN x, GEN p) returns the greatest exponent e such that p® divides x, when
this makes sense.

long gval(GEN x, long v) returns the highest power of the variable number v dividing the
t_POL x.
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9.6 Comparison operators.

9.6.1 Generic.

long gemp(GEN x, GEN y) comparison of x with y: returns 1 (z > y), 0 (x = y) or —1 (z < y).
Two t_STR are compared using the standard lexicographic ordering; a t_STR cannot be compared
to any non-string type. If neither x nor y is a t_STR, their allowed types are t_INT, t _REAL, t_FRAC,
t_QUAD with positive discriminant (use the canonical embedding w — v D/2 or w — (1 +v/D)/2)
or t_INFINITY. Use cmp_universal to compare arbitrary GENs.

long lexcmp(GEN x, GEN y) comparison of x with y for the lexicographic ordering; when compar-
ing objects of different lengths whose components are all equal up to the smallest of their length,
consider that the longest is largest. Consider scalars as 1-component vectors. Return gemp(z,y) if
both arguments are scalars.

int gequalX(GEN x) return 1 (true) if x is a variable (monomial of degree 1 with t_INT coefficients
equal to 1 and 0), and 0 otherwise

long gequal(GEN x, GEN y) returns 1 (true) if x is equal to y, 0 otherwise. A priori, this
makes sense only if x and y have the same type, in which case they are recursively compared
componentwise. When the types are different, a true result means that x - y was successfully
computed and that gequal0O found it equal to 0. In particular

gequal (cgetg(l, t_VEC), gen_0)

is true, and the relation is not transitive. E.g. an empty t_COL and an empty t_VEC are not equal
but are both equal to gen_O.

long gidentical(GEN x, GEN y) returns 1 (true) if x is identical to y, 0 otherwise. In particular,
the types and length of x and y must be equal. This test is much stricter than gequal, in particular,
t_REAL with different accuracies are tested different. This relation is transitive.

GEN gmax(GEN x, GEN y) returns a copy of the maximum of z and y, compared using gcmp.
GEN gmin(GEN x, GEN y) returns a copy of the minimum of z and y, compared using gcmp.
GEN gmax_shallow(GEN x, GEN y) shallow version of gmax.
GEN gmin_shallow(GEN x, GEN y) shallow version of gmin.

9.6.2 Comparison with a small integer.

int isexactzero(GEN x) returns 1 (true) if x is exactly equal to O (including t_INTMODs like
Mod (0,2)), and 0 (false) otherwise. This includes recursive objects, for instance vectors, whose
components are 0.

GEN gisexactzero(GEN x) returns NULL unless x is exactly equal to 0 (as per isexactzero). When
x is an exact zero return the attached scalar zero as a t_INT (gen_0), a t_INTMOD (Mod(0,N) for
the largest possible N) or a t_FFELT.

int isrationalzero(GEN x) returns 1 (true) if x is equal to an integer 0 (excluding t_INTMODs
like Mod (0,2) ), and 0 (false) otherwise. Contrary to isintzero, this includes recursive objects, for
instance vectors, whose components are 0.

int ismpzero(GEN x) returns 1 (true) if x is a t_INT or a t_REAL equal to 0.

int isintzero(GEN x) returns 1 (true) if x is a t_INT equal to 0.
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int isint1(GEN x) returns 1 (true) if x is a t_INT equal to 1.
int isintml(GEN x) returns 1 (true) if x is a t_INT equal to —1.

int equalil(GEN n) Assuming that x is a t_INT, return 1 (true) if x is equal to 1, and return
0 (false) otherwise.

int equaliml(GEN n) Assuming that x is a t_INT, return 1 (true) if x is equal to —1, and return
0 (false) otherwise.

int is_pm1(GEN x). Assuming that x is a nonzero t_INT, return 1 (true) if x is equal to —1 or 1,
and return 0 (false) otherwise.

int gequalO(GEN x) returns 1 (true) if x is equal to 0, O (false) otherwise.

int gequall(GEN x) returns 1 (true) if x is equal to 1, 0 (false) otherwise.

int gequalml(GEN x) returns 1 (true) if x is equal to —1, 0 (false) otherwise.

long gcmpsg(long s, GEN x)

long gcmpgs(GEN x, long s) comparison of x with the long s.

GEN gmaxsg(long s, GEN x)

GEN gmaxgs(GEN x, long s) returns the largest of x and the long s (converted to GEN)
GEN gminsg(long s, GEN x)

GEN gmings(GEN x, long s) returns the smallest of x and the long s (converted to GEN)
long gequalsg(long s, GEN x)

long gequalgs(GEN x, long s) returns 1 (true) if x is equal to the long s, 0 otherwise.

9.7 Miscellaneous Boolean functions.

int isrationalzeroscalar (GEN x) equivalent to, but faster than,

is_scalar_t(typ(x)) && isrationalzero(x)
int isinexact(GEN x) returns 1 (true) if  has an inexact component, and 0 (false) otherwise.
int isinexactreal (GEN x) return 1 if x has an inexact t_REAL component, and 0 otherwise.

int isrealappr(GEN x, long e) applies (recursively) to complex inputs; returns 1 if x is approx-
imately real to the bit accuracy e, and 0 otherwise. This means that any t_COMPLEX component
must have imaginary part ¢ satisfying gexpo(t) < e.

int isint(GEN x, GEN *n) returns O (false) if x does not round to an integer. Otherwise, returns
1 (true) and set n to the rounded value.

int issmall(GEN x, long *n) returns O (false) if x does not round to a small integer (suitable
for itos). Otherwise, returns 1 (true) and set n to the rounded value.

long iscomplex(GEN x) returns 1 (true) if x is a complex number (of component types embeddable
into the reals) but is not itself real, 0 if x is a real (not necessarily of type t_REAL), or raises an
error if x is not embeddable into the complex numbers.
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9.7.1 Obsolete.

The following less convenient comparison functions and Boolean operators were used by the
historical GP interpreter. They are provided for backward compatibility only and should not be
used:

GEN gle(GEN x, GEN y)
GEN glt(GEN x, GEN y)
GEN gge(GEN x, GEN y)
GEN ggt(GEN x, GEN y)
GEN geq(GEN x, GEN y)
GEN gne(GEN x, GEN y)
GEN gor(GEN x, GEN y)
GEN gand(GEN x, GEN y)
GEN gnot(GEN x, GEN y)

9.8 Sorting.

9.8.1 Basic sort.

GEN sort(GEN x) sorts the vector x in ascending order using a mergesort algorithm, and gcmp as
the underlying comparison routine (returns the sorted vector). This routine copies all components
of x, use gen_sort_inplace for a more memory-efficient function.

GEN lexsort(GEN x), as sort, using lexcmp instead of gcmp as the underlying comparison routine.

GEN vecsort(GEN x, GEN k), as sort, but sorts the vector x in ascending lexicographic order,
according to the entries of the t_VECSMALL k. For example, if k = [2,1, 3], sorting will be done with
respect to the second component, and when these are equal, with respect to the first, and when
these are equal, with respect to the third.

9.8.2 Indirect sorting.

GEN indexsort(GEN x) as sort, but only returns the permutation which, applied to x, would sort
the vector. The result is a t_VECSMALL.

GEN indexlexsort(GEN x), as indexsort, using lexcmp instead of gcmp as the underlying com-
parison routine.

GEN indexvecsort(GEN x, GEN k), as vecsort, but only returns the permutation that would sort
the vector x.

long vecindexmin(GEN x) returns the index for a minimal element of z (t_VEC, t_COL or
t_VECSMALL).

long vecindexmax (GEN x) returns the index for a maximal element of z (t_VEC, t_COL or
t_VECSMALL).

231



9.8.3 Generic sort and search. The following routines allow to use an arbitrary comparison
function int (*cmp) (void* data, GEN x, GEN y), such that cmp(data,x,y) returns a negative
result if z < y, a positive one if x > y and 0 if x = y. The data argument is there in case your cmp
requires additional context.

GEN gen_sort(GEN x, void *data, int (*cmp) (void *, GEN, GEN)), as sort, with an explicit
comparison routine.

GEN gen_sort_shallow(GEN x, void *data, int (*cmp) (void *, GEN, GEN)), shallow variant
of gen_sort.

GEN gen_sort_uniq(GEN x, void *data, int (xcmp)(void *, GEN, GEN)), as gen_sort,
removing duplicate entries.

GEN gen_indexsort(GEN x, void *data, int (*cmp) (void*, GEN, GEN)), as indexsort.

GEN gen_indexsort_uniq(GEN x, void *data, int (*cmp) (void#*, GEN, GEN)), as indexsort,
removing duplicate entries.

void gen_sort_inplace(GEN x, void *data, int (*cmp) (void*, GEN, GEN), GEN *perm)
sort x in place, without copying its components. If perm is not NULL, it is set to the permutation
that would sort the original x.

GEN gen_setminus(GEN A, GEN B, int (*cmp) (GEN, GEN)) given two sorted vectors A and B,
returns the vector of elements of A not belonging to B.

GEN sort_factor(GEN y, void *data, int (*cmp)(void *, GEN, GEN)): assuming y is a
factorization matrix, sorts its rows in place (no copy is made) according to the comparison function
cmp applied to its first column.

GEN merge_sort_uniq(GEN x, GEN y, void *data, int (*cmp) (void *, GEN, GEN)) assuming x
and y are sorted vectors, with respect to the cmp comparison function, return a sorted concatenation,
with duplicates removed. Shallow function.

GEN setunion_i(GEN x, GEN y) shallow version of setunion, a simple alias for
merge_sort_uniq(x,y, (void*)cmp_universal, cmp_nodata)

GEN merge_factor(GEN fx, GEN fy, void *data, int (xcmp) (void *, GEN, GEN)) let fx
and fy be factorization matrices for X and Y sorted with respect to the comparison function cmp
(see sort_factor), returns the factorization of X %Y.

long gen_search(GEN v, GEN y, void *data, int (*cmp) (void*, GEN, GEN)).

Let v be a vector sorted according to cmp(data,a,b); look for an index 7 such that v[i] is equal to
y. If y is found, return 7 (not necessarily the first occurence in case of multisets), else return —i
where ¢ is the index where y should be inserted.

long tablesearch(GEN T, GEN x, int (*cmp) (GEN, GEN)) is a faster implementation for the
common case gen_search(T,x, cmp, cmp_nodata) when we have no need to insert missing elements;
return 0 in case x is not found.
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9.8.4 Further useful comparison functions.

int cmp_universal(GEN x, GEN y) a somewhat arbitrary universal comparison function, devoid
of sensible mathematical meaning. It is transitive, and returns 0 if and only if gidentical (x,y)
is true. Useful to sort and search vectors of arbitrary data.

int cmp_nodata(void *data, GEN x, GEN y). This function is a hack used to pass an existing
basic comparison function lacking the data argument, i.e. with prototype int (*cmp) (GEN x,
GEN y). Instead of gen_sort(x, NULL, cmp) which may or may not work depending on how your
compiler handles typecasts between incompatible function pointers, one should use gen_sort (x,
(void*)cmp, cmp_nodata).

Here are a few basic comparison functions, to be used with cmp_nodata:

int ZV_cmp(GEN x, GEN y) compare two ZV, which we assume have the same length (lexicographic
order).

int cmp_F1x(GEN x, GEN y) compare two Flx, which we assume have the same main variable
(lexicographic order).

int cmp_RgX(GEN x, GEN y) compare two polynomials, which we assume have the same main
variable (lexicographic order). The coefficients are compared using gcmp.

int cmp_prime_over_p(GEN x, GEN y) compare two prime ideals, which we assume divide the
same prime number. The comparison is ad hoc but orders according to increasing residue degrees.

int cmp_prime_ideal(GEN x, GEN y) compare two prime ideals in the same nf. Orders by
increasing primes, breaking ties using cmp_prime_over_p.

int cmp_padic(GEN x, GEN y) compare two t_PADIC (for the same prime p).
Finally a more elaborate comparison function:

int gen_cmp_RgX(void *data, GEN x, GEN y) compare two polynomials, ordering first by
increasing degree, then according to the coefficient comparison function:

int (*cmp_coeff) (GEN,GEN) = (int(*) (GEN,GEN)) data;

9.9 Division.

GEN gdivgu(GEN x, ulong u) return x/u).

GEN gdivgunextu(GEN x, ulong u) return z/(u(u + 1)). If u(u + 1) does not fit into an ulong,
it is created and left on the stack for efficiency.

GEN divrunextu(GEN x, ulong i) as gdivgunextu for a t_REAL x.
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9.10 Divisibility, Euclidean division.

GEN gdivexact(GEN x, GEN y) returns the quotient x/y, assuming y divides x. Not stack clean if
y =1 (we return z, not a copy).

int gdvd(GEN x, GEN y) returns 1 (true) if y divides x, 0 otherwise.

GEN gdiventres(GEN x, GEN y) creates a 2-component vertical vector whose components are the
true Euclidean quotient and remainder of x and y.

GEN gdivent[z] (GEN x, GEN y[, GEN z]) yields the true Euclidean quotient of x and the t_INT
or t_POL y, as per the \ GP operator.

GEN gdiventsg(long s, GEN y[, GEN z]), as gdivent except that x is a long.
GEN gdiventgs([z] (GEN x, long s[, GEN z]), as gdivent except that y is a long.

GEN gmod[z] (GEN x, GEN y[, GEN z]) yields the remainder of x modulo the t_INT or t_POL y,
as per the % GP operator. A t_REAL or t_FRAC y is also allowed, in which case the remainder is
the unique real r such that 0 < r < |y| and y = ¢x + r for some (in fact unique) integer q.

GEN gmodsg(long s, GEN y[, GEN z]) as gmod, except x is a long.
GEN gmodgs(GEN x, long s[, GEN z]) as gmod, except y is a long.

GEN gdivmod(GEN x, GEN y, GEN *r) If r is not equal to NULL or ONLY_REM, creates the (false)
Euclidean quotient of x and y, and puts (the address of) the remainder into *r. If r is equal
to NULL, do not create the remainder, and if r is equal to ONLY_REM, create and output only the
remainder. The remainder is created after the quotient and can be disposed of individually with a
cgiv(r).

GEN poldivrem(GEN x, GEN y, GEN *r) same as gdivimod but specifically for t_POLs x and y,
not necessarily in the same variable. Either of x and y may also be scalars, treated as polynomials
of degree 0.

GEN gdeuc(GEN x, GEN y) creates the Euclidean quotient of the t_POLs x and y. Either of x and
y may also be scalars, treated as polynomials of degree 0.

GEN grem(GEN x, GEN y) creates the Euclidean remainder of the t_POL x divided by the t_POL y.
Either of x and y may also be scalars, treated as polynomials of degree 0.

GEN gdivround(GEN x, GEN y) if x and y are real (t_INT, t_REAL, t_FRAC), return the rounded
Fuclidean quotient of « and y as per the \/ GP operator. Operate componentwise if x is a t_COL,
t_VEC or t_MAT. Otherwise as gdivent.

GEN centermod_i(GEN x, GEN y, GEN y2), as centermodii, componentwise.

GEN centermod(GEN x, GEN y), as centermod i, except that y2 is computed (and left on the
stack for efficiency).

GEN ginvmod(GEN x, GEN y) creates the inverse of x modulo y when it exists. y must be of type
t_INT (in which case x is of type t_INT) or t_POL (in which case x is either a scalar type or a
t_POL).
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9.11 GCD, content and primitive part.

9.11.1 Generic.

GEN resultant(GEN x, GEN y) creates the resultant of the t_POLs x and y computed using
Sylvester’s matrix (inexact inputs), a modular algorithm (inputs in Q[X]) or the subresultant
algorithm, as optimized by Lazard and Ducos. Either of x and y may also be scalars (treated as
polynomials of degree 0)

GEN ggcd(GEN x, GEN y) creates the GCD of x and y.
GEN glcm(GEN x, GEN y) creates the LCM of x and y.

GEN gbezout(GEN x, GEN y, GEN *u, GEN *v) returns the GCD of x and y, and puts (the
addresses of) objects u and v such that ux + vy = ged(x,y) into *u and *v.

GEN subresext(GEN x, GEN y, GEN *U, GEN #V) returns the resultant of x and y, and puts (the
addresses of) polynomials v and v such that ux + vy = Res(x,y) into *U and *V.

GEN content (GEN x) returns the GCD of all the components of x.

GEN primitive_part(GEN x, GEN *c) sets c to content(x) and returns the primitive part x / c.
A trivial content is set to NULL.

GEN primpart(GEN x) as above but the content is lost. (For efficiency, the content remains on the
stack.)

GEN denom_i(GEN x) shallow version of denom.

GEN numer_i(GEN x) shallow version of numer.

9.11.2 Over the rationals.
long Q_pval(GEN x, GEN p) valuation at the t_INT p of the t_INT or t_FRAC x.
long Q_lval(GEN x, ulong p) same for ulong p.

long Q_pvalrem(GEN x, GEN p, GEN *r) returns the valuation e at the t_INT p of the t_INT or
t_FRAC x. The quotient x/p® is returned in *r.

long Q_lvalrem(GEN x, ulong p, GEN *r) same for ulong p.
GEN Q_abs(GEN x) absolute value of the t_INT or t_FRAC x.

GEN Qdivii(GEN x, GEN y), assuming x and y are both of type t_INT, return the quotient x/y
as a t_INT or t_FRAC; marginally faster than gdiv.

GEN Qdivis(GEN x, long y), assuming x is an t_INT, return the quotient z/y as a t_INT or
t_FRAC; marginally faster than gdiv.

GEN Qdiviu(GEN x, wulong y), assuming z is an t_INT, return the quotient z/y as a t_INT or
t_FRAC; marginally faster than gdiv.

GEN Q_abs_shallow(GEN x) x being a t_INT or a t_FRAC, returns a shallow copy of |z, in partic-
ular returns z itself when x > 0, and gneg(x) otherwise.

GEN Q_gcd(GEN x, GEN y) gcd of the t_INT or t_FRAC x and y.

In the following functions, arguments belong to a M ®z Q for some natural Z-module M, e.g.
multivariate polynomials with integer coefficients (or vectors/matrices recursively built from such
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objects), and an element of M is said to be integral. We are interested in contents, denominators,
etc. with respect to this canonical integral structure; in particular, contents belong to Q, denomi-
nators to Z. For instance the Q-content of (1/2)xy is (1/2), and its Q-denominator is 2, whereas
content would return y/2 and denom 1.

GEN Q_content(GEN x) the Q-content of x.

GEN Z_content(GEN x) as Q_content but assume that all rationals are in fact t_INTs and return
NULL when the content is 1. This function returns as soon as the content is found to equal 1.

GEN Q_content_safe(GEN x) as Q_content, returning NULL when the Q-content is not defined
(e.g. for a t_REAL or t_INTMOD component).

GEN Q_denom(GEN x) the Q-denominator of z. Shallow function. Raises en e_TYPE error out when
the notion is meaningless, e.g. for a t_REAL or t_INTMOD component.

GEN Q_denom_safe(GEN x) the Q-denominator of x. Shallow function. Return NULL when the
notion is meaningless.

GEN Q_primitive_part(GEN x, GEN *c) sets c to the Q-content of x and returns x / c, which
is integral.

GEN Q_primpart(GEN x) as above but the content is lost. (For efficiency, the content remains on
the stack.)

GEN vec_Q_primpart(GEN x) as above component-wise. Applied to a t_MAT, the result has prim-
itive columns.

GEN row_Q_primpart(GEN x) as above, applied to the rows of a t_MAT, so that the result has
primitive rows. Not gerepile-safe.

GEN Q_remove_denom(GEN x, GEN #*ptd) sets d to the Q-denominator of x and returns x * d,
which is integral. Shallow function.

GEN Q_div_to_int(GEN x, GEN c) returns x / c, assuming c is a rational number (t_INT or
t_FRAC) and the result is integral.

GEN Q_mul_to_int(GEN x, GEN c) returns x * c, assuming c is a rational number (t_INT or
t_FRAC) and the result is integral.

GEN Q_muli_to_int(GEN x, GEN d) returns x * c, assuming cis a t_INT and the result is integral.

GEN mul_content(GEN cx, GEN cy) cx and cy are as set by primitive_part: either a GEN or
NULL representing the trivial content 1. Returns their product (either a GEN or NULL).

GEN div_content(GEN cx, GEN cy) cx and cy are as set by primitive_part: either a GEN or
NULL representing the trivial content 1. Returns their quotient (either a GEN or NULL).

GEN inv_content(GEN c) c is as set by primitive_part: either a GEN or NULL representing the
trivial content 1. Returns its inverse (either a GEN or NULL).

GEN mul_denom(GEN dx, GEN dy) dx and dy are as set by Q_.remove_denom: either a t_INT or
NULL representing the trivial denominator 1. Returns their product (either a t_INT or NULL).
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9.12 Generic arithmetic operators.

9.12.1 Unary operators.

GEN gneglz] (GEN x[, GEN z]) yields —x.

GEN gneg_i(GEN x) shallow function yielding —x.
GEN gabs[z] (GEN x[, GEN z]) yields |x|.

GEN gsqr (GEN x) creates the square of x.

GEN ginv(GEN x) creates the inverse of x.

9.12.2 Binary operators.
Let “op” be a binary operation among
op=add: addition (x + y).
op=sub: subtraction (x - y).
op=mul: multiplication (x * y).
op=div: division (x / y).
The names and prototypes of the functions corresponding to op are as follows:
GEN gop(GEN x, GEN y)
GEN gopgs(GEN x, long s)
GEN gopgu(GEN x, ulong u)
GEN gopsg(long s, GEN y)
GEN gopug(ulong u, GEN y)
Explicitly
GEN gadd(GEN x, GEN y), GEN gaddgs(GEN x, long s), GEN gaddsg(long s, GEN x)

GEN gmul (GEN x, GEN y), GEN gmulgs(GEN x, long s), GEN gmulsg(long s, GEN x), GEN
gmulgu(GEN x, ulong u), GEN gmulug(GEN x, ulong u),

GEN gsub(GEN x, GEN y), GEN gsubgs(GEN x, long s), GEN gsubsg(long s, GEN x)

GEN gdiv(GEN x, GEN y), GEN gdivgs(GEN x, long s), GEN gdivsg(long s, GEN x), GEN
gdivgu(GEN x, ulong u),

GEN gpow(GEN x, GEN y, long 1) creates xV. If y is a t_INT, return powgi(x,y) (the precision
1 is not taken into account). Otherwise, the result is exp(y * log(x)) where exact arguments are
converted to floats of precision 1 in case of need; if there is no need, for instance if z is a t_REAL, [
is ignored. Indeed, if = is a t_REAL, the accuracy of log z is determined from the accuracy of x, it
is no problem to multiply by y, even if it is an exact type, and the accuracy of the exponential is
determined, exactly as in the case of the initial log z.

GEN gpowgs(GEN x, long n) creates x* using binary powering. To treat the special case n = 0,
we consider gpowgs as a series of gmul, so we follow the rule of returning result which is as exact
as possible given the input. More precisely, we return

237



e gen_1 if x has type t_INT, t_REAL, t_FRAC, or t_PADIC
e Mod(1,N) if x is a t_INTMOD modulo N.

e gen_1 for t_COMPLEX, t_QUAD unless one component is a t_INTMOD, in which case we return
Mod(1, N) for a suitable N (the gcd of the moduli that appear).

e FF_1(x) for a t_FFELT.

e qfb_1(z) for t_QFB.

e the identity permutation for t_VECSMALL.
e Rg_get_1(z) otherwise

Of course, the only practical use of this routine for n = 0 is to obtain the multiplicative neutral
element in the base ring (or to treat marginal cases that should be special cased anyway if there is
the slightest doubt about what the result should be).

GEN powgi(GEN x, GEN y) creates x¥, where y is a t_INT, using left-shift binary powering. The
case where y = 0 (as all cases where y is small) is handled by gpowgs(x, 0).

GEN gpowers(GEN x, long n) returns the vector [1,z,...,z

n—l]

GEN grootsofi(long n, long prec) returns the vector [1,z,...,x , where x is the n-th root

of unity exp(2im/n).

GEN gsqrpowers(GEN x, long n) returns the vector [z,z%, ... 2™ ].
In addition we also have the obsolete forms:

void gaddz(GEN x, GEN y, GEN z)

void gsubz(GEN x, GEN y, GEN z)

void gmulz(GEN x, GEN y, GEN z)

void gdivz(GEN x, GEN y, GEN z)

9.13 Generic operators: product, powering, factorback.

To describe the following functions, we use the following private typedefs to simplify the
description:

typedef (*FO0) (void *);
typedef (*F1)(void *, GEN);
typedef (*F2)(void *, GEN, GEN);

They correspond to generic functions with one and two arguments respectively (the void* argument
provides some arbitrary evaluation context).

GEN gen_product(GEN v, void *D, F2 op) Given two objects z,y, assume that op(D, x, )
implements an associative binary operator. If v has k entries, return

v[1] op v[2] op ... op v[k];

returns gen_1 if k = 0 and a copy of v[1] if &k = 1. Use divide and conquer strategy. Leave some
garbage on stack, but suitable for gerepileupto if mul is.
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GEN gen_pow(GEN x, GEN n, void *D, F1 sqr, F2 mul) n > 0 a t_INT, returns z”; mul(D,
x, y) implements the multiplication in the underlying monoid; sqr is a (presumably optimized)
shortcut for mul (D, z, xz).

GEN gen_powu(GEN x, ulong n, void *D, F1 sqr, F2 mul) n > 0, returns z”. See gen_pow.

GEN gen_pow_i(GEN x, GEN n, void *E, F1 sqr, F2 mul) internal variant of gen_pow, not
memory-clean.

GEN gen_powu_i(GEN x, ulong n, void *E, F1 sqr, F2 mul) internal variant of gen_powu,
not memory-clean.

GEN gen_pow_fold(GEN x, GEN n, void *D, F1 sqr, F1 msqr) variant of gen_pow, where mul
is replaced by msqr, with msqr (D, ) returning zy?. In particular D must implicitly contain x.

GEN gen_pow_fold_i(GEN x, GEN n, void *E, F1 sqr, F1 msqr) internal variant of the function
gen_pow_fold, not memory-clean.

GEN gen_powu_fold(GEN x, ulong n, void *D, F1 sqr, F1 msqr), see gen_pow_fold.
GEN gen_powu_fold_i(GEN x, ulong n, void *E, F1 sqr, F1 msqr) see gen_pow_fold_i.

GEN gen_pow_init(GEN x, GEN n, 1long k, void *E, GEN (*sqr)(void*, GEN), GEN
(*mul) (void*, GEN, GEN)) Return a table R that can be used with gen_pow_table to compute
the powers of x up to n. The table is of size 2¥ log,(n).

GEN gen_pow_table(GEN R, GEN n, void *E, GEN (*one) (void*), GEN (*mul) (voidx, GEN,
GEN))

Return z”, where R is as given by gen_pow_init(x,m,k,E,sqr,mul) for some integer m > n.

GEN gen_powers(GEN x, long n, long usesqr, void *D, F1 sqr, F2 mul, FO one) returns
[xY...,x"] as a t_VEC; mul(D, =, y) implements the multiplication in the underlying monoid;
sqr is a (presumably optimized) shortcut for mul(D, x, z); one returns the monoid unit. The
flag usesqr should be set to 1 if squaring are faster than multiplication by .

GEN gen_factorback(GEN L, GEN e, void *D, F2 mul, F2 pow, GEN (*one)(void *)D)
generic form of factorback. The pair [L, €] is of the form

e [fa, NULL], fa a two-column factorization matrix: expand it.
e [v, NULL], v a vector of objects: return their product.

e or [v, el, v a vector of objects, e a vector of integral exponents (a ZV or zv): return the
product of the vl[i]¢l.

mul(D, z, y) and pow(D, z, n) return xzy and z" respectively.

one (D) returns the neutral element. If one is NULL, gen_1 is used instead.
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9.14 Matrix and polynomial norms.

This section concerns only standard norms of R and C vector spaces, not algebraic norms given
by the determinant of some multiplication operator. We have already seen type-specific functions
like ZM_supnorm or RgM_fpnorml2 and limit ourselves to generic functions assuming nothing about
their GEN argument; these functions allow the following scalar types: t_INT, t_FRAC, t_REAL,
t_COMPLEX, t_QUAD and are defined recursively (in terms of norms of their components) for the
following “container” types: t_POL, t_VEC, t_COL and t_MAT. They raise an error if some other
type appears in the argument.

GEN gnorml2(GEN x) The norm of a scalar is the square of its complex modulus, the norm of a
recursive type is the sum of the norms of its components. For polynomials, vectors or matrices of
complex numbers one recovers the square of the usual L? norm. In most applications, the missing
square root computation can be skipped.

GEN gnorml1(GEN x, long prec) The norm of a scalar is its complex modulus, the norm of a
recursive type is the sum of the norms of its components. For polynomials, vectors or matrices of
complex numbers one recovers the usual L' norm. One must include a real precision prec in case
the inputs include t_COMPLEX or t_QUAD with exact rational components: a square root must be
computed and we must choose an accuracy.

GEN gnormll_fake(GEN x) as gnormll, except that the norm of a t_QUAD x + wy or t_COMPLEX
x + Iy is defined as |z| + |y|, where we use the ordinary real absolute value. This is still a norm of
R vector spaces, which is easier to compute than gnorml1 and can often be used in its place.

GEN gsupnorm(GEN x, long prec) The norm of a scalar is its complex modulus, the norm of a
recursive type is the max of the norms of its components. A precision prec must be included for
the same reason as in gnormli.

void gsupnorm_aux(GEN x, GEN *m, GEN *m2, long prec) is the low-level function underlying
gsupnorm, used as follows:

GEN m = NULL, m2 = NULL;
gsupnorm_aux(x, &m, &m2);

After the call, the sup norm of x is the min of m and the square root of m2; one or both of m,
m2 may be NULL, in which case it must be omitted. You may initially set m and m2 to non-NULL
values, in which case, the above procedure yields the max of (the initial) m, the square root of (the
initial) m2, and the sup norm of x.

The strange interface is due to the fact that |z|? is easier to compute than |z| for a t_QUAD or
t_COMPLEX z: m2 is the max of those |z|?, and m is the max of the other |z|.
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9.15 Substitution and evaluation.

GEN gsubst(GEN x, long v, GEN y) substitutes the object y into x for the variable number v.

GEN poleval(GEN g, GEN x) evaluates the t_POL or t_RFRAC ¢ at x. For convenience, a t_VEC or
t_COL is also recognized as the t_POL gtovecrev(q).

GEN RgX_cxeval(GEN T, GEN x, GEN xi) evaluate the t_POL T at x via Horner’s scheme. If i
is not NULL it must be equal to 1/ and we evaluate 29°¢TT(1/x) instead. This is useful when
|z| > 1is a t_REAL or an inexact t_COMPLEX and 7" has “balanced” coefficients, since the evaluation
becomes numerically stable.

GEN RgXY_cxevalx(GEN T, GEN x, GEN xi) Apply RgX_cxeval to all the polynomials coefficients
of T.

GEN RgX_RgM_eval(GEN g, GEN x) evaluates the t_POL ¢ at the square matrix z.

GEN RgX_RgMV_eval(GEN f, GEN V) returns the evaluation f(x), assuming that V was computed
by FpXQ_powers(x,n) for some n > 1.

GEN gfeval(GEN g, GEN x) evaluates the quadratic form ¢ (symmetric matrix) at x (column
vector of compatible dimensions).

GEN gfevalb(GEN g, GEN x, GEN y) evaluates the polar bilinear form attached to the quadratic
form ¢ (symmetric matrix) at x, y (column vectors of compatible dimensions).

GEN hgfeval(GEN q, GEN x) evaluates the Hermitian form ¢ (a Hermitian complex matrix) at .

GEN qf_apply_RgM(GEN g, GEN M) ¢ is a symmetric n X n matrix, M an n X k matrix, return
M'qM.

GEN qf_apply_ZM(GEN q, GEN M) as above assuming that both ¢ and M have integer entries.
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Chapter 10:

Miscellaneous mathematical functions

10.1 Fractions.

GEN absfrac(GEN x) returns the absolute value of the t_FRAC z.

GEN absfrac_shallow(GEN x) x being a t_FRAC, returns a shallow copy of |z|, in particular returns
x itself when 2 > 0, and gneg(x) otherwise.

GEN sqrfrac(GEN x) returns the square of the t_FRAC z.

10.2 Binomials.

GEN binomial (GEN x, long k)
GEN binomialuu(ulong n, ulong k)

GEN vecbinomial(long n), which returns a vector v with n + 1 t_INT components such that
v[k + 1] = binomial(n, k) for k from 0 up to n.

10.3 Real numbers.

GEN R_abs(GEN x) x being a t_INT, a t_REAL or a t_FRAC, returns |z|.

GEN R_abs_shallow(GEN x) z being a t_INT, a t_REAL or a t_FRAC, returns a shallow copy of |z|,
in particular returns x itself when = > 0, and gneg(z) otherwise.

GEN modRr_safe(GEN x, GEN y) let z be a t_INT, a t_REAL or t_FRAC and let y be a t_REAL.
Return %y unless the input accuracy is unsufficient to compute the floor or /y in which case we
return NULL.
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10.4 Complex numbers.

GEN gimag(GEN x) returns a copy of the imaginary part of x.

GEN greal(GEN x) returns a copy of the real part of x. If x is a t_QUAD, returns the coefficient of
1 in the “canonical” integral basis (1,w).

GEN gconj (GEN x) returns greal(z)— 2gimag(z), which is the ordinary complex conjugate except
for a real t_QUAD.

GEN imag_i(GEN x), shallow variant of gimag.
GEN real_i(GEN x), shallow variant of greal.
GEN conj_i(GEN x), shallow variant of gconj.

GEN mulreal (GEN x, GEN y) returns the real part of xy; z, y have type t_INT, t_FRAC, t_REAL
or t_COMPLEX. See also RgM_mulreal.

GEN cxnorm(GEN x) norm of the t_COMPLEX z (modulus squared).
GEN cxexpml(GEN x) returns exp(z) — 1, for a t_COMPLEX x.

int cx_approx_equal(GEN a, GEN b) test whether (t_INT, t_FRAC, t_REAL, or t_COMPLEX of
those) a and b are approximately equal. This returns 1 if and only if the division by a — b would
produce a division by 0 (which is a less stringent test than testing whether a — b evaluates to 0).

int cx_approxO(GEN a, GEN b) test whether (t_INT, t_FRAC, t_REAL, or t_COMPLEX of those) a
is approximately 0, where b is a reference point. A non-0 t_REAL component x is approximately 0
if

exponent(b) — exponent(x) > bit_prec(x) .

10.5 Quadratic numbers and binary quadratic forms.

GEN quad_disc(GEN x) returns the discriminant of the t_QUAD z. Not stack-clean but suitable for
gerepileupto.

GEN quadnorm(GEN x) norm of the t_QUAD z.
GEN gfb_disc(GEN x) returns the discriminant of the t_QFB x.

GEN qfb_disc3(GEN x, GEN y, GEN z) returns y? — 4xz assuming all inputs are t_INTs. Not
stack-clean.

GEN qfb_apply_ZM(GEN q, GEN g) returns gog.

GEN gfbforms(GEN D) given a discriminant D < 0, return the list of reduced forms of discriminant
D as t_VECSMALL with 3 components. The primitive forms in the list enumerate the class group of
the quadratic order of discriminant D; if D is fundamental, all returned forms are automatically
primitive.
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10.6 Polynomials.

GEN truecoef(GEN x, long n) returns polcoef(x,n, -1), i.e. the coefficient of the term of
degree n in the main variable. This is a safe but expensive function that must copy its return value
so that it be gerepile-safe. Use polcoef_i for a fast internal variant.

GEN polcoef_i(GEN x, 1long n, long v) internal shallow function. Rewrite x as a Laurent
polynomial in the variable v and returns its coefficient of degree n (gen_0 if this falls outside the
coefficient array). Allow t_POL, t_SER, t_RFRAC and scalars.

long degree(GEN x) returns poldegree(x, -1), the degree of x with respect to its main variable,
with the usual meaning if the leading coefficient of x is nonzero. If the sign of x is 0, this function
always returns —1. Otherwise, we return the index of the leading coefficient of z, i.e. the coefficient
of largest index stored in z. For instance the “degrees” of

0. E-38 * x°4 + 0.E-19 *x x + 1
Mod(0,2) * x70 \\ sign is 0 !

are 4 and —1 respectively.

long degpol(GEN x) is a simple macro returning 1g(x) - 3. This is the degree of the t_POL x
with respect to its main variable, if its leading coefficient is nonzero (a rational 0 is impossible,
but an inexact 0 is allowed, as well as an exact modular 0, e.g. Mod(0,2)). If x has no coefficients
(rational 0 polynomial), its length is 2 and we return the expected —1.

GEN characteristic(GEN x) returns the characteristic of the base ring over which the polynomial
is defined (as defined by t_INTMOD and t_FFELT components). The function raises an exception if
incompatible primes arise from t_FFELT and t_PADIC components. Shallow function.

GEN residual_characteristic(GEN x) returns a kind of “residual characteristic” of the base ring
over which the polynomial is defined. This is defined as the ged of all moduli t_INTMODs occurring
in the structure, as well as primes p arising from t_PADICs or t_FFELTs. The function raises an
exception if incompatible primes arise from t_FFELT and t_PADIC components. Shallow function.

GEN resultant(GEN x, GEN y) resultant of x and y, with respect to the main variable of highest
priority. Uses either the subresultant algorithm (generic case), a modular algorithm (inputs in
Q[X]) or Sylvester’s matrix (inexact inputs).

GEN resultant2(GEN x, GEN y) resultant of x and y, with respect to the main variable of highest
priority. Computes the determinant of Sylvester’s matrix.

GEN cleanroots(GEN x, long prec) returns the complex roots of the complex polynomial x
(with coefficients t_INT, t_FRAC, t_REAL or t_COMPLEX of the above). The roots are returned as
t_REAL or t_COMPLEX of t_REALs of precision prec (guaranteeing a nonzero imaginary part). See
QX_complex_roots.

double fujiwara_bound(GEN x) return a quick upper bound for the logarithm in base 2 of the
modulus of the largest complex roots of the polynomial = (complex coefficients).

double fujiwara_bound_real(GEN x, long sign) return a quick upper bound for the logarithm
in base 2 of the absolute value of the largest real root of sign sign (1 or —1), for the polynomial x
(real coefficients).

GEN polmod_to_embed(GEN x, long prec) return the vector of complex embeddings of the
t_POLMOD =z (with complex coefficients). Shallow function, simple complex variant of conjvec.

GEN pollegendre_reduced(long n, long v) let P,(t) € Q[t] be the n-th Legendre polynomial
in variable v. Return p € Z[t] such that 2" P, (t) = p(t?) (n even) or tp(t?) (n odd).
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10.7 Power series.

GEN sertoser(GEN x, long prec) return the t_SER z truncated or extended (with zeros) to prec
terms. Shallow function, assume that prec > 0.

GEN derivser (GEN x) returns the derivative of the t_SER x with respect to its main variable.
GEN integser (GEN x) returns the primitive of the t_SER x with respect to its main variable.

GEN truecoef(GEN x, long n) returns polcoef(x,n, -1), i.e. the coefficient of the term of
degree n in the main variable. This is a safe but expensive function that must copy its return value
so that it be gerepile-safe. Use polcoef_i for a fast internal variant.

GEN ser_unscale(GEN P, GEN h) return P(hz), not memory clean.

GEN ser_normalize(GEN x) divide z by its “leading term” so that the series is either 0 or equal
to tY(1 + O(t)). Shallow function if the “leading term” is 1.

int ser_isexactzero(GEN x) return 1 if z is a zero series, all of whose known coefficients are
exact zeroes; this implies that sign(z) = 0 and 1g(z) < 3.

GEN ser_inv(GEN x) return the inverse of the t_SER z using Newton iteration.

GEN psilseries(long n, long v, long prec) creates the t_SER ¢(1+x+ O(z™)) in variable v.

10.8 Functions to handle t_FFELT.

These functions define the public interface of the t_FFELT type to use in generic functions.
However, in specific functions, it is better to use the functions class FpXQ and/or F1xq as appropriate.

GEN FF_p(GEN a) returns the characteristic of the definition field of the t_FFELT element a.

long FF_f(GEN a) returns the dimension of the definition field over its prime field; the cardinality
of the dimension field is thus pf.

GEN FF_p_i(GEN a) shallow version of FF _p.
GEN FF_q(GEN a) returns the cardinality of the definition field of the t_FFELT element a.

GEN FF_mod(GEN a) returns the polynomial (with reduced t_INT coefficients) defining the finite
field, in the variable used to display a.

long FF_var(GEN a) returns the variable used to display a.

GEN FF_gen(GEN a) returns the standard generator of the definition field of the t_FFELT element
a, see ffgen, that is x (mod 7') where T' is the polynomial over the prime field that define the
finite field.

GEN FF_to_FpXQ(GEN a) converts the t _FFELT a to a polynomial P with reduced t_INT coefficients
such that a = P(g) where g is the generator of the finite field returned by ffgen, in the variable
used to display g.

GEN FF_to_FpXQ_i(GEN a) shallow version of FF_to_FpXQ.

GEN FF_to_F2xq(GEN a) converts the t_FFELT a to a F2x P such that a = P(g) where g is the
generator of the finite field returned by ffgen, in the variable used to display g. This only work if
the characteristic is 2.
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GEN FF_to_F2xq_i(GEN a) shallow version of FF_to_F2xq.

GEN FF_to_Flxq(GEN a) converts the t_FFELT a to a Flx P such that a = P(g) where g is the
generator of the finite field returned by ffgen, in the variable used to display g. This only work if
the characteristic is small enough.

GEN FF_to_Flxq_i(GEN a) shallow version of FF_to_Flxq.

GEN p_to_FF(GEN p, long v) returns a t_FFELT equal to 1 in the finite field Z/pZ. Useful for
generic code that wants to handle (inefficiently) Z/pZ as if it were not a prime field.

GEN Tp_to_FF(GEN T, GEN p) returns a t_FFELT equal to 1 in the finite field F,,/(7T"), where T is
a ZX, assumed to be irreducible modulo p, or NULL in which case the routine acts as p_to_FF(p,0).
No checks.

GEN Fq_to_FF(GEN x, GEN ff) returns a t_FFELT equal to = in the finite field defined by the
t_FFELT ff, where z is an Fq (either a t_INT or a ZX: a t_POL with t_INT coefficients). No checks.

GEN FgX_to_FFX(GEN x, GEN ff) given an FgX x, return the polynomial with t_FFELT coefficients
obtained by applying Fq_to_FF coefficientwise. No checks, and no normalization if the leading
coefficient maps to 0.

GEN FF_1(GEN a) returns the unity in the definition field of the t_FFELT element a.

GEN FF_zero(GEN a) returns the zero element of the definition field of the t_FFELT element a.
int FF_equalO(GEN a) returns 1 if the t_FFELT a is equal to O else returns 0.

int FF_equall(GEN a) returns 1 if the t_FFELT a is equal to 1 else returns 0.

int FF_equalml(GEN a) returns —1 if the t_FFELT a is equal to 1 else returns 0.

int FF_equal(GEN a, GEN b) return 1 if the t_FFELT a and b have the same definition field and
are equal, else 0.

int FF_samefield(GEN a, GEN b) return 1 if the t_FFELT a and b have the same definition field,
else 0.

int Rg_is_FF(GEN c, GEN *ff) to be called successively on many objects, setting *ff = NULL
(unset) initially. Returns 1 as long as ¢ is a t_FFELT defined over the same field as *ff (setting
*ff = c if unset), and 0 otherwise.

int RgC_is_FFC(GEN x, GEN *ff) apply Rg_is_FF successively to all components of the t_VEC
or t_COL x. Return O if one call fails, and 1 otherwise.

int RgM_is_FFM(GEN x, GEN xff) apply Rg_is_FF to all components of the t_MAT. Return O if
one call fails, and 1 otherwise.

GEN FF_add(GEN a, GEN b) returns a + b where a and b are t_FFELT having the same definition
field.

GEN FF_Z_add(GEN a, GEN x) returns a + x, where a is a t_FFELT, and x is a t_INT, the compu-
tation being performed in the definition field of a.

GEN FF_Q_add(GEN a, GEN x) returns a + x, where a is a t_FFELT, and x is a t_RFRAC, the
computation being performed in the definition field of a.

GEN FF_sub(GEN a, GEN b) returns a — b where a and b are t_FFELT having the same definition
field.
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GEN FF_mul(GEN a, GEN b) returns ab where a and b are t_FFELT having the same definition
field.

GEN FF_Z_mul (GEN a, GEN b) returns ab, where a is a t_FFELT, and b is a t_INT, the computation
being performed in the definition field of a.

GEN FF_div(GEN a, GEN b) returns a/b where a and b are t_FFELT having the same definition
field.

GEN FF_neg(GEN a) returns —a where a is a t_FFELT.

GEN FF_neg_i(GEN a) shallow function returning —a where a is a t_FFELT.
GEN FF_inv(GEN a) returns a~! where a is a t_FFELT.

GEN FF_sqr(GEN a) returns a? where a is a t_FFELT.

GEN FF_mul2n(GEN a, long n) returns a2™ where a is a t_FFELT.

GEN FF_pow(GEN a, GEN n) returns a¢" where a is a t_FFELT and n is a t_INT.

GEN FF_Frobenius(GEN a, GEN n) returns zP  where x is the standard generator of the definition
field of the t_FFELT element a, t_FFELT, n is a t_INT, and p is the characteristic of the definition
field of a.

GEN FF_Z_Z_muldiv(GEN a, GEN x, GEN y) returns ay/z, where a is a t_FFELT, and x and y are

t_INT, the computation being performed in the definition field of a.

GEN Z_FF_div(GEN x, GEN a) return x/a where a is a t_FFELT, and x is a t_INT, the computation
being performed in the definition field of a.

GEN FF_norm(GEN a) returns the norm of the t_FFELT a with respect to its definition field.
GEN FF_trace(GEN a) returns the trace of the t_FFELT a with respect to its definition field.

GEN FF_conjvec(GEN a) returns the vector of conjugates [a, a?, apQ, .. ,apn_l] where the t_FFELT
a belong to a field with p™ elements.

GEN FF_charpoly(GEN a) returns the characteristic polynomial) of the t_FFELT a with respect to
its definition field.

GEN FF_minpoly(GEN a) returns the minimal polynomial of the t_FFELT a.
GEN FF_sqrt(GEN a) returns an t_FFELT b such that a = b? if it exist, where a is a t_FFELT.

long FF_issquareall(GEN x, GEN *pt) returns 1 if x is a square, and 0 otherwise. If x is indeed
a square, set pt to its square root.

long FF_issquare(GEN x) returns 1 if x is a square and 0 otherwise.

long FF_ispower (GEN x, GEN K, GEN *pt) Given K a positive integer, returns 1 if x is a K-th
power, and 0 otherwise. If x is indeed a K-th power, set pt to its K-th root.

GEN FF_sqrtn(GEN a, GEN n, GEN *zn) returns an n-th root of a if it exist. If zn is non-NULL set
it to a primitive n-th root of the unity.

GEN FF_log(GEN a, GEN g, GEN o) the t_FFELT g being a generator for the definition field of
the t_FFELT a, returns a t_INT e such that a® = g. If e does not exists, the result is currently
undefined. If o is not NULL it is assumed to be a factorization of the multiplicative order of g (as
set by FF_primroot)
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GEN FF_order(GEN a, GEN o) returns the order of the t_FFELT a. If o is non-NULL, it is assumed
that o is a multiple of the order of a.

GEN FF_primroot(GEN a, GEN *o) returns a generator of the multiplicative group of the definition
field of the t_FFELT a. If o is not NULL, set it to the factorization of the order of the primitive root
(to speed up FF_log).

GEN FF_map(GEN m, GEN a) returns A(m) where A=a.pol assuming a and m belongs to fields
having the same characteristic.

10.8.1 FFX.

The functions in this sections take polynomial arguments and a t_FFELT a. The coeflicients
of the polynomials must be of type t_INT, t_INTMOD or t_FFELT and compatible with a.

GEN FFX_add(GEN P, GEN Q, GEN a) returns the sum of the polynomials P and Q defined over the
definition field of the t_FFELT a.

GEN FFX_mul(GEN P, GEN Q, GEN a) returns the product of the polynomials P and Q defined over
the definition field of the t_FFELT a.

GEN FFX_sqr(GEN P, GEN a) returns the square of the polynomial P defined over the definition
field of the t_FFELT a.

GEN FFX_rem(GEN P, GEN Q, GEN a) returns the remainder of the polynomial P modulo the
polynomial Q, where P and Q are defined over the definition field of the t_FFELT a.

GEN FFX_gcd(GEN P, GEN Q, GEN a) returns the GCD of the polynomials P and Q defined over
the definition field of the t_FFELT a.

GEN FFX_extgcd(GEN P, GEN Q, GEN a, GEN *U, GEN *V) returns the GCD of the polynomials
P and Q defined over the definition field of the t_FFELT a and sets *U, *V to the Bezout coefficients
such that *UP + xVQ = d. If *U is set to NULL, it is not computed which is a bit faster.

GEN FFX_halfgcd(GEN x, GEN y, GEN a) returns a two-by-two matrix M with determinant +1

such that the image (a,b) of (z,y) by M has the property that dega > de% > degb.

GEN FFX_resultant(GEN P, GEN Q, GEN a) returns the resultant of the polynomials P and Q
where P and Q are defined over the definition field of the t_FFELT a.

GEN FFX_disc(GEN P, GEN a) returns the discriminant of the polynomial P where P is defined
over the definition field of the t_FFELT a.

GEN FFX_ispower (GEN P, ulong k, GEN a, GEN #*py) return 1 if the FFX P is a k-th power, 0
otherwise, where P is defined over the definition field of the t_FFELT a. If py is not NULL, set it to
g such that ¢* = f.

GEN FFX_factor(GEN f, GEN a) returns the factorization of the univariate polynomial £ over the
definition field of the t_FFELT a. The coefficients of £ must be of type t_INT, t_INTMOD or t_FFELT
and compatible with a.

GEN FFX_factor_squarefree(GEN f, GEN a) returns the squarefree factorization of the univariate
polynomial f over the definition field of the t_FFELT a. This is a vector [uq,...,u] of pairwise
coprime FFX such that uy # 1 and f = []ul.

GEN FFX_ddf (GEN f, GEN a) assuming that f is squarefree, returns the distinct degree factorization
of f modulo p. The returned value v is a t_VEC with two components: F=v[1] is a vector of (FFX)
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factors, and E=v[2] is a t_VECSMALL, such that f is equal to the product of the F[i] and each
F[i] is a product of irreducible factors of degree E[i].

GEN FFX_degfact(GEN f, GEN a), as FFX_factor, but the degrees of the irreducible factors are
returned instead of the factors themselves (as a t_VECSMALL).

GEN FFX_roots(GEN f, GEN a) returns the roots (t_FFELT) of the univariate polynomial £ over
the definition field of the t_FFELT a. The coefficients of £ must be of type t_INT, t_INTMOD or
t_FFELT and compatible with a.

GEN FFX_preimagerel(GEN F, GEN x, GEN a) returns P%F where P=x.pol assuming a and
x belongs to fields having the same characteristic, and that the coefficients of F' belong to the
definition field of a.

GEN FFX_preimage(GEN F, GEN x, GEN a) as FFX_preimagerel but return NULL if the remainder
is of degree greater or equal to 1, the constant coefficient otherwise.

10.8.2 FFM.

GEN FFM_FFC_gauss(GEN M, GEN C, GEN ff) given a matrix M (t_MAT) and a column vector C
(t_COL) over the finite field given by ff (t_FFELT) such that M is invertible, return the unique
column vector X such that M X = C.

GEN FFM_FFC_invimage (GEN M, GEN C, GEN ff) given a matrix M (t_MAT) and a column vector C
(t_COL) over the finite field given by ff (t_FFELT), return a column vector X such that M X = C,
or NULL if no such vector exists.

GEN FFM_FFC_mul (GEN M, GEN C, GEN ff) returns the product of the matrix M (t_MAT) and the
column vector C (t_COL) over the finite field given by f£f (t_FFELT).

GEN FFM_deplin(GEN M, GEN ff) returns a nonzero vector (t_COL) in the kernel of the matrix M
over the finite field given by £f, or NULL if no such vector exists.

GEN FFM_det(GEN M, GEN ff) returns the determinant of the matrix M over the finite field given
by ff.

GEN FFM_gauss(GEN M, GEN N, GEN ff) given two matrices M and N (t_MAT) over the finite field
given by ff (t_FFELT) such that M is invertible, return the unique matrix X such that M X = N.

GEN FFM_image(GEN M, GEN ff) returns a matrix whose columns span the image of the matrix M
over the finite field given by ff.

GEN FFM_indexrank(GEN M, GEN ff) given a matrix M of rank r over the finite field given by ff,
returns a vector with two t_VECSMALL components y and z containing r row and column indices,
respectively, such that the r x r-matrix formed by the M[i,j] for ¢ in y and j in z is invertible.

GEN FFM_inv(GEN M, GEN ff) returns the inverse of the square matrix M over the finite field given
by ££f, or NULL if M is not invertible.

GEN FFM_invimage(GEN M, GEN N, GEN ff) given two matrices M and N (t_MAT) over the finite
field given by ff (t_FFELT), return a matrix X such that M X = N, or NULL if no such matrix
exists.

GEN FFM_ker (GEN M, GEN ff) returns the kernel of the t_MAT M over the finite field given by the
t_FFELT £ff.

GEN FFM_mul (GEN M, GEN N, GEN ff) returns the product of the matrices M and N (t_MAT) over
the finite field given by ff (t_FFELT).
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long FFM_rank(GEN M, GEN ff) returns the rank of the matrix M over the finite field given by ff.
GEN FFM_suppl(GEN M, GEN ff) given a matrix M over the finite field given by £f whose columns
are linearly independent, returns a square invertible matrix whose first columns are those of M.
10.8.3 FFXQ.

GEN FFXQ_mul (GEN P, GEN Q, GEN T, GEN a) returns the product of the polynomials P and Q
modulo the polynomial T, where P, Q and T are defined over the definition field of the t_FFELT a.

GEN FFXQ_sqr(GEN P, GEN T, GEN a) returns the square of the polynomial P modulo the poly-
nomial T, where P and T are defined over the definition field of the t_FFELT a.

GEN FFXQ_inv(GEN P, GEN Q, GEN a) returns the inverse of the polynomial P modulo the poly-
nomial Q, where P and Q are defined over the definition field of the t_FFELT a.

GEN FFXQ_minpoly(GEN Pf, GEN Qf, GEN a) returns the minimal polynomial of the polynomial
P modulo the polynomial Q, where P and Q are defined over the definition field of the t_FFELT a.

10.9 Transcendental functions.

The following two functions are only useful when interacting with gp, to manipulate its internal
default precision (expressed as a number of decimal digits, not in words as used everywhere else):

long getrealprecision(void) returns realprecision.

long setrealprecision(long n, long *prec) sets the new realprecision to n, which is re-
turned. As a side effect, set prec to the corresponding number of words ndec2prec(n).

10.9.1 Transcendental functions with t_REAL arguments.

In the following routines, = is assumed to be a t_REAL and the result is a t_REAL (sometimes
a t_COMPLEX with t_REAL components), with the largest accuracy which can be deduced from the
input. The naming scheme is inconsistent here, since we sometimes use the prefix mp even though
t_INT inputs are forbidden:

GEN sqrtr(GEN x) returns the square root of z.

GEN cbrtr(GEN x) returns the real cube root of x.

GEN sqrtnr(GEN x, long n) returns the n-th root of x, assuming n > 1 and « > 0.

GEN sqrtnr_abs(GEN x, long n) returns the n-th root of |z|, assuming n > 1 and = # 0.
GEN mpcos[z] (GEN x[, GEN z]) returns cos(x).

GEN mpsin[z] (GEN x[, GEN z]) returns sin(x).

GEN mplog[z] (GEN x[, GEN z]) returns log(x). We must have z > 0 since the result must be a
t_REAL. Use glog for the general case, where you want such computations as log(—1) = I.

GEN mpexp[z] (GEN x[, GEN z]) returns exp(z).

GEN mpexpml (GEN x) returns exp(xz) — 1, but is more accurate than subrs(mpexp(x), 1), which
suffers from catastrophic cancellation if |z| is very small.
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void mpsincosml(GEN x, GEN *s, GEN *c) sets s and c to sin(x) and cos(z) — 1 respectively,
where x is a t_REAL; the latter is more accurate than subrs(mpcos(y), 1), which suffers from
catastrophic cancellation if |z| is very small.

GEN mpveceint1(GEN C, GEN eC, long n) as veceintl; assumes that C' > 0 is a t_REAL and
that eC is NULL or mpexp(C).

GEN mpeint1(GEN x, GEN expx) returns eintil(z), for a t_REAL x # 0, assuming that expx is
mpexp(z).

A few variants on the Lambert function: they actually work when gtofp can map all GEN arguments
to a t_REAL.

GEN mplambertW(GEN y) solution x = Wy(y) of the implicit equation zexp(z) =y, for y > —1/e
a t_REAL.

GEN mplambertx_logx(GEN a, GEN b, long bit) solve z — alog(x) = b with a > 0 and b >
a(l —log(a)).

GEN mplambertX(GEN y, long bit) as mplambertx_logx in the special case a = 1, b = log(y). In
other words, solve e* /z =y with y > e.

GEN mplambertxlogx_x(GEN a, GEN b, long bit) solve zlog(z) — ax = b; if b < 0, assume
a>1+log|b|.

Useful low-level functions which disregard the sign of x:

GEN sqrtr_abs(GEN x) returns \/m assuming = # 0.

GEN cbrtr_abs(GEN x) returns |z|!/? assuming z # 0.

GEN explr_abs(GEN x) returns exp(|z|) — 1, assuming = # 0.
GEN logr_abs(GEN x) returns log(|z|), assuming x # 0.

10.9.2 Other complex transcendental functions.

GEN atanhuu(ulong u, ulong v, long prec) computes atanh(u/v) using binary splitting, as-
suming 0 < u < v. Not memory clean but suitable for gerepileupto.

GEN atanhui(ulong u, GEN v, long prec) computes atanh(u/v) using binary splitting, assuming
0 < u < v. Not memory clean but suitable for gerepileupto.

GEN szeta(long s, long prec) returns the value of Riemann’s zeta function at the (possibly
negative) integer s # 1, in relative accuracy prec.

GEN veczeta(GEN a, GEN b, long N, long prec) returns in a vector all the ((aj + b), where
j=0,1,...,N — 1, where a and b are real numbers (of arbitrary type, although t_INT is treated
more efficiently) and b > 1. Assumes that N > 1.

GEN ggammalml(GEN x, long prec) return I'(1 + z) — 1 assuming |z| < 1. Guard against cancel-
lation when z is small.

A few variants on sin and cos:

void mpsincos(GEN x, GEN #*s, GEN *c) sets s and ¢ to sin(z) and cos(z) respectively, where x
is a t_REAL

void mpsinhcosh(GEN x, GEN *s, GEN *c) sets s and ¢ to sinh(z) and cosh(x) respectively,
where z is a t_REAL
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GEN expIr(GEN x) returns exp(ix), where x is a t_REAL. The return type is t_COMPLEX unless the
imaginary part is equal to 0 to the current accuracy (its sign is 0).

GEN expIPiR(GEN x, long prec) return exp(imx), where x is a real number (t_INT, t_FRAC or
t_REAL).

GEN expIPiC(GEN z, long prec) return exp(imx), where x is a complex number (t_INT, t_FRAC,
t_REAL or t_COMPLEX).

GEN expIxy(GEN x, GEN y, long prec) returns exp(izy). Efficient when x is real and y pure
imaginary.

GEN pow2Pis(GEN s, long prec) returns (27)°. The intent of this function and the next ones is to
be accurate even if s has a huge imaginary part: 7 is computed at an accuracy taking into account
the cancellation induced by argument reduction when computing the sine or cosine of &'slog 2.

GEN powPis(GEN s, long prec) returns 7°, as pow2Pis.

long powcx_prec(long e, GEN s, long prec) if e = log, |z| return the precision at which log(x)
must be computed to evaluate x® reliably (taking into account argument reduction).

GEN powcx(GEN x, GEN logx, GEN s, long prec) assuming s is a t_COMPLEX and logx is log(z)
computed to accuracy powcx_prec, return z°.

void gsincos(GEN x, GEN *s, GEN *c, long prec) general case.

GEN rootsofl_cx(GEN d, long prec) return e(1/d) at precision prec, e(x) = exp(2inx).
GEN rootsofiu_cx(ulong d, long prec) return e(1/d) at precision prec.

GEN rootsoflq_cx(long a, long b, long prec) return e(a/b) at precision prec.

GEN rootsoflpowinit(long a, long b, long prec) precompute b-th roots of 1 for rootsof 1pow,
i.e. to later compute e(ac/b) for varying c.

GEN rootsoflpow(GEN T, long c) given T' = rootsoflpowinit(a,b, prec), return e(ac/b).
A generalization of affrr_fixlg

GEN affc_fix1g(GEN x, GEN res) assume res was allocated using cgetc, and that z is either a
t_REAL or a t_COMPLEX with t_REAL components. Assign x to res, first shortening the components
of res if needed (in a gerepile-safe way). Further convert res to a t_REAL if = is a t_REAL.

GEN trans_eval(const char *fun, GEN (*f) (GEN, long), GEN x, long prec) evaluate the
transcendental function f (named "fun" at the argument x and precision prec. This is a quick way
to implement a transcendental function to be made available under GP, starting from a C' function
handling only t_REAL and t_COMPLEX arguments. This routine first converts = to a suitable type:

e t_INT/t_FRAC to t_REAL of precision prec, t_QUAD to t_REAL or t_COMPLEX of precision
prec.

e t_POLMOD to a t_COL of complex embeddings (as in conjvec)
Then evaluates the function at t_VEC, t_COL, t_MAT arguments coefficientwise.

GEN trans_evalgen(const char *fun, void *E, GEN (*f) (void*, GEN, long), GEN x, long
prec), general variant evaluating f(FE,x, prec), where the function prototype allows to wrap an
arbitrary context given by the argument F.
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10.9.3 Modular functions.

GEN cxredsl2(GEN z, GEN *g) given ¢t a t_COMPLEX belonging to the upper half-plane, find
v € SLy(Z) such that v - z belongs to the standard fundamental domain and set *g to ~.

GEN cxredsl2_i(GEN z, GEN *g, GEN *czd) as cxredsl2; also sets *czd to cz+d, if v = [a, b; ¢, d].
GEN cxEk(GEN tau, long k, long prec) returns Fi(7) by direct evaluation of 1 + 2/{(1 —
k)>>, n*lg" /(1 — "), g = e(7). Assume that I7 > 0 and k even. Very slow unless 7 is already
reduced modulo SLy(Z). Not gerepile-clean but suitable for gerepileupto.
10.9.4 Transcendental functions with t_PADIC arguments.

The argument z is assumed to be a t_PADIC.
GEN Qp_exp(GEN x) shortcut for gexp(x, /*ignored+*/prec)

long Qp_exp_prec(GEN x) number of terms to sum in the exp(z) series to reach the same p-adic
accuracy as * # 0. If n = p— 1, e = v,(z) and b = precp(x), this is the ceiling of nb/(ne — 1).
Return —1 if the series does not converge (ne < 1).

GEN Qp_gamma(GEN x) shortcut for ggamma(x, /*ignored*/prec)

GEN Qp_zeta(GEN x) shortcut for gzeta(x, /*ignored*/prec); assume that x # 1.

GEN Qp_log(GEN x) shortcut for glog(x, /*ignoredx*/prec)

GEN Qp_sqrt(GEN x) shortcut for gsqrt(x, /*ignored*/prec) Return NULL if = is not a square.

GEN Qp_sqrtn(GEN x, GEN n, GEN *z) shortcut for gsqrtn(x, n, z, /*ignored*/prec). Re-
turn NULL if z is not an n-th power.

GEN Qp_agm2_sequence(GEN a1, GEN b1) assume a;/b; = 1 mod p if p odd and mod 2% if p = 2.
Let A; = ay/p¥ and By = by /p? with v = vp(a1) = v,(b1); let further A, 11 = (A, +B,+2Bn41)/4,
B,+1 = By\/ A, /B, (the square root of A,,B,, congruent to B,, mod p) and R,, = p*(A,, — B,).
We stop when R, is 0 at the given p-adic accuracy. This function returns in a triplet t_VEC the
three sequences (A4,,), (B,) and (R,,), corresponding to a sequence of 2-isogenies on the Tate curve
y? = x(z — a1)(x + a; — by). The common limit of A, and B, is the Ms(a1,b1), the square of
the p-adic AGM of ﬂal) and \ﬂbl). This is given by el11Qp_Ei and is used by corresponding
ascending and descending p-adic Landen transforms:

void Qp_ascending_Landen(GEN ABR, GEN *ptx, GEN *pty)

void Qp_descending_Landen(GEN ABR, GEN *ptx, GEN *pty)

10.9.5 Cached constants.

The cached constant is returned at its current precision, which may be larger than prec. One
should always use the mpaxxr variant: mppi, mpeuler, or mplog2.

GEN consteuler(long prec) precomputes Euler-Mascheroni’s constant at precision prec.
GEN constcatalan(long prec) precomputes Catalan’s constant at precision prec.
GEN constpi(long prec) precomputes 7 at precision prec.

GEN constlog2(long prec) precomputes log(2) at precision prec.
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void constbern(long n) precomputes the n even Bernoulli numbers B, ..., B, as t_FRAC. No
more than n Bernoulli numbers will ever be stored (by bernfrac or bernreal), unless a subsequent
call to constbern increases the cache.

GEN constzeta(long n, long prec) ensures that the n values v,((2),...,{(n) are cached at
accuracy bigger than or equal to prec and return a vector containing at least those value. Note
that v = lim; {(s) — 1/(s — 1). If the accuracy of cached data is too low or n is greater than the
cache length, the cache is recomputed at the given parameters.

The following functions use cached data if prec is smaller than the precision of the cached
value; otherwise the newly computed data replaces the old cache.

GEN mppi(long prec) returns 7 at precision prec.
GEN Pi2n(long n, long prec) returns 2"m at precision prec.
GEN PiI2(long n, long prec) returns the complex number 27i at precision prec.
GEN PiI2n(long n, long prec) returns the complex number 2"7¢ at precision prec.
GEN mpeuler (long prec) returns Euler-Mascheroni’s constant at precision prec.
GEN mpeuler (long prec) returns Catalan’s number at precision prec.
GEN mplog2(long prec) returns log2 at precision prec.
The following functions use the Bernoulli numbers cache initialized by constbern:

GEN bernreal(long i, long prec) returns the Bernoulli number B; as a t_REAL at precision
prec. If constbern(n) was called previously with n > 4, then the cached value is (converted to a
t_REAL of accuracy prec then) returned. Otherwise, the missing value is computed; the cache is
not updated.

GEN bernfrac(long i) returns the Bernoulli number B; as a rational number (t_FRAC or t_INT). If
the constbern cache includes B;, the latter is returned. Otherwise, the missing value is computed;
the cache is not updated.

10.9.6 Obsolete functions.

void mpbern(long n, long prec)

10.10 Permutations .

Permutations are represented in two different ways

e (perm) a t_VECSMALL p representing the bijection ¢ — p[i]; unless mentioned otherwise, this
is the form used in the functions below for both input and output,

e (cyc) a t_VEC of t_VECSMALLs representing a product of disjoint cycles.
GEN identity_perm(long n) return the identity permutation on n symbols.

GEN cyclic_perm(long n, long d) return the cyclic permutation mapping i to i + d (mod n) in
S,,. Assume that d < n.

GEN perm_mul(GEN s, GEN t) multiply s and ¢ (composition s o t)

GEN perm_sqr(GEN s) multiply s by itself (composition s o s)
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GEN perm_conj(GEN s, GEN t) return sts—!.

int perm_commute(GEN p, GEN q) return 1 if p and ¢ commute, O otherwise.
GEN perm_inv(GEN p) returns the inverse of p.

GEN perm_pow(GEN p, GEN n) returns p"

GEN perm_powu(GEN p, ulong n) returns p"

GEN cyc_pow_perm(GEN p, long n) the permutation p is given as a product of disjoint cycles
(cyc); return p™ (as a perm).

GEN cyc_pow(GEN p, long n) the permutation p is given as a product of disjoint cycles (cyc);
return p" (as a cyc).

GEN perm_cycles(GEN p) return the cyclic decomposition of p.
GEN perm_order (GEN p) returns the order of the permutation p (as the lem of its cycle lengths).

ulong perm_orderu(GEN p) returns the order of the permutation p (as the lem of its cycle lengths)
assuming it fits in a ulong.

long perm_sign(GEN p) returns the sign of the permutation p.

GEN vecperm_orbits(GEN gen, long n) return the orbits of {1,2,...,n} under the action of the
subgroup of S,, generated by gen.

GEN Z_to_perm(long n, GEN x) as numtoperm, returning a t_VECSMALL.
GEN perm_to_Z(GEN v) as permtonum for a t_VECSMALL input.

GEN perm_to_GAP(GEN p) return a t_STR which is a representation of p comptatible with the GAP
computer algebra system.

10.11 Small groups.

The small (finite) groups facility is meant to deal with subgroups of Galois groups obtained
by galoisinit and thus is currently limited to weakly super-solvable groups.

A group grp of order n is represented by its regular representation (for an arbitrary ordering of
its element) in S,. A subgroup of such group is represented by the restriction of the representation
to the subgroup. A small group can be either a group or a subgroup. Thus it is embedded in some
Sn, where n is the multiple of the order. Such an n is called the domain of the small group. The
domain of a trivial subgroup cannot be derived from the subgroup data, so some functions require
the subgroup domain as argument.

The small group grp is represented by a t_VEC with two components:

grp[1] is a generating subset [s1, ..., s4] of grp expressed as a vector of permutations of length n.
grp[2] contains the relative orders [o1,...,04] of the generators grp|[1].

See galoisinit for the technical details.

GEN checkgroup(GEN gal, GEN *elts) check whether gal is a small group or a Galois group.
Returns the underlying small group and set elts to the list of elements or to NULL if it is not known.
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GEN checkgroupelts(GEN gal) check whether gal is a small group or a Galois group, or a vector
of permutations listing the group elements. Returns the list of group elements as permutations.

GEN galois_group(GEN gal) return the underlying small group of the Galois group gal.
GEN cyclicgroup(GEN g, long s) return the cyclic group with generator g of order s.
GEN trivialgroup(void) return the trivial group.

GEN dicyclicgroup(GEN gi, GEN g2, long sl, long s2) returns the group with generators
g1, g2 with respecting relative orders si1, s2.

GEN abelian_group(GEN v) let v be a t_VECSMALL seen as the SNF of a small abelian group,
return its regular representation.

long group_domain(GEN grp) returns the domain of the nontrivial small group grp. Return an
error if grp is trivial.

GEN group_elts(GEN grp, long n) returns the list of elements of the small group grp of domain
n as permutations.

GEN groupelts_to_group(GEN elts), where elts is the list of elements of a group, returns the
corresponding small group, if it exists, otherwise return NULL.

GEN group_set(GEN grp, long n) returns a F2v b such that b[i] is set if and only if the small
group grp of domain n contains a permutation sending 1 to 3.

GEN groupelts_set(GEN elts, long n), where elts is the list of elements of a small group of
domain n, returns a F2v b such that b[i] is set if and only if the small group contains a permutation
sending 1 to 4.

GEN groupelts_conj_set(GEN elts, GEN p), where elts is the list of elements of a small group of
domain n, returns a F2v b such that b[7] is set if and only if the small group contains a permutation
sending p~1[1] to p~1[i].

int group_subgroup_is_faithful (GEN G, GEN H) return 1 if the action of G on G/H by trans-
lation is faithful, 0 otherwise.

GEN groupelts_conjclasses(GEN elts, long *pn), where elts is the list of elements of a small
group (sorted with respect to vecsmall lexcmp), return a t_VECSMALL conj of the same length
such that conj[i] is the index in {1,---,n} of the conjugacy class of elts[i] for some unspecified
but deterministic ordering of the classes, where n is the number of conjugacy classes. If pn is non
NULL, *pn is set to n.

GEN conjclasses_repr(GEN conj, long nb), where conj and nb are as returned by the call
groupelts_conjclasses(elts), return t_VECSMALL of length nb which gives the indices in elts
of a representative of each conjugacy class.

GEN group_to_cc(GEN G), where G is a small group or a Galois group, returns a cc (con-
jclasses) structure [elts,conj,rep,flagl, as obtained by alggroupcenter, where conj is
groupelts_conjclasses(elts) and rep is the attached conjclasses_repr. flag is 1 if the per-
mutation representation is transitive (in which case an element g of G is characterized by g[1]), and
0 otherwise. Shallow function.

long group_order (GEN grp) returns the order of the small group grp (which is the product of the
relative orders).

long group_isabelian(GEN grp) returns 1 if the small group grp is Abelian, else 0.
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GEN group_abelianHNF(GEN grp, GEN elts) if grp is not Abelian, returns NULL, else returns the
HNF matrix of grp with respect to the generating family grp[l]. If elts is no NULL, it must be the
list of elements of grp.

GEN group_abelianSNF(GEN grp, GEN elts) if grp is not Abelian, returns NULL, else returns its
cyclic decomposition. If elts is no NULL, it must be the list of elements of grp.

long group_subgroup_isnormal (GEN G, GEN H), H being a subgroup of the small group G,
returns 1 if H is normal in G, else 0.

long group_isA4S4(GEN grp) returns 1 if the small group g¢rp is isomorphic to A4, 2 if it is
isomorphic to Sy, 3 if it is isomorphic to (3 x 3) : 4 and 0 else. This is mainly to deal with the
idiosyncrasy of the format.

GEN group_leftcoset(GEN G, GEN g) where G is a small group and g a permutation of the same
domain, the left coset gG as a vector of permutations.

GEN group_rightcoset(GEN G, GEN g) where G is a small group and g a permutation of the same
domain, the right coset Gg as a vector of permutations.

long group_perm_normalize(GEN G, GEN g) where G is a small group and ¢g a permutation of
the same domain, return 1 if gGg=! = G, else 0.

GEN group_quotient(GEN G, GEN H), where G is a small group and H is a subgroup of G, returns
the quotient map G — G/H as an abstract data structure.

GEN groupelts_quotient (GEN elts, GEN H), where elts is the list of elements of a small group
G, H is a subgroup of G, returns the quotient map G — G/H as an abstract data structure.

GEN quotient_perm(GEN C, GEN g) where C is the quotient map G — G/H for some subgroup
H of G and g an element of G, return the image of g by C' (i.e. the coset gH).

GEN quotient_group(GEN C, GEN G) where C is the quotient map G — G/H for some normal
subgroup H of G, return the quotient group G/H as a small group.

GEN quotient_groupelts(GEN C) where C is the quotient map G — G/H for some group G
and some normal subgroup H of G, return the list of elements of the quotient group G/H (as
permutations over corresponding to the regular representation).

GEN quotient_subgroup_lift(GEN C, GEN H, GEN S) where C is the quotient map G — G/H
for some group G normalizing H and S is a subgroup of G/H, return the inverse image of S by C.

GEN group_subgroups (GEN grp) returns the list of subgroups of the small group grp as a t_VEC.

GEN groupelts_solvablesubgroups(GEN elts) where elts is the list of elements of a finite group,
returns the list of its solvable subgroups, each as a list of its elements.

GEN subgroups_tableset(GEN S, long n) where S is a vector of subgroups of domain n, returns
a table which matchs the set of elements of the subgroups against the index of the subgroups.

long tableset_find_index(GEN tbl, GEN set) searchs the set set in the table tbl and returns
its attached index, or 0 if not found.

GEN groupelts_abelian_group(GEN elts) where elts is the list of elements of an Abelian small
group, returns the corresponding small group.

long groupelts_exponent (GEN elts) where elts is the list of elements of a small group, returns
the exponent the group (the LCM of the order of the elements of the group).
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GEN groupelts_center(GEN elts) where elts is the list of elements of a small group, returns the
list of elements of the center of the group.

GEN group_export(GEN grp, long format) convert a small group to another format, as a t_STR
describing the group for the given syntax, see galoisexport.

GEN group_export_GAP(GEN G) export a small group to GAP format.
GEN group_export_MAGMA(GEN G) export a small group to MAGMA format.

long group_ident(GEN grp, GEN elts) returns the index of the small group grp in the GAP4
Small Group library, see galoisidentify. If elts is not NULL, it must be the list of elements of grp.

long group_ident_trans(GEN grp, GEN elts) returns the index of the regular representation
of the small group grp in the GAP4 Transitive Group library, see polgalois. If elts is no NULL, it
must be the list of elements of grp.
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Chapter 11:

Standard data structures

11.1 Character strings.

11.1.1 Functions returning a char *.
char* pari_strdup(const char *s) returns a malloc’ed copy of s (uses pari malloc).

char* pari_strndup(const char *s, long n) returns a malloc’ed copy of at most n chars from
s (uses parimalloc). If s is longer than n, only n characters are copied and a terminal null byte
is added.

char* stack_strdup(const char *s) returns a copy of s, allocated on the PARI stack (uses
stack-malloc).

char* stack_strcat(const char *s, const char *t) returns the concatenation of s and ¢,
allocated on the PARI stack (uses stack-malloc).

char* stack_sprintf(const char *fmt, ...) runs pari_sprintf on the given arguments,
returning a string allocated on the PARI stack.

char* uordinal(ulong x) return the ordinal number attached to = (i.e. 1st, 2nd, etc.) as a
stack_malloc’ed string.

char* itostr(GEN x) writes the t_INT z to a stack_malloc’ed string.

char* GENtostr(GEN x), using the current default output format (GP_DATA->fmt, which contains
the output style and the number of significant digits to print), converts z to a malloc’ed string.
Simple variant of pari_sprintf.

char* GENtostr_raw(GEN x) as GENtostr with the following differences: 1) the output format is
f_RAW; 2) the result is allocated on the stack and must not be freed.

char* GENtostr_unquoted(GEN x) as GENtostr_raw with the following additional difference: a
t_STR z is printed without enclosing quotes (to be used by print.

char* GENtoTeXstr(GEN x), as GENtostr, except that f_TEX overrides the output format from
GP_DATA->fmt.

charx RgV_to_str(GEN g, long flag) g being a vector of GENs, returns a malloc’ed string, the
concatenation of the GENtostr applied to its elements, except that t_STR are printed without
enclosing quotes. flag determines the output format: f_RAW, £ _PRETTYMAT or f_TEX.
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11.1.2 Functions returning a t_STR.
GEN strtoGENstr(const char *s) returns a t_STR with content s.

GEN strntoGENstr(const char *s, long n) returns a t_STR containing the first n characters of
S.

GEN chartoGENstr(char c) returns a t_STR containing the character c.

GEN GENtoGENstr (GEN x) returns a t_STR containing the printed form of x (in raw format). This
is often easier to use that GENtostr (which returns a malloc-ed char*) since there is no need to
free the string after use.

GEN GENtoGENstr_nospace(GEN x) as GENtoGENstr, removing all spaces from the output.

GEN Str(GEN g) as RgV_to_str with output format £_RAW, but returns a t_STR, not a malloc’ed
string.

GEN strtex(GEN g) asRgV_to_str with output format £_TEX, but returns a t_STR, not a malloc’ed
string.

GEN strexpand(GEN g) as RgV_to_str with output format £_RAW, performing tilde and environ-
ment expansion on the result. Returns a t_STR, not a malloc’ed string.

GEN gsprintf(const char *fmt, ...) equivalent to pari_sprintf (fmt,..., followed by str-
toGENstr. Returns a t_STR, not a malloc’ed string.

GEN gvsprintf(const char *fmt, va_list ap) variadic version of gsprintf

11.1.3 Dynamic strings.

A pari_str is a dynamic string which grows dynamically as needed. This structure contains
private data and two public members char *string, which is the string itself and use_stack which
tells whether the string lives

e on the PARI stack (value 1), meaning that it will be destroyed by any manipulation of the
stack, e.g. a gerepile call or resetting avma;

e in malloc’ed memory (value 0), in which case it is impervious to stack manipulation but will
need to be explicitly freed by the user after use, via pari_free(s.string).

void str_init(pari_str *S, int use_stack) initializes a dynamic string; if use_stack is 0,
then the string is malloc’ed, else it lives on the PARI stack.

void str_printf(pari_str *S, const char *fmt, ...) write to the end of S the remaining
arguments according to PARI format fmt.

void str_putc(pari_str *S, char c) write the character ¢ to the end of S.

void str_puts(pari_str *S, const char *s) write the string s to the end of S.
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11.2 Output.

11.2.1 Output contexts.

An output coutext, of type PariOUT, is a struct that models a stream and contains the
following function pointers:

void (*putch) (char); /* fputc()-alike */
void (*puts) (const charx); /* fputs()-alike */
void (*flush) (void); /* fflush()-alike */

The methods putch and puts are used to print a character or a string respectively. The method
flush is called to finalize a messages.

The generic functions pari_putc, pari_puts, pari_flush and pari_printf print according
to a default output context, which should be sufficient for most purposes. Lower level functions are
available, which take an explicit output context as first argument:

void out_putc(PariQUT *out, char c) essentially equivalent to out->putc(c). In addition,
registers whether the last character printed was a \n.

void out_puts(PariOUT *out, const char *s) essentially equivalent to out->puts(s). In ad-
dition, registers whether the last character printed was a \n.

void out_printf(PariOUT *out, const char *fmt, ...)
void out_vprintf(PariOUT *out, const char *fmt, va_list ap)
N.B. The function out_flush does not exist since it would be identical to out—>flush()

int pari_last_was_newline(void) returns a nonzero value if the last character printed via
out_putc or out_puts was \n, and 0 otherwise.

void pari_set_last_newline(int last) sets the boolean value to be returned by the function
pari_last_was_newline to last.

11.2.2 Default output context. They are defined by the global variables pariOut and pariErr
for normal outputs and warnings/errors, and you probably do not want to change them. If you do
change them, diverting output in nontrivial ways, this probably means that you are rewriting gp.
For completeness, we document in this section what the default output contexts do.

pariOut. writes output to the FILE* pari_outfile, initialized to stdout. The low-level methods
are actually the standard putc / fputs, plus some magic to handle a log file if one is open.

pariErr. prints to the FILE* pari_errfile, initialized to stderr. The low-level methods are as
above.

You can stick with the default pariOut output context and change PARI’s standard output,
redirecting pari_outfile to another file, using

void switchout(const char *name) where name is a character string giving the name of the file
you want to write to; the output is appended at the end of the file. To close the file and revert to
outputting to stdout, call switchout (NULL).
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11.2.3 PARI colors. In this section we describe the low-level functions used to implement GP’s
color scheme, attached to the colors default. The following symbolic names are attached to gp’s
output strings:

e c_ERR an error message

e c_HIST a history number (as in %1 = ...)

c_PROMPT a prompt

e c_INPUT an input line (minus the prompt part)

c_0UTPUT an output

c_HELP a help message

c_TIME a timer
e c_NONE everything else

If the colors default is set to a nonempty value, before gp outputs a string, it first outputs
an ANSI colors escape sequence — understood by most terminals —, according to the colors
specifications. As long as this is in effect, the following strings are rendered in color, possibly in
bold or underlined.

void term_color(long c) prints (as if using pari_puts) the ANSI color escape sequence attached
to output object c. If ¢ is c_NONE, revert to default printing style.

void out_term_color(PariOUT *out, long c) as term_color, using output context out.

char* term_get_color(char *s, long c) returns as a character string the ANSI color escape
sequence attached to output object c. If ¢ is c_NONE, the value used to revert to default printing style
is returned. The argument s is either NULL (string allocated on the PARI stack), or preallocated
storage (in which case, it must be able to hold at least 16 chars, including the final \0).

11.2.4 Obsolete output functions.

These variants of void output(GEN x), which prints x, followed by a newline and a buffer
flush are complicated to use and less flexible than what we saw above, or than the pari_printf
variants. They are provided for backward compatibility and are scheduled to disappear.

void brute(GEN x, char format, long dec)
void matbrute(GEN x, char format, long dec)

void texe(GEN x, char format, long dec)
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11.3 Files.

The following routines are trivial wrappers around system functions (possibly around one of
several functions depending on availability). They are usually integrated within PARI’s diagnostics
system, printing messages if the debug level for "files" is high enough.

int pari_is_dir(const char #*name) returns 1 if name points to a directory, 0 otherwise.
int pari_is_file(const char #*name) returns 1 if name points to a directory, 0 otherwise.

int file_is_binary(FILE *f) returns 1 if the file f is a binary file (in the writebin sense), 0
otherwise.

void pari_unlink(const char *s) deletes the file named s. Warn if the operation fails.

void pari_fread_chars(void *b, size_t n, FILE *f) read n chars from stream f, storing the
result in pre-allocated buffer b (assumed to be large enough).

char* path_expand(const char *s) perform tilde and environment expansion on s. Returns a
malloc’ed buffer.

void strftime_expand(const char *s, char *buf, long max) perform time expansion on s,
storing the result (at most max chars) in buffer buf. Trivial wrapper around

time_t t = time(NULL);
strftime(but, max, s, localtime(&t);

char* pari_get_homedir(const char *user) expands ~user constructs, returning the home di-
rectory of user user, or NULL if it could not be determined (in particular if the operating system has
no such concept). The return value may point to static area and may be overwritten by subsequent
system calls: use immediately or strdup it.

int pari_stdin_isatty(void) returns 1 if our standard input stdin is attached to a terminal.
Trivial wrapper around isatty.

11.3.1 pariFILE.

PARI maintains a linked list of open files, to reclaim resources (file descriptors) on error or
interrupts. The corresponding data structure is a pariFILE, which is a wrapper around a standard
FILE*, containing further the file name, its type (regular file, pipe, input or output file, etc.).
The following functions create and manipulate this structure; they are integrated within PARI’s
diagnostics system, printing messages if the debug level for "files" is high enough.

pariFILE* pari_fopen(const char *s, const char #*mode) wrapper around fopen(s, mode),
return NULL on failure.

pariFILE* pari_fopen_or_fail(const char *s, const char *mode) simple wrapper around
fopen(s, mode); error on failure.

pariFILE* pari_fopengz(const char *s) opens the file whose name is s, and associates a (read-
only) pariFILE with it. If s is a compressed file (.gz suffix), it is uncompressed on the fly. If s
cannot be opened, also try to open s.gz. Returns NULL on failure.

void pari_fclose(pariFILE *f) closes the underlying file descriptor and deletes the pariFILE
struct.

pariFILE* pari_safefopen(const char *s, const char *mode) creates a new file s (a priori
for writing) with 600 permissions. Error if the file already exists. To avoid symlink attacks, a
symbolic link exists, regardless of where it points to.
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11.3.2 Temporary files.

PARI has its own idea of the system temp directory derived from an environment variable
($GPTMPDIR, else $TMPDIR), or the first writable directory among /tmp, /var/tmp and ..

char* pari_unique_dir(const char *s) creates a “unique directory” and return its name built
from the string s, the user id and process pid (on Unix systems). This directory is itself located in
the temp directory mentioned above. The name returned is malloc’ed.

char* pari_unique_filename(const char *s) creates a new empty file in the temp directory,
whose name contains the id-string s (truncated to its first 8 chars), followed by a system-dependent
suffix (incorporating the ids of both the user and the running process, for instance). The func-
tion returns the tempfile name and creates an empty file with that name. The name returned is
malloc’ed.

char* pari_unique_filename_suffix(const char *s, const char *suf) analogous to above
pari_unique_filename, creating a (previously nonexistent) tempfile whose name ends with suffix
suf.

11.4 Errors.

This section documents the various error classes, and the corresponding arguments to
pari_err. The general syntax is

void pari_err(numerr, ...)
In the sequel, we mostly use sequences of arguments of the form

const char *s
const char *fmt,

where fmt is a PARI format, producing a string s from the remaining arguments. Since provid-
ing the correct arguments to pari_err is quite error-prone, we also provide specialized routines

pari_err FRRORCLASS(...) instead of pari_err(e_.FRRORCLASS, ...) so that the C com-
piler can check their arguments.

We now inspect the list of valid keywords (error classes) for numerr, and the corresponding required

arguments.

11.4.1 Internal errors, “system” errors.

11.4.1.1 e_ ARCH. A requested feature s is not available on this architecture or operating system.
pari_err(e_ARCH)

prints the error message: sorry, ’s’ not available on this system.

11.4.1.2 e BUG. A bug in the PARI library, in function s.

pari_err(e_BUG, const char *s)
pari_err_BUG(const char *s)

prints the error message: Bug in s, please report.

266



11.4.1.3 e_FILE. Error while trying to open a file.

pari_err(e_FILE, const char *what, const char *name)
pari_err_FILE(const char *what, const char *name)

prints the error message: error opening what: ‘name’.

11.4.1.4 e_ FILEDESC. Error while handling a file descriptor.

pari_err(e_FILEDESC, const char *where, long n)
pari_err_FILEDESC(const char *where, long n)

prints the error message: invalid file descriptor in where: ‘name’.
11.4.1.5 e IMPL. A requested feature s is not implemented.

pari_err(e_IMPL, const char *s)
pari_err_IMPL(const char *s)

prints the error message: sorry, s is not yet implemented.

11.4.1.6 e PACKAGE. Missing optional package s.

pari_err(e_PACKAGE, const char *s)
pari_err_PACKAGE(const char *s)

prints the error message: package s is required, please install it

11.4.2 Syntax errors, type errors.

11.4.2.1 e_DIM. arguments submitted to function s have inconsistent dimensions. E.g., when
solving a linear system, or trying to compute the determinant of a nonsquare matrix.

pari_err(e_DIM, const char *s)
pari_err_DIM(const char *s)

prints the error message: inconsistent dimensions in s.
11.4.2.2 e FLAG. A flag argument is out of bounds in function s.

pari_err(e_FLAG, const char *s)
pari_err_FLAG(const char *s)

prints the error message: invalid flag in s.

11.4.2.3 e NOTFUNC. Generated by the PARI evaluator; tried to use a GEN which is not a
t_CLOSURE in a function call syntax (as in £ = 1; £(2);).

pari_err(e_NOTFUNC, GEN fun)
prints the error message: not a function in a function call.

11.4.2.4 e_OP. Impossible operation between two objects than cannot be typecast to a sensible
common domain for deeper reasons than a type mismatch, usually for arithmetic reasons. As in
0(2) + 0(3): it is valid to add two t_PADICs, provided the underlying prime is the same; so the
addition is not forbidden a priori for type reasons, it only becomes so when inspecting the objects
and trying to perform the operation.

pari_err(e_OP, const char *op, GEN x, GEN y)
pari_err_0P(const char *op, GEN x, GEN y)

As e_TYPE2, replacing forbidden by inconsistent.
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11.4.2.5 e . PRIORITY. object o in function s contains variables whose priority is incompatible
with the expected operation. E.g. Po1([x,1], ’y): this raises an error because it’s not possible to
create a polynomial whose coefficients involve variables with higher priority than the main variable.

pari_err(e_PRIORITY, const char *s, GEN o, const char *op, long v)
pari_err_PRIORITY(const char *s, GEN o, const char *op, long v)

prints the error message: incorrect priority in s, variable v, op v, were v, is gvar (o).
11.4.2.6 e SYNTAX. Syntax error, generated by the PARI parser.
pari_err(e_SYNTAX, const char *msg, const char *e, const char *entry)

where msg is a complete error message, and e and entry point into the same character string,
which is the input that was incorrectly parsed: e points to the character where the parser failed,
and entry < e points somewhat before.

Prints the error message: msg, followed by a colon, then a part of the input character string (in
general entry itself, but an initial segment may be truncated if e — entry is large); a caret points
at e, indicating where the error took place.

11.4.2.7 e TYPE. An argument x of function s had an unexpected type. (Asin factor("blah").)

pari_err(e_TYPE, const char *s, GEN x)
pari_err_TYPE(const char *s, GEN x)

prints the error message: incorrect type in s (t_z), where t_x is the type of x.

11.4.2.8 e TYPE2. Forbidden operation between two objects than cannot be typecast to a
sensible common domain, because their types do not match up. (As in Mod(1,2) + Pi.)

pari_err(e_TYPE2, const char *op, GEN x, GEN y)
pari_err_TYPE2(const char *op, GEN x, GEN y)

prints the error message: forbidden s t_x op t_y, where t_z denotes the type of z. Here, s denotes
the spelled out name of the operator op € {+,x*,/,%,=}, e.g. addition for "+" or assignment for
"="_ If op is not in the above operator, list, it is taken to be the already spelled out name of a
function, e.g. "gcd", and the error message becomes forbidden op t_z, t_y.

11.4.2.9 e_VAR. polynomials x and y submitted to function s have inconsistent variables. E.g.,
considering the algebraic number Mod(t,t"2+1) in nfinit(x"2+1).

pari_err(e_VAR, const char *s, GEN x, GEN y)
pari_err_VAR(const char *s, GEN x, GEN y)

prints the error message: inconsistent variables in s X != Y where X and Y are the names
of the variables of x and y, respectively.
11.4.3 Overflows.

11.4.3.1 e COMPONENT. Trying to access an inexistent component of a vector/matrix/list:
the index is less than 1 or greater than the allowed length.

pari_err(e_COMPONENT, const char *f, const char *op, GEN lim, GEN x)
pari_err_COMPONENT (const char *f, const char *op, GEN lim, GEN x)

prints the error message: nonexistent component in f: index op lim. Special case: if f is
the empty string (no meaningful public function name can be used), we ignore it and print the
message: nonexistent component: index op lim.
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11.4.3.2 e DOMAIN. An argument z is not in the function’s domain (as in moebius(0) or
zeta(1)).

pari_err(e_DOMAIN, char *f, char *v, char *op, GEN lim, GEN x)
pari_err_DOMAIN(char *f, char *v, char *op, GEN lim, GEN x)

prints the error message: domain error in f: v op lim. Special case: if op is the empty string,
we ignore lim and print the error message: domain error in f: v out of range.

11.4.3.3 e MAXPRIME. A function using the precomputed list of prime numbers ran out of
primes.

pari_err(e_MAXPRIME, ulong c)
pari_err_MAXPRIME(ulong c)

prints the error message: not enough precomputed primes, need primelimit ~c if ¢ is nonzero.
And simply not enough precomputed primes otherwise.

11.4.3.4 e MEM. A call to pari_malloc or pari_realloc failed.
pari_err(e_MEM)
prints the error message: not enough memory.

11.4.3.5 e OVERFLOW. An object in function s becomes too large to be represented within
PART’s hardcoded limits. (As in 27272710 or exp(1e100), which overflow in 1g and expo.)

pari_err(e_OVERFLOW, const char *s)
pari_err_OVERFLOW(const char *s)

prints the error message: overflow in s.

11.4.3.6 e PREC. Function s fails because input accuracy is too low. (As in floor(1e100) at
default accuracy.)

pari_err(e_PREC, const char *s)
pari_err_PREC(const char *s)

prints the error message: precision too low in s.

11.4.3.7 e STACK. The PARI stack overflows.
pari_err(e_STACK)

prints the error message: the PARI stack overflows ! as well as some statistics concerning

stack usage.

11.4.4 Errors triggered intentionally.

11.4.4.1 e, ALARM. A timeout, generated by the alarm function.
pari_err(e_ALARM, const char *fmt, ...)

prints the error message: s.

11.4.4.2 e_ USER. A user error, as triggered by error(gs,...,g,) in GP.
pari_err(e_USER, GEN g)

prints the error message: user error:, then the entries of the vector g.
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11.4.5 Mathematical errors.

11.4.5.1 e . CONSTPOL. An argument of function s is a constant polynomial, which does not
make sense. (As in galoisinit(Pol(1)).)

pari_err(e_CONSTPOL, const char *s)
pari_err_CONSTPOL(const char *s)

prints the error message: constant polynomial in s.

11.4.5.2 e COPRIME. Function s expected two coprime arguments, and did receive x, y which
were not.

pari_err(e_COPRIME, const char *s, GEN x, GEN y)
pari_err_COPRIME(const char *s, GEN x, GEN y)

prints the error message: elements not coprime in s: x,y.
11.4.5.3 e INV. Tried to invert a noninvertible object x.

pari_err(e_INV, const char *s, GEN x)
pari_err_INV(const char *s, GEN x)

prints the error message: impossible inverse in s: z. If x = Mod(a,b) is a t_INTMOD and a is
not 0 mod b, this allows to factor the modulus, as gcd(a,b) is a nontrivial divisor of b.

11.4.5.4 e TRREDPOL. Function s expected an irreducible polynomial, and did not receive one.
(As in nfinit(x"2-1).)

pari_err(e_IRREDPOL, const char *s, GEN x)
pari_err_IRREDPOL(const char *s, GEN x)

prints the error message: not an irreducible polynomial in s: =.
11.4.5.5 e MISC. Generic uncategorized error.

pari_err(e_MISC, const char *fmt, ...)
prints the error message: s.

11.4.5.6 e MODULUS. moduli x and y submitted to function s are inconsistent. E.g., considering
the algebraic number Mod (t,t"2+1) in nfinit(t~3-2).

pari_err(e_MODULUS, const char *s, GEN x, GEN y)
pari_err_MODULUS(const char *s, GEN x, GEN y)

prints the error message: inconsistent moduli in s, then the moduli.

11.4.5.7 e PRIME. Function s expected a prime number, and did receive p, which was not. (As
in idealprimedec(nf, 4).)

pari_err(e_PRIME, const char *s, GEN x)
pari_err_PRIME(const char *s, GEN x)

prints the error message: not a prime in s: .
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11.4.5.8 e ROOTSO0. An argument of function s is a zero polynomial, and we need to consider
its roots. (As in polroots(0).)

pari_err(e_ROOTSO, const char *s)
pari_err_ROOTSO(const char *s)

prints the error message: zero polynomial in s.

11.4.5.9 e SQRTN. Tried to compute an n-th root of , which does not exist, in function s. (As
in sqrt (Mod(-1,3)).)

pari_err(e_SQRTN, GEN x)
pari_err_SQRTN(GEN x)

prints the error message: not an n-th power residue in s: .

11.4.6 Miscellaneous functions.

long name_numerr(const char *s) return the error number corresponding to an error name. E.g.
name_numerr ("e DIM") returns e DIM.

const char* numerr_name(long errnum) returns the error name corresponding to an error num-
ber. E.g. name numerr (e DIM) returns "e DIM".

char* pari_err2str (GEN err) returns the error message that would be printed on t_ERROR err.
The name is allocated on the PARI stack and must not be freed.

11.5 Hashtables.

A hashtable, or associative array, is a set of pairs (k, v) of keys and values. PARI implements
general extensible hashtables for fast data retrieval: when creating a table, we may either choose
to use the PARI stack, or malloc so as to be stack-independent. A hashtable is implemented as a
table of linked lists, each list containing all entries sharing the same hash value. The table length
is a prime number, which roughly doubles as the table overflows by gaining new entries; both the
current number of entries and the threshold before the table grows are stored in the table. Finally
the table remembers the functions used to hash the entries’s keys and to test for equality two entries
hashed to the same value.

An entry, or hashentry, contains
e a key/value pair (k,v), both of type void* for maximal flexibility,

e the hash value of the key, for the table hash function. This hash is mapped to a table index
(by reduction modulo the table length), but it contains more information, and is used to bypass
costly general equality tests if possible,

e a link pointer to the next entry sharing the same table cell.

typedef struct {
void *key, *val;
ulong hash; /* hash(key) */
struct hashentry *next;

} hashentry;

typedef struct {
ulong len; /* table length */
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hashentry **table; /* the table */
ulong nb, maxnb; /* number of entries stored and max nb before enlarging */
ulong pindex; /* prime index */
ulong (*hash) (void *k); /* hash function */
int (*eq) (void *k1, void *k2); /* equality test */
int use_stack; /* use the PARI stack, resp. malloc */
} hashtable;

hashtable* hash_create(size, hash, eq, use_stack)
ulong size;
ulong (*hash) (voidx*);
int (*eq) (void*,voidx);
int use_stack;

creates a hashtable with enough room to contain size entries. The functions hash and eq compute
the hash value of keys and test keys for equality, respectively. If use_stack is non zero, the resulting
table will use the PARI stack; otherwise, we use malloc.

hashtable* hash_create_ulong(ulong size, long stack) special case when the keys are
ulongs with ordinary equality test.

hashtable* hash_create_str(ulong size, long stack) special case when the keys are char-
acter strings with string equality test (and hash_str hash function).

void hash_init(hashtable *h, ulong size, ulong (*hash)(void*), int (*eq) (voidx,
void*), use_stack) Initialize h for an hashtable with enough room to contain size entries of
type void*. The functions eq test keys for equality. If use_stack is non zero, the resulting table
will use the PARI stack; otherwise, we use malloc.

void hash_init_GEN(hashtable *h, ulong size, int (*eq) (GEN, GEN), use_stack) Initialize
h for an hashtable with enough room to contain size entries of type GEN. The functions eq test
keys for equality. If use_stack is non zero, the resulting table will use the PARI stack; otherwise,
we use malloc. The hash used is hash_GEN.

void hash_init_ulong(hashtable *h, ulong size, use_stack) Initialize h for an hashtable
with enough room to contain size entries of type ulong. If use_stack is non zero, the resulting
table will use the PARI stack; otherwise, we use malloc.

void hash_insert(hashtable *h, void *k, void *v) inserts (k,v) in hashtable h. No copy
is made: k and v themselves are stored. The implementation does not prevent one to insert two
entries with equal keys k, but which of the two is affected by later commands is undefined.

void hash_insert2(hashtable *h, void *k, void *v, ulong hash) as hash_insert, assuming
h->hash (k) is hash.

void hash_insert_long(hashtable *h, void %k, long v) as hash_ insert but v is a long.

hashentry* hash_search(hashtable *h, void *k) look for an entry with key k in h. Return it
if it one exists, and NULL if not.

hashentry* hash_search2(hashtable *h, void *k, ulong hash) as hash _search assuming
h->hash (k) is hash.

GEN hash_haskey_GEN(hashtable *h, void *k) returns the associate value if the key k belongs
to the hash, otherwise returns NULL.
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int hash_haskey_long(hashtable *h, void ¥k, long *v) returns 1 if the key k belongs to the
hash and set v to its value, otherwise returns 0.

hashentry * hash_select(hashtable *h, void *k, void *E, int (*select)(void *,
hashentry *)) variant of hash_search, useful when entries with identical keys are inserted: among
the entries attached to key k, return one satisfying the selection criterion (such that select(E,e)
is nonzero), or NULL if none exist.

hashentry* hash_remove(hashtable *h, void *k) deletes an entry (k,v) with key k from h
and return it. (Return NULL if none was found.) Only the linking structures are freed, memory
attached to k and v is not reclaimed.

hashentry* hash_remove_select(hashtable *h, void *k, void *E, int(*select) (voidx,
hashentry *)) a variant of hash_remove, useful when entries with identical keys are inserted:
among the entries attached to key k, return one satisfying the selection criterion (such that se-
lect(E,e) is nonzero) and delete it, or NULL if none exist. Only the linking structures are freed,
memory attached to k£ and v is not reclaimed.

GEN hash_keys(hashtable *h) return in a t_VECSMALL the keys stored in hashtable h.
GEN hash_values(hashtable *h) return in a t_VECSMALL the values stored in hashtable h.
void hash_destroy(hashtable *h) deletes the hashtable, by removing all entries.

void hash_dbg(hashtable *h) print statistics for hashtable h, allows to evaluate the attached
hash function performance on actual data.

Some interesting hash functions are available:
ulong hash_str(const char *s)

ulong hash_str_len(const char *s, long len) hash the prefix string containing the first len
characters (assume strlen(s) > len).

ulong hash_GEN(GEN x) generic hash function.
ulong hash_zv(GEN x) hash a t_VECSMALL.

11.6 Dynamic arrays.

A dynamic array is a generic way to manage stacks of data that need to grow dynamically.
It allocates memory using pari malloc, and is independent of the PARI stack; it even works before
the pari_init call.
11.6.1 Initialization.

To create a stack of objects of type foo, we proceed as follows:

foo *t_foo;
pari_stack s_foo;
pari_stack_init(&s_foo, sizeof (¥t_foo), (void**)&t_foo);

Think of s_foo as the controlling interface, and t_foo as the (dynamic) array tied to it. The value
of t_foo may be changed as you add more elements.
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11.6.2 Adding elements. The following function pushes an element on the stack.

/* access globals t_foo and s_foo */
void push_foo(foo x)
{

long n

= pari_stack_new(&s_foo);
t_fool[n] =

X;
X

11.6.3 Accessing elements.

FElements are accessed naturally through the t_foo pointer. For example this function swaps
two elements:

void swapfoo(long a, long b)

{
foo x;
if (a > s_foo.n || b > s_foo.n) pari_err_BUG("swapfoo");
X = t_foo[a];
t_fool[a]l] = t_fool[bl;
t_foo[b] = x;
}

11.6.4 Stack of stacks. Changing the address of t_foo is not supported in general. In particular
realloc()’ed array of stacks and stack of stacks are not supported.

11.6.5 Public interface. Let s be a pari_stack and data the data linked to it. The following
public fields are defined:
e s.alloc is the number of elements allocated for data.

e s.n is the number of elements in the stack and datal[s.n-1] is the topmost element of the
stack. s.n can be changed as long as 0 < s.n < s.alloc holds.

void pari_stack_init(pari_stack *s, size_t size, void #**data) links *s to the data
pointer *data, where size is the size of data element. The pointer *data is set to NULL, s->n and
s->alloc are set to 0: the array is empty.

void pari_stack_alloc(pari_stack *s, long nb) makes room for nb more elements, i.e. makes
sure that s.alloc > s.n + nb, possibly reallocating data.

long pari_stack_new(pari_stack *s) increases s.n by one unit, possibly reallocating data, and
returns s.n — 1.

Caveat. The following construction is incorrect because stack new can change the value of t_foo:
t_foo[ pari_stack_new(&s_foo) 1 = x;

void pari_stack_delete(pari_stack *s) frees data and resets the stack to the state immedi-
ately following stack_init (s->n and s->alloc are set to 0).

void * pari_stack_pushp(pari_stack *s, void *u) This function assumes that *data is of
pointer type. Pushes the element u on the stack s.

void ** pari_stack_base(pari_stack *s) returns the address of data, typecast to a void *x.
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11.7 Vectors and Matrices.

11.7.1 Access and extract. See Section 9.3.1 and Section 9.3.2 for various useful constructors.
Coefficients are accessed and set using gel, gcoeff, see Section 5.2.7. There are many internal
functions to extract or manipulate subvectors or submatrices but, like the accessors above, none of
them are suitable for gerepileupto. Worse, there are no type verification, nor bound checking, so
use at your own risk.

GEN shallowcopy (GEN x) returns a GEN whose components are the components of x (no copy is
made). The result may now be used to compute in place without destroying x. This is essentially
equivalent to

GEN y = cgetg(lg(x), typ(x));

for (i = 1; i < 1g(x); i++) y[i] = x[i];

return y;
except that t_MAT is treated specially since shallow copies of all columns are made. The function
also works for nonrecursive types, but is useless in that case since it makes a deep copy. If x is

known to be a t_MAT, you may call RgM_shallowcopy directly; if x is known not to be a t_MAT,
you may call leafcopy directly.

GEN RgM_shallowcopy(GEN x) returns shallowcopy(x), where x is a t_MAT.

GEN shallowtrans(GEN x) returns the transpose of x, without copying its components, i. e., it
returns a GEN whose components are (physically) the components of z. This is the internal function
underlying gtrans.

GEN shallowconcat(GEN x, GEN y) concatenate x and y, without copying components, i. e., it
returns a GEN whose components are (physically) the components of x and y.

GEN shallowconcatl(GEN x) z must be t_VEC, t_COL or t_LIST, concatenate its elements from
left to right. Shallow version of gconcat1l.

GEN shallowmatconcat(GEN v) shallow version of matconcat.

GEN shallowextract(GEN x, GEN y) extract components of the vector or matrix = according to
the selection parameter y. This is the shallow analog of extract0(x, y, NULL), see vecextract.

GEN shallowmatextract(GEN M, GEN 11, GEN 12) extract components of the matrix M according
to the t_VECSMALL /1 (list of lines indices) and [2 (list of columns indices). This is the shallow analog
of extract0(x, 11, 12), see vecextract.

GEN RgM_minor(GEN A, long i, long j) given a square t_MAT A, return the matrix with i-th
row and j-th column removed.

GEN vconcat(GEN A, GEN B) concatenate vertically the two t_MAT A and B of compatible dimen-
sions. A NULL pointer is accepted for an empty matrix. See shallowconcat.

GEN matslice(GEN A, long a, long b, long c, long d) returns the submatrix Afa..b,c..d].
Assume a < b and ¢ < d.

GEN row(GEN A, long i) return A[i,], the i-th row of the t_MAT A.
GEN row_i(GEN A, long i, long j1, long j2) return part of the i-th row of t_MAT A: A[i, j1],
A[ihjl + 1] s 7A[Z7]2] Assume jl < j2-
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GEN rowcopy(GEN A, long i) return the row A[i,] of the t_MAT A. This function is memory clean
and suitable for gerepileupto. See row for the shallow equivalent.

GEN rowslice(GEN A, long il, long i2) return the t_MAT formed by the i;-th through is-th
rows of t_MAT A. Assume i1 < 9.

GEN rowsplice(GEN A, long i) return the t_MAT formed from the coefficients of t_MAT A with
j-th row removed.

GEN rowpermute(GEN A, GEN p), p being a t_VECSMALL representing a list [p1,...,py] of rows of
t_MAT A, returns the matrix whose rows are Alp1,],..., A[pn,].

GEN rowslicepermute(GEN A, GEN p, long x1, long x2), short for
rowslice(rowpermute(A,p), x1, x2)
(more efficient).

GEN vecslice(GEN A, long j1, long j2), return A[j1],..., A[jo]. If A is a t_MAT, these corre-
spond to columns of A. The object returned has the same type as A (t_VECSMALL, t_VEC, t_COL
or t_MAT). Assume j; < js or jo = j; — 1 (return empty vector/matrix).

GEN vecsplice(GEN A, long j) return A with j-th entry removed (t_VEC, t_COL) or j-th column
removed (t_MAT).

GEN vecreverse(GEN A). Returns a GEN which has the same type as A (t_VEC, t_COL or t_MAT),
and whose components are the Aln], ..., A[1]. If A is a t_MAT, these are the columns of A.

void vecreverse_inplace(GEN A) as vecreverse, but reverse A in place.

GEN vecpermute(GEN A, GEN p) p is a t_VECSMALL representing a list [p1,...,p,] of indices.
Returns a GEN which has the same type as A (t_VEC, t_COL or t_MAT), and whose components are
Alp1], ..., Alpn]. If A is a t_MAT, these are the columns of A.

GEN vecsmallpermute(GEN A, GEN p) as vecpermute when A is a t_VECSMALL.
GEN vecslicepermute(GEN A, GEN p, long yl, long y2) short for
vecslice(vecpermute(A,p), yl, y2)

(more efficient).

11.7.2 Componentwise operations.
The following convenience routines automate trivial loops of the form
for (i = 1; i < 1g(a); i++) gel(v,i) = f(gel(a,i), gel(b,i))
for suitable f:
GEN vecinv(GEN a). Given a vector a, returns the vector whose i-th component is ginv(a[i]).

GEN vecmul (GEN a, GEN b). Given a and b two vectors of the same length, returns the vector
whose i-th component is gmul(al[i], b[i]).

GEN vecdiv(GEN a, GEN b). Given a and b two vectors of the same length, returns the vector
whose i-th component is gdiv(al[i], b[i]).

GEN vecpow(GEN a, GEN n). Given n a t_INT, returns the vector whose i-th component is a[s]".
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GEN vecmodii(GEN a, GEN b). Assuming a and b are two ZV of the same length, returns the
vector whose i-th component is modii(al], b]).

GEN vecmoduu(GEN a, GEN b). Assuming a and b are two t_VECSMALL of the same length, returns
the vector whose i-th component is ali] % b[i].

Note that vecadd or vecsub do not exist since gadd and gsub have the expected behavior. On
the other hand, ginv does not accept vector types, hence vecinv.
11.7.3 Low-level vectors and columns functions.

These functions handle t_VEC as an abstract container type of GENs. No specific meaning is
attached to the content. They accept both t_VEC and t_COL as input, but col functions always
return t_COL and vec functions always return t_VEC.

Note. All the functions below are shallow.

GEN const_col(long n, GEN x) returns a t_COL of n components equal to x.

GEN const_vec(long n, GEN x) returns a t_VEC of n components equal to x.

int vec_isconst(GEN v) Returns 1 if all the components of v are equal, else returns 0.
void vec_setconst(GEN v, GEN x) v a pre-existing vector. Set all its components to z.

int vec_is1tol(GEN v) Returns 1 if the components of v are pair-wise distinct, i.e. if i — v[i] is
a 1-to-1 mapping, else returns 0.

GEN vec_append(GEN V, GEN s) append s to the vector V.
GEN vec_prepend(GEN V, GEN s) prepend s to the vector V.
GEN vec_shorten(GEN v, long n) shortens the vector v to n components.

GEN vec_lengthen(GEN v, long n) lengthens the vector v to n components. The extra compo-
nents are not initialized.

GEN vec_insert(GEN v, long n, GEN x) inserts x at position n in the vector v.

GEN vec_equiv(GEN 0) given a vector of objects O, return a vector with n components where n
is the number of distinct objects in O. The i-th component is a t_VECSMALL containing the indices
of the elements in O having the same value. Applied to the image of a function evaluated on some
finite set, it computes the fibers of the function.

GEN vec_reduce(GEN 0, GEN *pE) given a vector of objects O, return the vector v (of the same
type as O) of distinct elements of O and set a t_VECSMALL E with the same length as v, such that
Eli] is the multiplicity of object v[i] in the original O. Shallow function.
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11.8 Vectors of small integers.

11.8.1 t_VECSMALL.

These functions handle t_VECSMALL as an abstract container type of small signed integers. No
specific meaning is attached to the content.

GEN const_vecsmall(long n, long c) returns a t_VECSMALL of n components equal to c.

GEN vec_to_vecsmall(GEN z) identical to ZV_to_zv(z).

GEN vecsmall_to_vec(GEN z) identical to zv_to_ZV(z).

GEN vecsmall_to_col(GEN z) identical to zv_to_ZC(z).

GEN vecsmall_to_vec_inplace(GEN z) apply stoi to all entries of z and set its type to t_VEC.
GEN vecsmall_copy(GEN x) makes a copy of x on the stack.

GEN vecsmall_shorten(GEN v, long n) shortens the t_VECSMALL v to n components.

GEN vecsmall_lengthen(GEN v, long n) lengthens the t_VECSMALL v to n components. The
extra components are not initialized.

GEN vecsmall_indexsort(GEN x) performs an indirect sort of the components of the t_VECSMALL
x and return a permutation stored in a t_VECSMALL.

void vecsmall_sort(GEN v) sorts the t_VECSMALL v in place.
GEN vecsmall_reverse(GEN v) as vecreverse for a t_VECSMALL v.

long vecsmall_max(GEN v) returns the maximum of the elements of t_VECSMALL v, assumed
nonempty.

long vecsmall_indexmax(GEN v) returns the index of the largest element of t_VECSMALL v, as-
sumed nonempty.

long vecsmall_min(GEN v) returns the minimum of the elements of t_VECSMALL v, assumed
nonempty.

long vecsmall_indexmin(GEN v) returns the index of the smallest element of t_VECSMALL v,
assumed nonempty.

int vecsmall_isconst(GEN v) Returns 1 if all the components of v are equal, else returns 0.

int vecsmall_isl1tol(GEN v) Returns 1 if the components of v are pair-wise distinct, i.e. if
i+ v[i] is a 1-to-1 mapping, else returns 0.

long vecsmall_isin(GEN v, long x) returns the first index ¢ such that v[¢] is equal to x. Naive
search in linear time, does not assume that v is sorted.

GEN vecsmall_uniq(GEN v) given a t_VECSMALL v, return the vector of unique occurrences.
GEN vecsmall_uniq_sorted(GEN v) same as vecsmall_uniq, but assumes v sorted.

long vecsmall_duplicate(GEN v) given a t_VECSMALL v, return O if there is no duplicates, or
the index of the first duplicate (vecsmall duplicate([1,1]) returns 2).

long vecsmall_duplicate_sorted(GEN v) same as vecsmall_duplicate, but assume v sorted.

int vecsmall_lexcmp(GEN x, GEN y) compares two t_VECSMALL lexically.
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int vecsmall_prefixcmp(GEN x, GEN y) truncate the longest t_VECSMALL to the length of the
shortest and compares them lexicographically.

GEN vecsmall_prepend(GEN V, long s) prepend s to the t_VECSMALL V.

GEN vecsmall_append(GEN V, long s) append s to the t_VECSMALL V.

GEN vecsmall_concat(GEN u, GEN v) concat the t_VECSMALL u and v.

long vecsmall_coincidence(GEN u, GEN v) returns the numbers of indices where u and v agree.

long vecsmall_pack(GEN v, long base, long mod) handles the t_VECSMALL v as the digit of a
number in base base and return this number modulo mod. This can be used as an hash function.

GEN vecsmall_prod(GEN v) given a t_VECSMALL v, return the product of its entries.

11.8.2 Vectors of t_VECSMALL. These functions manipulate vectors of t_VECSMALL (vecvecsmall).
GEN vecvecsmall_sort(GEN x) sorts lexicographically the components of the vector x.
GEN vecvecsmall_sort_shallow(GEN x), shallow variant of vecvecsmall sort.

void vecvecsmall_sort_inplace(GEN x, GEN #*perm) sort lexicographically x in place, without
copying its components. If perm is not NULL, it is set to the permutation that would sort the original
X.

GEN vecvecsmall_sort_uniq(GEN x) sorts lexicographically the components of the vector x, re-
moving duplicates entries.

GEN vecvecsmall_indexsort(GEN x) performs an indirect lexicographic sorting of the components
of the vector x and return a permutation stored in a t_VECSMALL.

long vecvecsmall_search(GEN x, GEN y) x being a sorted vecvecsmall and y a t_VECSMALL,
search y inside x.

GEN vecvecsmall_max(GEN x) returns the largest entry in all x[i], assumed nonempty. Shallow
function.
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Chapter 12:
Functions related to the GP interpreter

12.1 Handling closures.

12.1.1 Functions to evaluate t_CLOSURE.
void closure_disassemble(GEN C) print the t_CLOSURE C in GP assembly format.

GEN closure_callgenall(GEN C, long n, ...) evaluate the t_CLOSURE C with the n arguments
(of type GEN) following n in the function call. Assumes C has arity > n.

GEN closure_callgenvec(GEN C, GEN args) evaluate the t_CLOSURE C with the arguments sup-
plied in the vector args. Assumes C has arity > lg(args) — 1.

GEN closure_callgenvecprec(GEN C, GEN args, long prec) as closure_callgenvec but set
the precision locally to prec.

GEN closure_callgenvecdef (GEN C, GEN args, GEN def) evaluate the t_CLOSURE C with the
arguments supplied in the vector args, where the t_VECSMALL def indicates which arguments are
actually present. Assumes C has arity > 1g(args) — 1.

GEN closure_callgenvecdefprec(GEN C, GEN args, GEN def, long prec) as clo-
sure_callgenvecdef but set the precision locally to prec.

GEN closure_callgenOprec(GEN C, long prec) evaluate the t_CLOSURE C without arguments,
but set the precision locally to prec.

GEN closure_callgenl(GEN C, GEN x) evaluate the t_CLOSURE C with argument x. Assumes C
has arity > 1.

GEN closure_callgenlprec(GEN C, GEN x, long prec) as closure_callgenl, but set the
precision locally to prec.

GEN closure_callgen2(GEN C, GEN x, GEN y) evaluate the t_CLOSURE C with argument x, y.
Assumes C has arity > 2.

void closure_callvoidl(GEN C, GEN x) evaluate the t_CLOSURE C with argument x and discard
the result. Assumes C has arity > 1.

The following technical functions are used to evaluate inline closures and closures of arity 0.

The control flow statements (break, next and return) will cause the evaluation of the closure to
be interrupted; this is called below a flow change. When that occurs, the functions below generally
return NULL. The caller can then adopt three positions:

e raises an exception (closure_evalnobrk).
e passes through (by returning NULL itself).

e handles the flow change.
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GEN closure_evalgen(GEN code) evaluates a closure and returns the result, or NULL if a flow
change occurred.

GEN closure_evalnobrk(GEN code) as closure_evalgen but raise an exception if a flow change
occurs. Meant for iterators where interrupting the closure is meaningless, e.g. intnum or sumnum.

void closure_evalvoid(GEN code) evaluates a closure whose return value is ignored. The caller
has to deal with eventual flow changes by calling loop_break.

The remaining functions below are for exceptional situations:

GEN closure_evalres(GEN code) evaluates a closure and returns the result. The difference with
closure_evalgen being that, if the low end by a return statement, the result will be the returned
value instead of NULL. Used by the main GP loop.

GEN closure_evalbrk(GEN code, long *status) as closure_evalres but set status to a
nonzero value if a flow change occurred. This variant is not stack clean. Used by the break
loop.

GEN closure_trapgen(long numerr, GEN code) evaluates closure, while trapping error numerr.
Return (GEN) 1L if error trapped, and the result otherwise, or NULL if a flow change occurred. Used
by trap.

12.1.2 Functions to handle control flow changes.

long loop_break(void) processes an eventual flow changes inside an iterator. If this function
return 1, the iterator should stop.

12.1.3 Functions to deal with lexical local variables.

Function using the prototype code ‘V’ need to manually create and delete a lexical variable
for each code ‘V’, which will be given a number —1, —2,.. ..

void push_lex(GEN a, GEN code) creates a new lexical variable whose initial value is a on the top
of the stack. This variable get the number —1, and the number of the other variables is decreased
by one unit. When the first variable of a closure is created, the argument code must be the closure
that references this lexical variable. The argument code must be NULL for all subsequent variables
(if any). (The closure contains the debugging data for the variable).

void pop_lex(long n) deletes the n topmost lexical variables, increasing the number of other
variables by n. The argument n must match the number of variables allocated through push_lex.

GEN get_lex(long vn) get the value of the variable with number vn.

void set_lex(long vn, GEN x) set the value of the variable with number vn.
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12.1.4 Functions returning new closures.
GEN compile_str(const char *s) returns the closure corresponding to the GP expression s.

GEN closure_deriv(GEN code) returns a closure corresponding to the numerical derivative of the
closure code.

GEN closure_derivn(GEN code, long n) returns a closure corresponding to the numerical deriva-
tive of order n > 0 of the closure code.

GEN snm_closure(entree *ep, GEN data) Let data be a vector of length m, ep be an entree
pointing to a C function f of arity m + m, returns a t_CLOSURE object g of arity m such that
g(xz1,...,xy) = f(x1,..., 25, gel(data, 1), ..., gel(data,m)). If data is NULL, then m = 0 is assumed.
Shallow function.

GEN strtofunction(char *str) returns a closure corresponding to the built-in or install’ed func-
tion named str.

GEN strtoclosure(char *str, long n, ...) returns a closure corresponding to the built-in or
install’ed function named str with the n last parameters set to the n GENs following n. This is
analogous to snm_closure(isentry(str), mkvecn(...)) but the latter has lower overhead since
it does not copy arguments, nor does it validate inputs.

In the example code below, agm1 is set to the function x->agm(x,1) and res is set to agm(2,1).
GEN agml = strtoclosure("agm",1, gen_1);

GEN res = closure_callgenl(agml, gen_2);

12.1.5 Functions used by the gp debugger (break loop). long closure_context(long s)
restores the compilation context starting at frame s+1, and returns the index of the topmost frame.
This allow to compile expressions in the topmost lexical scope.

void closure_err(long level) prints a backtrace of the last 20 stack frames, starting at frame
level, the numbering starting at 0.
12.1.6 Standard wrappers for iterators. Two families of standard wrappers are provided to

interface iterators like intnum or sumnum with GP.

12.1.6.1 Standard wrappers for inline closures. These wrappers are used to implement GP
functions taking inline closures as input. The object (GEN)E must be an inline closure which is
evaluated with the lexical variable number —1 set to x.

GEN gp_eval(void *E, GEN x) is used for the prototype code ‘E’.
GEN gp_evalprec(void *E, GEN x, long prec) as gp-eval, but set the precision locally to prec.

long gp_evalvoid(void *E, GEN x) is used for the prototype code ‘I’. The resulting value is
discarded. Return a nonzero value if a control-flow instruction request the iterator to terminate
immediately.

long gp_evalbool(void *E, GEN x) returns the boolean gp_eval(E, x) evaluates to (i.e. true
iff the value is nonzero).

GEN gp_evalupto(void *E, GEN x) memory-safe version of gp_eval, gcopy-ing the result, when
the evaluator returns components of previously allocated objects (e.g. member functions).
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12.1.6.2 Standard wrappers for true closures. These wrappers are used to implement GP
functions taking true closures as input.

GEN gp_call(void *E, GEN x) evaluates the closure (GEN)E on z.
GEN gp_callprec(void *E, GEN x, long prec) as gp_call, but set the precision locally to prec.
GEN gp_call2(void *E, GEN x, GEN y) evaluates the closure (GEN)E on (z,y).

long gp_callbool(void *E, GEN x) evaluates the closure (GEN)E on z, returns 1 if its result is
nonzero, and O otherwise.

long gp_callvoid(void *E, GEN x) evaluates the closure (GEN)E on z, discarding the result.
Return a nonzero value if a control-flow instruction request the iterator to terminate immediately.

12.2 Defaults.

entreex pari_is_default(const char *s) return the entree structure attached to s if it is the
name of a default, NULL otherwise.

GEN setdefault(const char *s, const char *v, long flag) is the low-level function under-
lying defaultO. If s is NULL, call all default setting functions with string argument NULL and flag
d_ACKNOWLEDGE. Otherwise, check whether s corresponds to a default and call the corresponding
default setting function with arguments v and flag.

We shall describe these functions below: if v is NULL, we only look at the default value (and
possibly print or return it, depending on flag); otherwise the value of the default to v, possibly
after some translation work. The flag is one of

e d_INITRC called while reading the gprc: print and return gnil, possibly defer until gp
actually starts.

e d_RETURN return the current value, as a t_INT if possible, as a t_STR otherwise.
e d_ACKNOWLEDGE print the current value, return gnil.
e d_SILENT print nothing, return gnil.

Low-level functions called by setdefault:

GEN sd_TeXstyle(const char *v, long flag)

GEN sd_breakloop(const char *v, long flag)

GEN sd_colors(const char *v, long flag)

GEN sd_compatible(const char *v, long flag)

GEN sd_datadir(const char *v, long flag)

GEN sd_debug(const char *v, long flag)

GEN sd_debugfiles(const char *v, long flag)

GEN sd_debugmem(const char *v, long flag)

GEN sd_echo(const char *v, long flag)

GEN sd_factor_add_primes(const char *v, long flag)
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GEN sd_factor_proven(const char *v, long flag)
GEN sd_format(const char *v, long flag)

GEN sd_graphcolormap(const char *v, long flag)
GEN sd_graphcolors(const char *v, long flag)
GEN sd_help(const char *v, long flag)

GEN sd_histfile(const char *v, long flag)

GEN sd_histsize(const char *v, long flag)

GEN sd_lines(const char *v, long flag)

GEN sd_linewrap(const char *v, long flag)

GEN sd_log(const char *v, long flag)

GEN sd_logfile(const char *v, long flag)

GEN sd_nbthreads(const char *v, long flag)

GEN sd_new_galois_format(const char *v, long flag)
GEN sd_output(const char *v, long flag)

GEN sd_parisize(const char *v, long flag)

GEN sd_parisizemax(const char *v, long flag)
GEN sd_path(const char *v, long flag)

GEN sd_plothsizes(const char *v, long flag)
GEN sd_prettyprinter(const char *v, long flag)
GEN sd_primelimit(const char *v, long flag)
GEN sd_prompt(const char *v, long flag)

GEN sd_prompt_cont(const char *v, long flag)

GEN sd_psfile(const char *v, long flag) The psfile default is obsolete, don’t use this func-
tion.

GEN sd_readline(const char *v, long flag)

GEN sd_realbitprecision(const char *v, long flag)
GEN sd_realprecision(const char *v, long flag)
GEN sd_recover(const char *v, long flag)

GEN sd_secure(const char *v, long flag)

GEN sd_seriesprecision(const char *v, long flag)
GEN sd_simplify(const char *v, long flag)

GEN sd_sopath(const char *v, int flag)

GEN sd_strictargs(const char *v, long flag)
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GEN sd_strictmatch(const char *v, long flag)
GEN sd_timer(const char *v, long flag)

GEN sd_threadsize(const char *v, long flag)
GEN sd_threadsizemax(const char *v, long flag)

Generic functions used to implement defaults: most of the above routines are implemented in terms
of the following generic ones. In all routines below

e v and flag are the arguments passed to default: v is a new value (or the empty string: no
change), and flag is one of d_INITRC, d_RETURN, etc.

e s is the name of the default being changed, used to display error messages or acknowledge-
ments.

GEN sd_toggle(const char *v, long flag, const char *s, int *ptn)
e if v is neither "0" nor "1", an error is raised using pari_err.

e ptn points to the current numerical value of the toggle (1 or 0), and is set to the new value
(when v is nonempty).

For instance, here is how the timer default is implemented internally:

GEN
sd_timer(const char *v, long flag)
{ return sd_toggle(v,flag,"timer", &(GP_DATA->chrono)); }

The exact behavior and return value depends on flag:

e d_RETURN: returns the new toggle value, as a GEN.

e d_ACKNOWLEDGE: prints a message indicating the new toggle value and return gnil.
e other cases: print nothing and return gnil.

GEN sd_ulong(const char *v, long flag, const char *s, ulong *ptn, ulong Min, ulong
Max, const char **msg)

e ptn points to the current numerical value of the toggle, and is set to the new value (when v
is nonempty).

e Min and Max point to the minimum and maximum values allowed for the default.

e v must translate to an integer in the allowed ranger, a suffix among k/K (x10%), m/M (x10°),
or g/G (x10?) is allowed, but no arithmetic expression.

e msg is a [NULL]-terminated array of messages or NULL (ignored). If msg is not NULL, msg|i]
contains a message attached to the value ¢ of the default. The last entry in the msg array is used
as a message attached to all subsequent ones.

The exact behavior and return value depends on flag:
e d_RETURN: returns the new value, as a GEN.

e d_ACKNOWLEDGE: prints a message indicating the new value, possibly a message attached to
it via the msg argument, and return gnil.

e other cases: print nothing and return gnil.
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GEN sd_intarray(const char *v, long flag, const char *s, GEN *pz)
e records a t_VECSMALL array of nonnegative integers.
e pz points to the current t_VECSMALL value, and is set to the new value (when v is nonempty).
The exact return value depends on flag:
e d_RETURN: returns the new value, as a t_VEC (converted via zv_to_ZV)
e d_ACKNOWLEDGE: prints a message indicating the new value, (as a t_VEC) and return gnil.
e other cases: print nothing and return gnil.

GEN sd_string(const char *v, long flag, const char *s, char **pstr) e v is subjet to
environment expansion, then time expansion.

e pstr points to the current string value, and is set to the new value (when v is nonempty).

12.3 Records and Lazy vectors.

The functions in this section are used to implement ell structures and analogous objects,
which are vectors some of whose components are initialized to dummy values, later computed on
demand. We start by initializing the structure:

GEN obj_init(long d, long n) returns an obj S, a t_VEC with d regular components, accessed as
gel(S,1), ..., gel(S,d); together with a record of n members, all initialized to 0. The arguments
d and n must be nonnegative.

After S = obj_init(d, n), the prototype of our other functions are of the form
GEN obj_do(GEN S, long tag, ...)
The first argument S holds the structure to be managed. The second argument tag is the index

of the struct member (from 1 to n) we operate on. We recommend to define an enum and use
descriptive names instead of hardcoded numbers. For instance, if n = 3, after defining

enum { TAG_p = 1, TAG_list, TAG_data };

one may use TAG_list or 2 indifferently as a tag. The former being preferred, of course.
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Technical note. In the current implementation, S is a t_VEC with d + 1 entries. The first d
components are ordinary t_GEN entries, which you can read or assign to in the customary way. But
the last component gel(S,d + 1), a t_VEC of length n initialized to zerovec(n), must be handled
in a special way: you should never access or modify its components directly, only through the
API we are about to describe. Indeed, its entries are meant to contain dynamic data, which will
be stored, retrieved and replaced (for instance by a value computed to a higher accuracy), while
interacting safely with intermediate gerepile calls. This mechanism allows to simulate C structs,
in a simpler way than with general hashtables, while remaining compatible with the GP language,
which knows neither structs nor hashtables. It also serialize the structure in an ordinary GEN, which
facilitates copies and garbage collection (use gcopy or gerepile), rather than having to deal with
individual components of actual C structs.

GEN obj_reinit(GEN S) make a shallow copy of S, re-initializing all dynamic components. This
allows “forking” a lazy vector while avoiding both a memory leak, and storing pointers to the same
data in different objects (with risks of a double free later).

GEN obj_check(GEN S, long tag) if the tag-component in S is non empty, return it. Otherwise
return NULL. The t_INT O (initial value) is used as a sentinel to indicated an empty component.

GEN obj_insert(GEN S, long tag, GEN 0) insert (a clone of) O as tag-component of S. Any
previous value is deleted, and data pointing to it become invalid.

GEN obj_insert_shallow(GEN S, long K, GEN 0) as obj_insert, inserting O as-is, not via a
clone.

GEN obj_checkbuild(GEN S, long tag, GEN (*build) (GEN)) if the tag-component of S is non
empty, return it. Otherwise insert (a clone of) build(8) as tag-component in S, and return it.

GEN obj_checkbuild_padicprec(GEN S, long tag, GEN (*build) (GEN, long), long prec) if
the tag-component of S is non empty and has relative p-adic precision > prec, return it. Otherwise
insert (a clone of) build(S, prec) as tag-component in S, and return it.

GEN obj_checkbuild_realprec(GEN S, long tag, GEN (*build) (GEN, long), long prec)
if the tag-component of S is non empty and satisfies gprecision > prec, return it. Otherwise
insert (a clone of) build(S, prec) as tag-component in S, and return it.

GEN obj_checkbuild_prec(GEN S, long tag, GEN (*build) (GEN, long), GEN (*gpr) (GEN),
long prec) if the tag-component of S is non empty and has precision gpr(z) > prec, return it.
Otherwise insert (a clone of) build(S, prec) as tag-component in S, and return it.

void obj_free(GEN S) destroys all clones stored in the n tagged components, and replace them
by the initial value 0. The regular entries of S are unaffected, and S remains a valid object. This
is used to avoid memory leaks.
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Chapter 13:
Algebraic Number Theory

13.1 General Number Fields.

13.1.1 Number field types.

None of the following routines thoroughly check their input: they distinguish between bona fide
structures as output by PARI routines, but designing perverse data will easily fool them. To give
an example, a square matrix will be interpreted as an ideal even though the Z-module generated by
its columns may not be an Zx-module (i.e. the expensive nfisideal routine will not be called).

long nftyp(GEN x). Returns the type of number field structure stored in x, typ_NF, typ_BNF, or
typ_BNR. Other answers are possible, meaning x is not a number field structure.

GEN get_nf(GEN x, long *t). Extract an nf structure from x if possible and return it, otherwise
return NULL. Sets t to the nftyp of x in any case.

GEN get_bnf (GEN x, long *t). Extract a bnf structure from x if possible and return it, otherwise
return NULL. Sets t to the nftyp of x in any case.

GEN get_nfpol(GEN x, GEN *nf) try to extract an nf structure from x, and sets *nf to NULL
(failure) or to the nf. Returns the (monic, integral) polynomial defining the field.

GEN get_bnfpol(GEN x, GEN *bnf, GEN *nf) try to extract a bnf and an nf structure from x,
and sets *bnf and *nf to NULL (failure) or to the corresponding structure. Returns the (monic,
integral) polynomial defining the field.

GEN checknf (GEN x) if an nf structure can be extracted from x, return it; otherwise raise an
exception. The more general get nf is often more flexible.

GEN checkbnf (GEN x) if an bnf structure can be extracted from x, return it; otherwise raise an
exception. The more general get_bnf is often more flexible.

GEN checkbnf_i(GEN bnf) same as checkbnf but return NULL instead of raising an exception.
void checkbnr (GEN bnr) Raise an exception if the argument is not a bnr structure.

GEN checkbnr_i(GEN bnr) same as checkbnr but returns the bnr or NULL instead of raising an
exception.

GEN checknf_i(GEN nf) same as checknf but return NULL instead of raising an exception.

void checkrnf (GEN rnf) Raise an exception if the argument is not an rnf structure.

int checkrnf_i(GEN rnf) same as checkrnf but return 0 on failure and 1 on success.

void checkbid(GEN bid) Raise an exception if the argument is not a bid structure.

GEN checkbid_i(GEN bid) same as checkbid but return NULL instead of raising an exception and

return bid on success.
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GEN checkznstar_i(GEN G) return G if it is a znstar; else return NULL on failure.

GEN checkgal (GEN x) if a galoisinit structure can be extracted from x, return it; otherwise raise
an exception.

void checksqgmat(GEN x, long N) check whether x is a square matrix of dimension N. May be
used to check for ideals if N is the field degree.

void checkprid(GEN pr) Raise an exception if the argument is not a prime ideal structure.

int checkprid_i(GEN pr) same as checkprid but return O instead of raising an exception and
return 1 on success.

int is_nf_factor(GEN F) return 1 if F' is an ideal factorization and 0 otherwise.

int is_nf_extfactor (GEN F) return 1 if F is an extended ideal factorization (allowing 0 or neg-
ative exponents) and 0 otherwise.

int RgV_is_prV(GEN v) returns 1 if the vector v contains only prime ideals and 0 otherwise.

GEN get_prid(GEN ideal) return the underlying prime ideal structure if one can be extracted
from ideal (ideal or extended ideal), and return NULL otherwise.

void checkabgrp(GEN v) Raise an exception if the argument is not an abelian group structure,
i.e. a t_VEC with either 2 or 3 entries: [N, cyc] or [N, cyc, gen].

GEN abgrp_get_no(GEN x) extract the cardinality IV from an abelian group structure.
GEN abgrp_get_cyc(GEN x) extract the elementary divisors cyc from an abelian group structure.
GEN abgrp_get_gen(GEN x) extract the generators gen from an abelian group structure.

GEN cyc_get_expo(GEN cyc) return the exponent of the group with structure cyc; 0 for an infinite
group.

void checkmodpr (GEN modpr) Raise an exception if the argument is not a modpr structure (from
nfmodprinit).

GEN get_modpr(GEN x) return z if it is a modpr structure and NULL otherwise.

GEN checknfelt_mod(GEN nf, GEN x, const char *s) given an nf structure nf and a t_POLMOD
x, return the attached polynomial representative (shallow) if x and nf are compatible. Raise an
exception otherwise. Set s to the name of the caller for a meaningful error message.

int check_ZKmodule_i(GEN x) return 1 if x looks like a projective Z-module, i.e., a pair [A, I]
where A is a matrix and [ is a list of ideals and A has as many columns as I has elements. Or
possibly a longer list [A, I,...] such as the output of rnfpseudobasis. Otherwise return 0.

void check_ZKmodule(GEN x, const char *s) raise an exception unless x is recognized as a
projective Zx-module. Set s to the name of the caller for a meaningful error message.

long idealtyp(GEN *ideal, GEN *fa) The input is ideal, a pointer to an ideal or extended
ideal; returns the type of the underlying ideal among id_PRINCIPAL (a number field element),
id_PRIME (a prime ideal) id_MAT (an ideal in matrix form).

As a first side effect, *ideal is set to the underlying ideal, possibly simplified (for instance the
zero ideal represented by an empty matrix is replaced by gen 0).

If fa is not NULL, then *fa is set to the extended part in the input: either NULL (regular ideal)
or the extended part of an extended ideal.
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13.1.2 Extracting info from a nf structure.

These functions expect a true nf argument attached to a number field K = Q[z]/(T), e.g. a
bnf will not work. Let n = [K : Q] be the field degree.

GEN nf_get_pol(GEN nf) returns the polynomial 7' (monic, in Z[x]).

long nf_get_varn(GEN nf) returns the variable number of the number field defining polynomial.
long nf_get_r1(GEN nf) returns the number of real places r;.

long nf_get_r2(GEN nf) returns the number of complex places ra.

void nf_get_sign(GEN nf, long *rl, long *r2) sets r; and re to the number of real and
complex places respectively. Note that r; 4+ 2ry is the field degree.

long nf_get_degree(GEN nf) returns the number field degree, n = r; + 2rs.
GEN nf_get_disc(GEN nf) returns the field discriminant.

GEN nf_get_index(GEN nf) returns the index of T, i.e. the index of the order generated by the
power basis (1,z,...,2" 1) in the maximal order of K.

GEN nf_get_zk(GEN nf) returns a basis (wy,ws,...,w,) for the maximal order of K. Those are
polynomials in Q[x] of degree < n; it is guaranteed that wy = 1.

GEN nf_get_zkden(GEN nf) returns the denominator of nf_get_zk, as a positive t_INT.
GEN nf_get_zkprimpart(GEN nf) returns nf_get_zk times its denominator.

GEN nf_get_invzk(GEN nf) returns the matrix (m; ;) € M,(Z) giving the power basis (z%) in
terms of the (w;), i.e such that 271 =" | m, jw; for all 1 < j < n; since wy =1 = 2, we have
m;1 = 0;,1 for all i. The conversion functions in the algtobasis family essentially amount to a
left multiplication by this matrix.

GEN nf_get_roots(GEN nf) returns the r; real roots of the polynomial defining the number fields:
first the r; real roots (as t_REALs), then the ry representatives of the pairs of complex conjugates.

GEN nf_get_allroots(GEN nf) returns all the complex roots of T: first the r; real roots (as
t_REALs), then the ro pairs of complex conjugates.

GEN nf_get_M(GEN nf) returns the (r1 + r2) X n matrix M giving the embeddings of K: M][i, j]
contains w;(cy;), where «; is the i-th element of nf_get_roots(nf). In particular, if v is an n-th
dimensional t_COL representing the element Y., v[iJw; of K, then RgM RgC mul(M,v) represents
the embeddings of v.

GEN nf_get_G(GEN nf) returns a n X n real matrix G such that Gv - Gv = T(v), where v is an
n-th dimensional t_COL representing the element > -, v[iJw; of K and T is the standard Euclidean
form on K ® R, i.e. To(v) =Y, |o(v)|?, where o runs through all n complex embeddings of K.

GEN nf_get_roundG(GEN nf) returns a rescaled version of GG, rounded to nearest integers, specifi-
cally RM_round_maxrank(G).

GEN nf_get_ramified_primes(GEN nf) returns the vector of ramified primes.

GEN nf_get_Tr(GEN nf) returns the matrix of the Trace quadratic form on the basis (wy, ..., w,):
its (4,7) entry is Trw,;w;.

GEN nf_get_diff (GEN nf) returns the primitive part of the inverse of the above Trace matrix.

long nf_get_prec(GEN nf) returns the precision (in words) to which the nf was computed.
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13.1.3 Extracting info from a bnf structure.
These functions expect a true bnf argument, e.g. a bnr will not work.
GEN bnf_get_nf (GEN bnf) returns the underlying nf.

GEN bnf_get_clgp(GEN bnf) returns the class group in bnf, which is a 3-component vector
[h, cyc, gen].

GEN bnf_get_cyc(GEN bnf) returns the elementary divisors of the class group (cyclic components)
[dl, e ,dk], where dk ‘ e ‘ dl.

GEN bnf_get_gen(GEN bnf) returns the generators [gi,...,gx] of the class group. Each g; has
order d;, and the full module of relations between the g; is generated by the d;g; = 0.

GEN bnf_get_no(GEN bnf) returns the class number.
GEN bnf_get_reg(GEN bnf) returns the regulator.

GEN bnf_get_logfu(GEN bnf) returns (complex floating point approximations to) the logarithms
of the complex embeddings of our system of fundamental units.

GEN bnf_get_fu(GEN bnf) returns the fundamental units. Raise an error if the bnf does not
contain units in algebraic form.

GEN bnf_get_fu_nocheck(GEN bnf) as bnf_get_fu without checking whether units are present.
Do not use this unless you initialize the bnf yourself!

GEN bnf_get_tuU(GEN bnf) returns a generator of the torsion part of Zj.

long bnf_get_tuN(GEN bnf) returns the order of the torsion part of Zj., i.e. the number of roots
of unity in K.

GEN bnf_get_sunits(GEN bnf) allows access to the algebraic data stored by bnfinit(,1). The
function returns NULL unless the bnf was initialized by bnfinit(,1), else a vector [X,U, E, 1im]
where

e X is a vector of rational primes and algebraic integers all of whose prime divisors have norm
less than 1im,

e U is a matrix of exponents whose columns yield the fundamental units bnf.fu. More
precisely,

bnf.fulj] = [ [ X[V,

e (G is a matrix of exponents whose columns yield the generators of principal ideals attached
to the HNF of the bnf relation matrix between the maximal ideals of norm less 1im (that generate
the class group under GRH). More precisely, bnf [6] contains the prime factor base P (its first r
elements being independant class group generators), bnf [1] contains a matrix W in HNF in M,.(Z)
and bnf [2], contains a matrix B in M,«.(Z). We define algebraic numbers e; for j < r 4 ¢ such
that

[Te8 = (e, j<v

i<r

PIT P = (ej), >

i<r
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Then e; = [, X[i]#1.

GEN bnf_has_fu(GEN bnf) return fundamental units in expanded form if bnf contains them. Else
return NULL.

GEN bnf_compactfu(GEN bnf) return fundamental units as a vector of algebraic numbers in com-
pact form if bnf contains them. Else return NULL.

GEN bnf_compactfu_mat(GEN bnf) as a pair (X,U), where X is a vector of S-units and U is a
matrix with integer entries (without 0 rows), see bnf_get_sunits, if bnf contains them. Else return
NULL.
13.1.4 Extracting info from a bnr structure.
These functions expect a true bnr argument.
GEN bnr_get_bnf (GEN bnr) returns the underlying bnf.
GEN bnr_get_nf (GEN bnr) returns the underlying nf.
GEN bnr_get_clgp(GEN bnr) returns the ray class group.
GEN bnr_get_no(GEN bnr) returns the ray class number.

GEN bnr_get_cyc(GEN bnr) returns the elementary divisors of the ray class group (cyclic compo-
nents) [di,...,dg], where dy | ... | d;.

GEN bnr_get_gen(GEN bnr) returns the generators [gi,. .., gx] of the ray class group. Each g; has
order d;, and the full module of relations between the g; is generated by the d;g; = 0. Raise a
generic error if the bnr does not contain the ray class group generators.

GEN bnr_get_gen_nocheck(GEN bnr) as bnr_get_gen without checking whether generators are
present. Do not use this unless you initialize the bnr yourself!

GEN bnr_get_bid(GEN bnr) returns the bid attached to the bnr modulus.
GEN bnr_get_mod(GEN bnr) returns the modulus attached to the bnr.

13.1.5 Extracting info from an rnf structure.

These functions expect a true rnf argument, attached to an extension L/K, K = Q[y]/(T),
L =K]lx]/(P).

long rnf_get_degree(GEN rnf) returns the relative degree [L : K].

long rnf_get_absdegree(GEN rnf) returns the absolute degree [L : Q).

long rnf_get_nfdegree(GEN rnf) returns the degree of the base field [K : Q].

GEN rnf_get_nf (GEN rnf) returns the base field K, an nf structure.

GEN rnf_get_nfpol(GEN rnf) returns the polynomial T" defining the base field K.
long rnf_get_nfvarn(GEN rnf) returns the variable y attached to the base field K.
GEN rnf_get_nfzk(GEN rnf) returns the integer basis of the base field K.

GEN rnf_get_pol(GEN rnf) returns the relative polynomial defining L/K.

long rnf_get_varn(GEN rnf) returns the variable x attached to L.
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GEN rnf_get_zk(GEN nf) returns the relative integer basis generating Z; as a Zx-module, as a
pseudo-matrix (A4, I) in HNF.

GEN rnf_get_disc(GEN rnf) is the output [0, s] of rnfdisc.

GEN rnf_get_ramified_primes(GEN rnf) returns the vector of rational primes below ramified
primes in the relative extension, i.e. all prime numbers appearing in the factorization of

idealnorm(rnf_get_nf(rnf), rnf_get_disc(rnf));
GEN rnf_get_idealdisc(GEN rnf) is the ideal discriminant 9 from rnfdisc.
GEN rnf_get_index(GEN rnf) is the index ideal §
GEN rnf_get_polabs(GEN rnf) returns an absolute polynomial defining L/Q.

GEN rnf_get_alpha(GEN rnf) a root a of the polynomial defining the base field, modulo polabs
(cf. rnfequation)

GEN rnf_get_k(GEN rnf) a small integer k such that § = 3 + k« is a root of polabs, where [ is
a root of pol and « a root of the polynomial defining the base field, as in rnf _get_alpha (cf. also
rnfequation).

GEN rnf_get_invzk(GEN rnf) contains A~!, where (4, 1) is the chosen pseudo-basis for Z; over
L.

GEN rnf_get_map(GEN rnf) returns technical data attached to the map K — L. Currently, this
contains data from rnfequation, as well as the polynomials T" and P.
13.1.6 Extracting info from a bid structure.

These functions expect a true bid argument, attached to a modulus I = Iyl in a number
field K.

GEN bid_get_mod(GEN bid) returns the modulus attached to the bid.
GEN bid_get_grp(GEN bid) returns the abelian group attached to (Zg/I)*.
GEN bid_get_ideal(GEN bid) return the finite part Iy of the bid modulus (an integer ideal).

GEN bid_get_arch(GEN bid) return the Archimedean part I, of the bid modulus as a vector of
real places in vecOl1 format, see Section 13.1.20.

GEN bid_get_archp(GEN bid) return the Archimedean part I, of the bid modulus, as a vector
of real places in indices format see Section 13.1.20.

GEN bid_get_fact(GEN bid) returns the ideal factorization Iy = [[, ps*.

GEN bid_get_fact2(GEN bid) as bid_get_fact with all factors p! with p of norm 2 removed from
the factorization. (They play no role in the structure of (Zy /I)*, except that the generators must
be made coprime to them.)

bid_get_ideal(bid), via idealfactor.
GEN bid_get_no(GEN bid) returns the cardinality of the group (Zg/I)*.

GEN bid_get_cyc(GEN bid) returns the elementary divisors of the group (Zg/I)* (cyclic compo-
nents) [dy,...,dg|, where dy | ... | d;.

GEN bid_get_gen(GEN bid) returns the generators of (Zy /I)* contained in bid. Raise a generic
error if bid does not contain generators.
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GEN bid_get_gen_nocheck(GEN bid) as bid_get_gen without checking whether generators are
present. Do not use this unless you initialize the bid yourself!

GEN bid_get_sprk(GEN bid) return a list of structures attached to the (Zx /p¢)* where p© divides
Iy exactly.

GEN bid_get_sarch(GEN bid) return the structure attached to (Zx /I~ )*, by nfarchstar.

GEN bid_get_U(GEN bid) return the matrix with integral coefficients relating the local generators
(from chinese remainders) to the global SNF generators (bid . gen).

13.1.7 Extracting info from a znstar structure.

These functions expect an argument G as returned by znstar0(N, 1), attached to a positive
N and the abelian group (Z/NZ)*. Let (g;) be the SNF generators, where g; has order d;; we call
(¢5) the (canonical) Conrey generators, where ¢g; has order d;. Both sets of generators have the
same cardinality.

GEN znstar_get_N(GEN bid) return V.
GEN znstar_get_faN(GEN G) return the factorization factor(N), N =[], pjj.

GEN znstar_get_pe(GEN G) return the vector of primary factors (p;j ).

GEN znstar_get_no(GEN G) the cardinality ¢(V) of G.

GEN znstar_get_cyc(GEN G) elementary divisors (d;) of (Z/NZ)*.

GEN znstar_get_gen(GEN G) SNF generators divisors (g;) of (Z/NZ)*.

GEN znstar_get_conreycyc(GEN G) orders (d}) of Conrey generators.

GEN znstar_get_conreygen(GEN G) Conrey generators (g;).

GEN znstar_get_U(GEN G) a square matrix U such that (g;) = U(g}).

GEN znstar_get_Ui(GEN G) a square matrix U’ such that U'(g;) = (¢;). In general, UU’ will not
be the identity.

13.1.8 Inserting info in a number field structure.

If the required data is not part of the structure, it is computed then inserted, and the new
value is returned.

These functions expect a bnf argument:

GEN bnf_build_cycgen(GEN bnf) the bnf contains generators [g1, ..., gi] of the class group, each
with order d;. Then gf"’ = (w;) is a principal ideal. This function returns the x; as a factorization
matrix (famat) giving the element in factored form as a product of S-units.

GEN bnf_build_matalpha(GEN bnf) the class group was computed using a factorbase S of prime
ideals p;, i < r. They satisfy relations of the form [[; p;"’ = (a;), where the e; ; are given by the
matrices bnf[1] (W, singling out a minimal set of generators in S) and bnf[2] (B, expressing the
rest of S in terms of the singled out generators). This function returns the «; in factored form as
a product of S-units.

GEN bnf_build_units(GEN bnf) returns a minimal set of generators for the unit group in ex-
panded form. The first element is a torsion unit, the others have infinite order. This expands units
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in compact form contained in a bnf from bnfinit(,1) and may be very expensive if the units are
huge.

GEN bnf_build_cheapfu(GEN bnf) as bnf _build units but only expand units in compact form
if the computation is inexpensive (a few seconds). Return NULL otherwise.

These functions expect a rnf argument:

GEN rnf_build_nfabs(GEN rnf, long prec) given a rnf structure attached to L/K, (compute
and) return an nf structure attached to L at precision prec.

void rnfcomplete(GEN rnf) as rnf_build_nfabs using the precision of K for prec.

GEN rnf_zkabs(GEN rnf) returns a Z-basis in HNF for Z; as a pair [T,v], where T is
rnf_get_polabs(rnf) and v a vector of elements lifted from Q[X]/(T"). Note that the function
rnf_build_nfabs essentially applies nfinit to the output of this function.

13.1.9 Increasing accuracy.

GEN nfnewprec(GEN x, long prec). Raise an exception if x is not a number field structure (nf,
bnf or bnr). Otherwise, sets its accuracy to prec and return the new structure. This is mostly useful
with prec larger than the accuracy to which x was computed, but it is also possible to decrease
the accuracy of x (truncating relevant components, which may speed up later computations). This
routine may modify the original x (see below).

This routine is straightforward for nf structures, but for the other ones, it requires all principal
ideals corresponding to the bnf relations in algebraic form (they are originally only available via
floating point approximations). This in turn requires many calls to bnfisprincipal0, which is
often slow, and may fail if the initial accuracy was too low. In this case, the routine will not
actually fail but recomputes a bnf from scratch!

Since this process may be very expensive, the corresponding data is cached (as a clone) in the
original x so that later precision increases become very fast. In particular, the copy returned by
nfnewprec also contains this additional data.

GEN bnfnewprec(GEN x, long prec). As nfnewprec, but extracts a bnf structure form x before
increasing its accuracy, and returns only the latter.

GEN bnrnewprec(GEN x, long prec). As nfnewprec, but extracts a bnr structure form x before
increasing its accuracy, and returns only the latter.

GEN nfnewprec_shallow(GEN nf, long prec)
GEN bnfnewprec_shallow(GEN bnf, long prec)

GEN bnrnewprec_shallow(GEN bnr, long prec) Shallow functions underlying the above, except
that the first argument must now have the corresponding number field type. I.e. one cannot call
nfnewprec_shallow(nf, prec) if nf is actually a bnf.
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13.1.10 Number field arithmetic. The number field K = Q[X]/(T) is represented by an nf (or
bnf or bar structure). An algebraic number belonging to K is given as

e a t_INT, t_FRAC or t_POL (implicitly modulo T"), or
e a t_POLMOD (modulo T'), or

e a t_COL v of dimension N = [K : Q], representing the element in terms of the computed
integral basis (e;), as

sum(i = 1, N, v[i] * nf.zk[i])

The preferred forms are t_INT and t_COL of t_INT. Routines can handle denominators but it
is much more efficient to remove denominators first (Q_remove_denom) and take them into account
at the end.

Safe routines. The following routines do not assume that their nf argument is a true nf (it can
be any number field type, e.g. a bnf), and accept number field elements in all the above forms.
They return their result in t_COL form.

GEN nfadd(GEN nf, GEN x, GEN y) returns x + y.

GEN nfsub(GEN nf, GEN x, GEN y) returns z — y.

GEN nfdiv(GEN nf, GEN x, GEN y) returns z/y.

GEN nfinv(GEN nf, GEN x) returns z~!.

GEN nfmul (GEN nf, GEN x, GEN y) returns zy.

GEN nfpow(GEN nf, GEN x, GEN k) returns z¥, k is in Z.

GEN nfpow_u(GEN nf, GEN x, ulong k) returns z*, k > 0; the argument nf is a true nf structure.
GEN nfsqr(GEN nf, GEN x) returns z2.

long nfval(GEN nf, GEN x, GEN pr) returns the valuation of z at the maximal ideal p attached
to the prid pr. Returns LONG_MAX if x is O.

GEN nfnorm(GEN nf, GEN x) absolute norm of z.
GEN nftrace(GEN nf, GEN x) absolute trace of .

GEN nfpoleval(GEN nf, GEN pol, GEN a) evaluate the t_POL pol (with coefficients in nf) on
the algebraic number a (also in nf).

GEN FpX_FpC_nfpoleval(GEN nf, GEN pol, GEN a, GEN p) evaluate the FpX pol on the algebraic
number a (also in nf).

The following three functions implement trivial functionality akin to Euclidean division for
which we currently have no real use. Of course, even if the number field is actually Euclidean,
these do not in general implement a true Euclidean division.

GEN nfdiveuc(GEN nf, GEN a, GEN b) returns the algebraic integer closest to x/y. Functionally
identical to ground( nfdiv(nf,x,y) ).

GEN nfdivrem(GEN nf, GEN a, GEN b) returns the vector [g,r]|, where

q = nfdiveuc(nf, a, b);
r = nfsub(nf, a, nfmul(nf,q,b)); \\ or r = nfmod(nf,a,b);
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GEN nfmod(GEN nf, GEN a, GEN b) returns r such that

q = nfdiveuc(nf, a, b);
r = nfsub(nf, a, nfmul(nf,q,b));

GEN nf_to_scalar_or_basis(GEN nf, GEN x) let x be a number field element. If it is a rational
scalar, i.e. can be represented by a t_INT or t_FRAC, return the latter. Otherwise returns its basis
representation (nfalgtobasis). Shallow function.

GEN nf_to_scalar_or_alg(GEN nf, GEN x) let x be a number field element. If it is a rational
scalar, i.e. can be represented by a t_INT or t_FRAC, return the latter. Otherwise returns its lifted
t_POLMOD representation (lifted nfbasistoalg). Shallow function.

GEN nfV_to_scalar_or_alg(GEN nf, GEN v) aplly nf_to_scalar_or_alg to all components of
vector v.

GEN RgX_to_nfX(GEN nf, GEN x) let z be a t_POL whose coeflicients are number field elements;
apply nf _to_scalar_or_basis to each coefficient and return the resulting new polynomial. Shallow
function.

GEN RgM_to_nfM(GEN nf, GEN x) let z be a t_MAT whose coeflicients are number field elements;
apply nf_to_scalar_or_basis to each coefficient and return the resulting new matrix. Shallow
function.

GEN RgC_to_nfC(GEN nf, GEN x) let x be a t_COL or t_VEC whose coefficients are number field
elements; apply nf_to_scalar_or_basis to each coefficient and return the resulting new t_COL.
Shallow function.

GEN nfX_to_monic(GEN nf, GEN T, GEN *pL) given a nonzero t_POL 7' with coefficients in nf,
return a monic polynomial f with integral coefficients such that f(z) = CT'(z/L) for some integral
L and some C' in nf. The function allows coefficients in basis form; if L # 1, it will return them in
algebraic form. If pL is not NULL, *pL is set to L. Shallow function.

Unsafe routines. The following routines assume that their nf argument is a true nf (e.g. a bnf
is not allowed) and their argument are restricted in various ways, see the precise description below.

GEN nfX_disc(GEN nf, GEN A) given an nf structure attached to a number field K with main
variable Y (nf_get_varn(nf)), a t_POL A € K[X] given as a lift in Q[X,Y] (implicitly modulo
nf_get_pol(nf), return the discriminant of A as a t_POL in Q[Y] (representing an element of K).

GEN nfX_resultant(GEN nf, GEN A, GEN B) analogous to nfX_disc, A, B € Q[X,Y]; return the
resultant of A and B with respect to X as a t_POL in Q[Y] (representing an element of K).

GEN nfinvmodideal (GEN nf, GEN x, GEN A) given an algebraic integer x and a nonzero integral
ideal A in HNF, returns a y such that zy = 1 modulo A.

GEN nfpowmodideal (GEN nf, GEN x, GEN n, GEN ideal) given an algebraic integer x, an integer
n, and a nonzero integral ideal A in HNF, returns an algebraic integer congruent to " modulo A.

GEN nfmuli(GEN nf, GEN x, GEN y) returns x X y assuming that both x and y are either t_INTs
or ZVs of the correct dimension. The argument nf is a true nf structure.

GEN nfsqri(GEN nf, GEN x) returns z? assuming that o is a t_INT or a ZV of the correct dimension.
The argument nf is a true nf structure.

GEN nfC_nf_mul (GEN nf, GEN v, GEN x) given a t_VEC or t_COL v of elements of K in t_INT,
t_FRAC or t_COL form, multiply it by the element x (arbitrary form). This is faster than multiplying
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coordinatewise since pre-computations related to x (computing the multiplication table) are done
only once. The components of the result are in most cases t_COLs but are allowed to be t_INTs or
t_FRACs. Shallow function.

GEN nfC_multable_mul (GEN v, GEN mx) same as nfC_nf_mul, where the argument x is replaced
by its multiplication table mx.

GEN zkC_multable_mul (GEN v, GEN x) same as nfC_nf_mul, where v is a vector of algebraic
integers, x is an algebraic integer, and x is replaced by zk multable(x).

GEN zk_multable(GEN nf, GEN x) given a ZC z (implicitly representing an algebraic integer),
returns the ZM giving the multiplication table by x. Shallow function (the first column of the result
points to the same data as ).

GEN zk_inv(GEN nf, GEN x) given a ZC x (implicitly representing an algebraic integer), returns
the QC giving the inverse x~!. Return NULL if = is 0. Not memory clean but safe for gerepileupto.

GEN zkmultable_inv(GEN mx) as zk_inv, where the argument given is zk_ multable(z).

GEN zkmultable_capZ(GEN mx) given a nonzero zkmultable mx attached to z € Zg, return the
positive generator of (z) N Z.

GEN zk_scalar_or_multable(GEN nf, GEN x) given a t_INT or ZC x, returns a t_INT equal to x
if the latter is a scalar (t_INT or ZV_isscalar(x) is 1) and zk_multable(nf,z) otherwise. Shallow
function.

13.1.11 Number field arithmetic for linear algebra.

The following routines implement multiplication in a commutative R-algebra, generated by
(e1=1,...,e,), and given by a multiplication table M: elements in the algebra are n-dimensional
t_COLs, and the matrix M is such that for all 1 <i,; < n, its column with index (i — 1)n + j, say
(ck), gives €; - ej = Y cpey. It is assumed that e; is the neutral element for the multiplication (a
convenient optimization, true in practice for all multiplications we needed to implement). If z has
any other type than t_COL where an algebra element is expected, it is understood as xe;.

GEN multable(GEN M, GEN x) given a column vector z, representing the quantity Zf\il i€,
returns the multiplication table by x. Shallow function.

GEN ei_multable(GEN M, long i) returns the multiplication table by the i-th basis element e;.
Shallow function.

GEN tablemul (GEN M, GEN x, GEN y) returns z -y.

GEN tablesqr(GEN M, GEN x) returns z2.

GEN tablemul_ei(GEN M, GEN x, long i) returns z - e;.

GEN tablemul_ei_ej(GEN M, long i, long j) returnse; - e;.

GEN tablemulvec(GEN M, GEN x, GEN v) given a vector v of elements in the algebra, returns the

The following routines implement naive linear algebra using the black box field mechanism:
GEN nfM_det(GEN nf, GEN M)
GEN nfM_inv(GEN nf, GEN M)
GEN nfM_ker (GEN nf, GEN M)
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GEN nfM_mul (GEN nf, GEN A, GEN B)

GEN nfM_nfC_mul (GEN nf, GEN A, GEN B)

13.1.12 Cyclotomic field arithmetic for linear algebra.

The following routines implement modular algorithms in cyclotomic fields. In the prototypes,
P is the n-th cyclotomic polynomial ®,, and M is a t_MAT with t_INT or ZX coefficients, understood
modulo P.

GEN ZabM_ker (GEN M, GEN P, long n) returns an integral (primitive) basis of the kernel of M.

GEN ZabM_indexrank(GEN M, GEN P, long n) return a vector with two t_VECSMALL components
givin the rank profile of M. Inefficient (but correct) when M does not have almost full column
rank.

GEN ZabM_inv(GEN M, GEN P, long n, GEN *pden) assume that M is invertible; return N and
sets the algebraic integer *pden (an integer or a ZX, implicitly modulo P) such that M N = den-Id.

GEN ZabM_pseudoinv(GEN M, GEN P, long n, GEN *pv, GEN *pden) analog of ZM_pseudoinv.
Not gerepile-safe.

GEN ZabM_inv_ratlift(GEN M, GEN P, long n, GEN *pden) return a primitive matrix H such
that M H is d times the identity and set *pden to d. Uses a multimodular algorithm, attempting
rational reconstruction along the way. To be used when you expect that the denominator of M 1
is much smaller than det M else use ZabM_inv.

13.1.13 Cyclotomic trace.

Given two positive integers m and n such that K,, = Q((n) C K, = Q((,), these functions
implement relative trace computation from K, to K,,. This is in particular useful for character
values.

GEN Qab_trace_init(long n, long m, GEN Pn, GEN Pm) assume that Pn is polcyclo(n), Pm is
polcyclo(m) (both in the same variable), initialize a structure T' used in the following routines.
Shallow function.

GEN Qab_tracerel(GEN T, long t, GEN z) assume 7T was created by Qab_trace_init, t is an
integer such that 0 < ¢ < [K,, : K,;,] and z belongs to the cyclotomic field Q(¢,) = Q[X]/(Pn).
Return the normalized relative trace [K,, : Kn] ' Trg, sk, (¢4 z). Shallow function.

GEN QabV_tracerel(GEN T, long t, GEN v) v being a vector of entries belonging to K,,, apply
Qab_tracerel to all entries. Shallow function.

GEN QabM_tracerel(GEN T, long t, GEN m) m being a matrix of entries belonging to K, apply
Qab_tracerel to all entries. Shallow function.
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13.1.14 Elements in factored form.

Computational algebraic theory performs extensively linear algebra on Z-modules with a nat-
ural multiplicative structure (K™, fractional ideals in K, Z7}, ideal class group), thereby raising
elements to horrendously large powers. A seemingly innocuous elementary linear algebra operation
like C; < C; — 10000C involves raising entries in C7 to the 10000-th power. Understandably, it
is often more efficient to keep elements in factored form rather than expand every such expression.
A factorization matriz (or famat) is a two column matrix, the first column containing elements
(arbitrary objects which may be repeated in the column), and the second one contains exponents
(t_INTs, allowed to be 0). By abuse of notation, the empty matrix cgetg(1l, t_MAT) is recognized
as the trivial factorization (no element, no exponent).

Even though we think of a famat with columns g and e as one meaningful object when fully
expanded as [ g[i]¢/!, famats are basically about concatenating information to keep track of linear
algebra: the objects stored in a famat need not be operation-compatible, they will not even be
compared to each other (with one exception: famat_reduce). Multiplying two famats just con-
catenates their elements and exponents columns. In a context where a famat is expected, an object
2 which is not of type t_MAT will be treated as the factorization x'. The following functions all
return famats:

GEN famat_mul(GEN f, GEN g) f, g are famat, or objects whose type is not t_MAT (understood
as f!or g'). Returns fg. The empty factorization is the neutral element for famat multiplication.

GEN famat_mul_shallow(GEN f, GEN g) shallow version of famat_mul.

GEN famat_pow(GEN f, GEN n) n is a t_INT. If f is a t_MAT, assume it is a famat and return f"
(multiplies the exponent column by n). Otherwise, understand it as an element and returns the
1-line famat f™.

GEN famat_pow_shallow(GEN f, GEN n) shallow version of famat_pow.

GEN famat_pows_shallow(GEN f, 1long n) shallow version of famat_pow where n is a small
integer.

GEN famat_mulpow_shallow(GEN f, GEN g, GEN e) famat corresponding to f - ¢g°. Shallow
function.

GEN famat_mulpows_shallow(GEN f, GEN g, long e) famat shallow version of famat_mulpow
where e is a small integer.

GEN famat_sqr(GEN f) returns f2.

GEN famat_inv(GEN f) returns f—1.

GEN famat_div(GEN f, GEN g) return f/g.

GEN famat_inv_shallow(GEN f) shallow version of famat_inv.

GEN famat_div_shallow(GEN f, GEN g) return f/g; shallow.

GEN famat_Z_gcd(GEN M, GEN n) restrict the famat M to the prime power dividing n.

GEN to_famat(GEN x, GEN k) given an element z and an exponent k, returns the famat z*.

GEN to_famat_shallow(GEN x, GEN k) same, as a shallow function.

GEN famatV_factorback(GEN v, GEN e) given a vector of famats v and a ZV e return the famat

IL U[Z’]em. Shallow function.
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GEN famatV_zv_factorback(GEN v, GEN e) given a vector of famats v and a zv e return the
famat [], v[7]°). Shallow function.

GEN ZM_famat_1imit(GEN f, GEN limit) given a famat f with t_INT entries, returns a famat
g with all factors larger than 1limit multiplied out as the last entry (with exponent 1). Shallow
function.

Note that it is trivial to break up a famat into its two constituent columns: gel(f,1) and
gel(f,2) are the elements and exponents respectively. Conversely, mkmat2 builds a (shallow) famat
from two t_COLs of the same length.

GEN famat_reduce(GEN f) given a famat f, returns a famat g without repeated elements or 0
exponents, such that the expanded forms of f and g would be equal. Shallow function.

GEN famat_remove_trivial (GEN f) given a famat f, returns a famat g without 0 exponents.
Shallow function.

GEN famatsmall_reduce(GEN f) as famat_reduce, but for exponents given by a t_VECSMALL.

GEN famat_to_nf(GEN nf, GEN f) You normally never want to do this! This is a simplified form
of nffactorback, where we do not check the user input for consistency. The elements must be
regular algebraic numbers (not famats) over the given number field.

Why should you not want to use this function 7 You should not need to: most of the functions
useful in this context accept famats as inputs, for instance nfsign, nfsign_arch, ideallog and
bnfisunit. Otherwise, we can hopefully make good use of a quotient operation (modulo a fixed
conductor, modulo /-th powers); see the end of Section 13.1.26. If nothing else works, this function
is available but is expected to be slow or even overflow the possibilities of the implementation.

GEN famat_idealfactor (GEN nf, GEN x) This is a good alternative for famat_to_nf, returning
the factorization of the ideal generated by z. Since the answer is still given in factorized form,
there is no risk of coefficient explosion when the exponents are large. Of course, all components of
2 must be factored individually.

GEN famat_nfvalrem(GEN nf, GEN x, GEN pr, GEN #*py) return the valuation v at pr of
famat_to.nf(x), without performing the expansion of course. Notive that the output is a GEN
since it cannot be assumed to fit into a long. If py is not NULL it contains the famat obtained
by applying nfvalrem to each entry of the first column and copying the second column, with 0
exponents removed. The expanded algebraic number is coprime to pr (in fact, all its components
are coprime do pr) and equal to 7% where 7 is the fixed anti-uniformizer for pr (pr_get_tau).

Caveat. Receiving a famat input, bnfisunit assumes that it is an actual unit, since this is
expensive to check, and normally easy to ensure from the user’s side.

13.1.15 Ideal arithmetic.
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Conversion to HNF.

GEN idealhnf(GEN nf, GEN x) where the argument nf is a true nf structure. Returns the HNF
of the ideal defined by x: = may be an algebraic number (defining a principal ideal), a maximal
ideal (as given by idealprimedec or idealfactor), or a matrix whose columns give generators for
the ideal. This last format is complicated, but useful to reduce general modules to the canonical
form once in a while:

e if strictly less than N = [K : @] generators are given, x is the Zx-module they generate,

e if N or more are given, it is assumed that they form a Z-basis (that the matrix has maximal
rank ). This acts as mathnf since the Z-module structure is (taken for granted hence) not taken
into account in this case.

Extended ideals are also accepted, their principal part being discarded.

GEN idealhnfO(GEN nf, GEN x, GEN y) returns the HNF of the ideal generated by the two
algebraic numbers x and y.

The following low-level functions underlie the above two: they all assume that nf is a true nf
and perform no type checks:

GEN idealhnf_principal(GEN nf, GEN x) returns the ideal generated by the algebraic number
x.

GEN idealhnf_shallow(GEN nf, GEN x) is idealhnf except that the result may not be suitable
for gerepile: if x is already in HNF, we return z, not a copy!

GEN idealhnf_two(GEN nf, GEN v) assuming a = v[l] is a nonzero t_INT and b = v[2] is an
algebraic integer, possibly given in regular representation by a t_MAT (the multiplication table by
b, see zk_multable), returns the HNF of aZy + bZy.

Operations.

The basic ideal routines accept all nfs (nf, bnf, bnr) and ideals in any form, including extended
ideals, and return ideals in HNF, or an extended ideal when that makes sense:

GEN idealadd(GEN nf, GEN x, GEN y) returns x + y.

GEN idealdiv(GEN nf, GEN x, GEN y) returns x/y. Returns an extended ideal if x or y is an
extended ideal.

GEN idealmul (GEN nf, GEN x, GEN y) returns xy. Returns an extended ideal if x or y is an
extended ideal.

GEN idealsqr(GEN nf, GEN x) returns z2. Returns an extended ideal if x is an extended ideal.
GEN idealinv(GEN nf, GEN x) returns z~'. Returns an extended ideal if z is an extended ideal.

GEN idealpow(GEN nf, GEN x, GEN n) returns z". Returns an extended ideal if = is an extended
ideal.

GEN idealpows(GEN nf, GEN ideal, long n) returns xz”. Returns an extended ideal if z is an
extended ideal.

GEN idealmulred(GEN nf, GEN x, GEN y) returns an extended ideal equal to xy.

GEN idealpowred(GEN nf, GEN x, GEN n) returns an extended ideal equal to x™.
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More specialized routines suffer from various restrictions:

GEN idealdivexact(GEN nf, GEN x, GEN y) returns x/y, assuming that the quotient is an
integral ideal. Much faster than idealdiv when the norm of the quotient is small compared to
Nx. Strips the principal parts if either x or y is an extended ideal.

GEN idealdivpowprime(GEN nf, GEN x, GEN pr, GEN n) returns xp~—", assuming x is an ideal
in HNF or a rational number, and pr a prid attached to p. Not suitable for gerepileupto since it
returns x when n = 0. The nf argument must be a true nf structure.

GEN idealmulpowprime(GEN nf, GEN x, GEN pr, GEN n) returns xp”, assuming z is an ideal in
HNF or a rational number, and pr a prid attached to p. Not suitable for gerepileupto since it
retunrs * when n = 0. The nf argument must be a true nf structure.

GEN idealprodprime(GEN nf, GEN v) given a list v of prime ideals in prid form, return their
product. Assume that nf is a true nf structure.

GEN idealprod(GEN nf, GEN v) given a list v of ideals, return their product.

GEN idealprodval(GEN nf, GEN v, GEN pr) given a list v of ideals return the valuation of their
product at the prime ideal pr.

GEN idealHNF_mul (GEN nf, GEN x, GEN y) returns zy, assuming than nf is a true nf, = is
an integral ideal in HNF and y is an integral ideal in HNF or precompiled form (see below). For
maximal speed, the second ideal y may be given in precompiled form y = [a, b], where a is a nonzero
t_INT and b is an algebraic integer in regular representation (a t_MAT giving the multiplication table
by the fixed element): very useful when many ideals x are going to be multiplied by the same ideal
y. This essentially reduces each ideal multiplication to an N x N matrix multiplication followed
by a N x 2N modular HNF reduction (modulo xzy N Z).

GEN idealHNF_inv(GEN nf, GEN I) returns /!, assuming that nf is a true nf and z is a fractional
ideal in HNF.

GEN idealHNF_inv_Z(GEN nf, GEN I) returns (I NZ)-I~! assuming that nf is a true nf and x
is an integral fractional ideal in HNF. The result is an integral ideal in HNF.

GEN ideals_by_norm(GEN nf, GEN N) given a true nf structure and a integer N, which can also
be given by a factorization matrix or (preferably) by a pair [N, factor(NV)], return all ideals of
norm N in factored form. Not gerepile clean.

Approximation.

GEN idealaddtoone(GEN nf, GEN A, GEN B) given to coprime integer ideals A, B, returns [a, b]
with a € A, b € B, such that a + b = 1 The result is reduced mod AB, so a, b will be small.

GEN idealaddtoone_i(GEN nf, GEN A, GEN B) as idealaddtoone except that nf must be a true
nf, and only a is returned.

GEN idealaddtoone_raw(GEN nf, GEN A, GEN B) as idealaddtoone_i except that the reduction
mod AB is only performed modulo the lem of ANZ and B NZ, which will increase the size of a.

GEN zkchineseinit(GEN nf, GEN A, GEN B, GEN AB) given two coprime integral ideals A and
B (in any form, preferably HNF) and their product AB (in HNF form), initialize a solution to the
Chinese remainder problem modulo AB. THe nf argument must be a true nf structure.

GEN zkchinese(GEN zkc, GEN x, GEN y) given zkc from zkchineseinit, and x, y two integral
elements given as t_INT or ZC, return a z modulo AB such that z = xmod A and z = ymod B.
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GEN zkchinesel(GEN zkc, GEN x) as zkchinese for y = 1; useful to lift elements in a nice way
from (Zg /A;)* to (Zx/1]; Ai)*.

GEN hnfmerge_get_1(GEN A, GEN B) given two square upper HNF integral matrices A, B of the
same dimension n > 0, return a in the image of A such that 1 — a is in the image of B. (By abuse
of notation we denote 1 the column vector [1,0,...,0].) If such an a does not exist, return NULL.
This is the function underlying idealaddtoone.

GEN idealaddmultoone(GEN nf, GEN v) given a list of n (globally) coprime integer ideals (v[i])
returns an n-dimensional vector a such that afi] € v[i] and )" a[i] = 1. If [K : Q] = N, this routine
computes the HNF reduction (with Gl,n(Z) base change) of an N x nN matrix; so it is well worth
pruning ”useless” ideals from the list (as long as the ideals remain globally coprime).

GEN idealapprfact(GEN nf, GEN fx) as idealappr, except that x must be given in factored
form. (This is unchecked.)

GEN idealcoprime(GEN nf, GEN x, GEN y). Given 2 integral ideals « and y, returns an algebraic
number « such that ax is an integral ideal coprime to y.

GEN idealcoprimefact(GEN nf, GEN x, GEN fy) same as idealcoprime, except that y is given
in factored form, as from idealfactor.

GEN idealchinese(GEN nf, GEN x, GEN y)
GEN idealchineseinit(GEN nf, GEN x)

13.1.16 Maximal ideals.

The PARI structure attached to maximal ideals is a prid (for prime ideal), usually produced
by idealprimedec and idealfactor. In this section, we describe the format; other sections will
deal with their daily use.

A prid attached to a maximal ideal p stores the following data: the underlying rational prime
p, the ramification degree e > 1, the residue field degree f > 1, a p-uniformizer = with valuation
1 at p and valuation 0 at all other primes dividing p and a rescaled “anti-uniformizer” 7 used to
compute valuations. This 7 is an algebraic integer such that 7/p has valuation —1 at p and is
integral at all other primes; in particular, the valuation of x € Zg is positive if and only if the
algebraic integer 7 is divisible by p (easy to check for elements in t_COL form).

GEN pr_get_p(GEN pr) returns p. Shallow function.
GEN pr_get_gen(GEN pr) returns m. Shallow function.
long pr_get_e(GEN pr) returns e.

long pr_get_f (GEN pr) returns f.

GEN pr_get_tau(GEN pr) returns zk scalar_or multable(nf,7), which is the t_INT 1 iff p is
inert, and a ZM otherwise. Shallow function.

int pr_is_inert(GEN pr) returns 1 if p is inert, 0 otherwise.
GEN pr_norm(GEN pr) returns the norm pf of the maximal ideal.

ulong upr_norm(GEN pr) returns the norm pf of the maximal ideal, as an ulong. Assume that
the result does not overflow.

GEN pr_hnf (GEN pr) return the HNF of p.
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GEN pr_inv(GEN pr) return the fractional ideal p~!, in HNF.
GEN pr_inv_p(GEN pr) return the integral ideal pp~!, in HNF.
GEN idealprimedec(GEN nf, GEN p) list of maximal ideals dividing the prime p.

GEN idealprimedec_limit_f(GEN nf, GEN p, long f) as idealprimedec, limiting the list to
primes of residual degree < f if f is nonzero.

GEN idealprimedec_limit_norm(GEN nf, GEN p, GEN B) as idealprimedec, limiting the list to
primes of norm < B, which must be a positive t_INT.

GEN idealprimedec_galois(GEN nf, GEN p) return a single prime ideal above p. The nf argu-
ment is a true nf structure.

GEN idealprimedec_degrees(GEN nf, GEN p) return a (sorted) t_VECSMALL containing the
residue degrees f(p/p). The nf argument is a true nf structure.

GEN idealprimedec_kummer (GEN nf, GEN Ti, long ei, GEN p) let nf (true nf) correspond to
K = Q[X]/(T) (T monic ZX). Let T = [[, T;* (mod p) be the factorization of T" and let (f, g, h)
be as in Dedekind criterion for prime p: f=][[T;, g = HTf"_l, h= (T — fg)/p, and let D be the
ged of (f,g,h) in F,[X]. Let Ti (FpX) be one irreducible factor 7; not dividing D, with ei = e,.
This function returns the prime ideal attached to T; by Kummer / Dedekind criterion, namely
pZy + T;(X)Z g, which has ramification index e; over p. The nf argument is a true nf structure.
Shallow function.

GEN idealfactor (GEN nf, GEN x) factors the fractional (hence nonzero) ideal x into prime ideal
powers; return the factorization matrix.

GEN idealfactor_limit(GEN nf, GEN x, ulong lim) as idealfactor, including only prime
ideals above rational primes < lim.

GEN idealfactor_partial (GEN nf, GEN x, GEN L) return partial factorization of fractional ideal
x as limited by argument L:

e [, = NULL: as idealfactor;
e [ a t_INT: as idealfactor_limit;

e L a vector of prime ideals of nf and/or rational primes (standing for “all prime ideal divisors
of given rational prime”) limit factorization to trial division by elements of L; do not include the
cofactor.

GEN idealHNF_Z_factor(GEN x, GEN *pvN, GEN *pvZ) given an integral (nonzero) ideal z in
HNF, compute both the factorization of Nz and of £ NZ. This returns the vector of prime divisors
of both and sets *pvN and *pvZ to the corresponding t_VECSMALL vector of exponents for the
factorization for the Norm and intersection with Z respetively.

GEN idealHNF_Z_factor_i(GEN x, GEN fa, GEN *pvN, GEN *pvZ) internal variant of ideal-
HNF_Z_factor where fa is either a partial factorization of x N'Z (= z[1,1]) or NULL. Returns the
prime divisors of x above the rational primes in fa and attached vN and vZ. If fa is NULL, use the
full factorization, i.e. identical to idealHNF_Z_factor.

GEN nf_pV_to_prV(GEN)nf, GEN P given a vector of rational primes P, return the vector of all
prime ideals above the P[i].
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GEN nf_degl_prime(GEN nf) let nf be a true nf. This function returns a degree 1 (unramified)
prime ideal not dividing nf .index. In fact it returns an ideal above the smallest prime p > [K : Q]
satisfying those conditions.

GEN prV_lcm_capZ(GEN L) given a vector L of prid (maximal ideals) return the squarefree positive
integer generating their lem intersected with Z. Not gerepile-safe.

GEN prV_primes(GEN) GEN L given a vector of prid, return the (sorted) list of rational primes P
they divide. Not gerepile-clean but suitable for gerepileupto.

GEN pr_uniformizer(GEN pr, GEN F) given a prid attached to p/p and F in Z divisible exactly
by p, return an F-uniformizer for pr, i.e. a ¢t in Zg such that vp(t) = 1 and (¢, F/p) = 1. Not
gerepile-safe.

13.1.17 Decomposition groups.

GEN idealramfrobenius(GEN nf, GEN gal, GEN pr, GEN ram) Let K be the number field defined
by nf and assume K/Q be a Galois extension with Galois group given gal=galoisinit(nf), and
that pr is the prime ideal ¥ in prid format, and that B is ramified, and ram is its list of ramification
groups as output by idealramgroups. This function returns a permutation of gal.group which
defines an automorphism ¢ in the decomposition group of 3 such that if p is the unique prime
number in P, then o(x) = 2P mod P for all x € Z.

GEN idealramfrobenius_aut(GEN nf, GEN gal, GEN pr, GEN ram, GEN aut) as idealram-
frobenius(nf, gal, pr, ram.

GEN idealramgroups_aut(GEN nf, GEN gal, GEN pr, GEN aut) as idealramgroups(nf, gal,
pr.

GEN idealfrobenius_aut(GEN nf, GEN gal, GEN pr, GEN aut) faster version of idealfrobe-
nius(nf, gal, pr where aut must be equal to nfgaloispermtobasis(nf, gal).

13.1.18 Reducing modulo maximal ideals.

GEN nfmodprinit(GEN nf, GEN pr) returns an abstract modpr structure, attached to reduction
modulo the maximal ideal pr, in idealprimedec format. From this data we can quickly project
any pr-integral number field element to the residue field.

GEN modpr_get_pr (GEN x) return the pr component from a modpr structure.

GEN modpr_get_p(GEN x) return the p component from a modpr structure (underlying rational
prime).

GEN modpr_get_T(GEN x) return the T component from a modpr structure: either NULL (prime of
degree 1) or an irreducible FpX defining the residue field over F,,.

In library mode, it is often easier to use directly

GEN nf_to_Fq_init(GEN nf, GEN *ppr, GEN *pT, GEN *pp) concrete version of nfmodprinit:
nf and *ppr are the inputs, the return value is a modpr and *ppr, *pT and *pp are set as side
effects.

The input *ppr is either a maximal ideal or already a modpr (in which case it is replaced by the
underlying maximal ideal). The residue field is realized as F,[X]/(T) for some monic T' € F,[X],
and we set *pT to T and *pp to p. Set T = NULL if the prime has degree 1 and the residue field is
F,.
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In short, this receives (or initializes) a modpr structure, and extracts from it 7', p and p.

GEN nf_to_Fq(GEN nf, GEN x, GEN modpr) returns an Fq congruent to z modulo the maxi-
mal ideal attached to modpr. The output is canonical: all elements in a given residue class are
represented by the same Fq.

GEN Fq_to_nf (GEN x, GEN modpr) returns an nf element lifting the residue field element z, either
a t_INT or an algebraic integer in algtobasis format.

GEN modpr_genFq(GEN modpr) Returns an nf element whose image by nf_to_Fqis X (mod T),
if degT" > 1, else 1.

GEN zkmodprinit(GEN nf, GEN pr) as nfmodprinit, but we assume we will only reduce algebraic
integers, hence do not initialize data allowing to remove denominators. More precisely, we can in
fact still handle an z whose rational denominator is not 0 in the residue field (i.e. if the valuation
of x is nonnegative at all primes dividing p).

GEN zk_to_Fq_init(GEN nf, GEN *pr, GEN *T, GEN *p) as nf_to_Fq_init, able to reduce only
p-integral elements.

GEN zk_to_Fq(GEN x, GEN modpr) as nf_to_Fq, for a p-integral x.

GEN nfM_to_FgM(GEN M, GEN nf, GEN modpr) reduces a matrix of nf elements to the residue
field; returns an FgM.

GEN FgM_to_nfM(GEN M, GEN modpr) lifts an FgM to a matrix of nf elements.

GEN nfV_to_FqV(GEN A, GEN nf, GEN modpr) reduces a vector of nf elements to the residue field;
returns an FqV with the same type as A (t_VEC or t_COL).

GEN FqV_to_nfV(GEN A, GEN modpr) lifts an FqV to a vector of nf elements (same type as A).

GEN nfX_to_FqX(GEN Q, GEN nf, GEN modpr) reduces a polynomial with nf coefficients to the
residue field; returns an FgX.

GEN FgX_to_nfX(GEN Q, GEN modpr) lifts an FgX to a polynomial with coefficients in nf.
The following functions are technical and avoid computing a true nfmodpr:

GEN pr_basis_perm(GEN nf, GEN pr) given a true nf structure and a prime ideal pr above p,
return as a t_VECSMALL the f(p/p) indices ¢ such that the nf.zk[i] mod p form an F,-basis of the
residue field.

GEN QXQV_to_FpM(GEN v, GEN T, GEN p) let p be a positive integer, v be a vector of n polynomials
with rational coefficients whose denominators are coprime to p, and T be a ZX (preferably monic)
of degree d whose leading coefficient is coprime to p. Return the d x n FpM whose columns are
the v[i] mod T\ p in the canonical basis 1, X, ..., X971 see RgX_to_RgC. This is for instance useful
when v contains a Z-basis of the maximal order of a number field Q[X]/(P), p is a prime not
dividing the index of P and T is an irreducible factor of P mod p, attached to a maximal ideal p:
left-multiplication by the matrix maps number field elements (in basis form) to the residue field of

p.

13.1.19 Valuations.

long nfval(GEN nf, GEN x, GEN P) return vp(x)
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Unsafe functions. assume that P, () are prid.

long ZC_nfval(GEN x, GEN P) returns vp(z), assuming x is a ZC, representing a nonzero algebraic
integer.

long ZC_nfvalrem(GEN x, GEN P, GEN *newx) returns v = vp(x), assuming x is a ZC, representing
a nonzero algebraic integer, and sets *newx to z7" which is an algebraic integer coprime to p.

int ZC_prdvd(GEN x, GEN P) returns 1 is P divides x and 0 otherwise. Assumes that x is a ZC,
representing an algebraic integer. Faster than computing vp(x).

int pr_equal(GEN P, GEN Q) returns 1 is P and () represent the same maximal ideal: they must
lie above the same p and share the same e, f invariants, but the p-uniformizer and 7 element may
differ. Returns 0 otherwise.

13.1.20 Signatures.

“Signs” of the real embeddings of number field element are represented in additive notation,
using the standard identification (Z/2Z,+) — ({—1,1}, x), s — (—1)%.

With respect to a fixed nf structure, a selection of real places (a divisor at infinity) is normally
given as a t_VECSMALL of indices of the roots nf.roots of the defining polynomial for the number
field. For compatibility reasons, in particular under GP, the (obsolete) vecO1 form is also accepted:
a t_VEC with gen_0 or gen_1 entries.

The following internal functions go back and forth between the two representations for the
Archimedean part of divisors (GP: 0/1 vectors, library: list of indices):

GEN vecOl_to_indices(GEN v) given a t_VEC v with t_INT entries return as a t_VECSMALL the
list of indices ¢ such that v[i] # 0. (Typically used with 0, 1-vectors but not necessarily so.) If v is
already a t_VECSMALL, return it: not suitable for gerepile in this case.

GEN vecsmallOl_to_indices(GEN v) as
vecOl_to_indices(zv_to_ZV(v));

GEN indices_to_vec01(GEN p, long n) return the 0/1 vector of length n with ones exactly at
the positions p[1],p[2], ...

GEN nfsign(GEN nf, GEN x) x being a number field element and nf any form of number field,
return the 0 — 1-vector giving the signs of the r; real embeddings of x, as a t_VECSMALL. Linear
algebra functions like F1v_add_inplace then allow keeping track of signs in series of multiplications.
The argument nf is a true nf structure.

If x is a t_VEC of number field elements, return the matrix whose columns are the signs of the

GEN nfsign_arch(GEN nf, GEN x, GEN arch) arch being a list of distinct real places, either in
vec01 (t_VEC with gen_0 or gen_1 entries) or indices (t _VECSMALL) form (see vecO1_to_indices),
returns the signs of x at the corresponding places. This is the low-level function underlying nfsign.
The argument nf is a true nf structure.

int nfchecksigns(GEN nf, GEN x, GEN pl) plis a t_VECSMALL with r; components, all of which
are in {—1,0,1}. Return 1 if o;(x)pl[i] > 0 for all ¢, and 0 otherwise.

GEN nfsign_units(GEN bnf, GEN archp, int add_tu) archp being a divisor at infinity in
indices form (or NULL for the divisor including all real places), return the signs at archp of a
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bnf .tu and of system of fundamental units for the field bnf . fu, in that order if add_tu is set; and
in the same order as bnf .fu otherwise.

GEN nfsign fu(GEN bnf, GEN archp) returns the signs at archp of the fundamental units bnf . fu.
This is an alias for nfsign units with add_tu unset.

GEN nfsign_tu(GEN bnf, GEN archp) returns the signs at archp of the torsion unit generator
bnf . tu.

GEN nfsign_from_logarch(GEN L, GEN invpi, GEN archp) given L the vector of the logo(z),
where o runs through the (real or complex) embeddings of some number field, invpi being a floating
point approximation to 1/, and archp being a divisor at infinity in indices form, return the signs
of x at the corresponding places. This is the low-level function underlying nfsign units; the latter
is actually a trivial wrapper bnf structures include the log o(z) for a system of fundamental units
of the field.

GEN set_sign_mod_divisor(GEN nf, GEN x, GEN y, GEN sarch) let f = fyfo be a divisor, let
sarch be the output of nfarchstar(nf, f0, finf), let & encode a vector of signs at the places
of fs (see below), and let y be a nonzero number field element. Returns z congruent to y mod
fo (integral if y is) such that z and = have the same signs at fo,. The argument nf is a true nf
structure.

The following formats are supported for x: a {0, 1}-vector of signs as a t_VECSMALL (0 for
positive, 1 for negative); NULL for a totally positive element (only 0s); a number field element which
is replaced by its signature at fo..

GEN nfarchstar(GEN nf, GEN fO, GEN finf) for a divisor f = fofs represented by the in-
tegral ideal £0 in HNF and the finf in indices form, returns (Zgx/fo)* in a form suitable for
computations mod f. See set_sign_mod_divisor.

GEN idealprincipalunits(GEN nf, GEN pr, long e) returns the multiplicative group (1 +
pr)/(1 + pr€) as an abelian group. Faster than idealstar when the norm of pr is large, since it
avoids (useless) work in the multiplicative group of the residue field.

13.1.21 Complex embeddings.

GEN nfembed(GEN nf, GEN x, long k) returns a floating point approximation of the k-th em-
bedding of x (attached to the k-th complex root in nf.roots).

GEN nf_cxlog(GEN nf, GEN x, long prec) return the vector of complex logarithmic embeddings
(e;Log(0; X)) where e; = 1if i < ry and e; =2 if r1 < ¢ < ry of X = Q_primpart(z). Returns
NULL if loss of accuracy. Not gerepile-clean but suitable for gerepileupto. Allows x in compact
representation, in which case Q_primpart is taken componentwise.

GEN nf_cxlog_normalize(GEN nf, GEN x, long prec) an nf structure attached to a number
field K and x from nf_cxlog(nf,X) (a column vector of complex logarithmic embeddings with
r1 + ro components) and let e = (eq, ..., €, 4, ). Return

B log (NK/QX)
(K : Q]

where the imaginary parts are further normalized modulo 277 - e.

x

The composition nf_cxlog followed by nf_cxlog normalize is a morphism from (K*/Q% , x)
to ((C/2miZ)™ x (C/4miZ)™,+). Its real part maps the units Zj; to a lattice in the hyperplane
>oixi=0in R "2,
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GEN nfV_cxlog(GEN nf, GEN x, long prec) applies nf_cxlog to each component of the vector
2. Returns NULL if loss of accuracy for even one component. Not gerepile-clean.

GEN nflogembed(GEN nf, GEN x, GEN *emb, long prec) return the vector of real logarithmic
embeddings (e;Log|o;x|) where e; = 1 if ¢ < r; and e; = 2 if r; < ¢ < ry. Returns NULL if
loss of accuracy. Not gerepile-clean. If emb is non-NULL set it to (e;o;x). Allows z in compact
representation, in which case emb is returned in compact representation as well, as a factorization
matrix (expanding the factorization may overflowexponents).

13.1.22 Maximal order and discriminant, conversion to nf structure.

A number field K = Q[X]/(T) is defined by a monic 7' € Z[X]. The low-level function
computing a maximal order is

void nfmaxord(nfmaxord_t *S, GEN TO, long flag), where the polynomial Tj is squarefree
with integer coefficients. Let K be the étale algebra Q[X]/(Tp) and let T' = ZX_Qnormalize(Tp),
ie. T = CTy(X/L) is monic and integral for some C,Q € Q.

The structure nfmaxord_t is initialized by the call; it has the following fields:

GEN TO, T, dT, dK; /* TO, T, discriminants of T and K */

GEN unscale; /* the integer L */

GEN index; /* index of power basis in maximal order */

GEN dTP, dTE; /* factorization of |dT|, primes / exponents */
GEN dKP, dKE; /* factorization of |dK|, primes / exponents */
GEN basis; /* Z-basis for maximal order of Q[X]1/(T) */

The exponent vectors are t_VECSMALL. The primes in dTP and dKP are pseudoprimes, not proven
primes. We recommend restricting to T' = Tp, i.e. either to pass the input polynomial through
ZX_Q_normalize before the call, or to forget about Ty and go on with the polynomial T'; otherwise
unscale # 1, all data is expressed in terms of T' # T, and needs to be converted to Ty. For
instance to convert the basis to Q[X]/(Tp):

RgXV_unscale(S.basis, S.unscale)

Instead of passing T' (monic ZX), one can use the format [T listP] as in nfbasis or nfinit,
which computes an order which is maximal at a set of primes, but need not be the maximal order.

The flag is an or-ed combination of the binary flags, both of them deprecated:

nf _PARTIALFACT: do not try to fully factor 4T and only look for primes less than primelimit.
In that case, the elements in dTP and dKP need not all be primes. But the resulting dK, index and
basis are correct provided there exists no prime p > primelimit such that p? divides the field
discriminant dK. This flag is deprecated: the [T, listP] format is safer and more flexible.

nf_ROUND2: this flag is deprecated and now ignored.

void nfinit_basic(nfmaxord_t *S, GEN TO) a wrapper around nfmaxord (without the depre-
cated flag) that also accepts number field structures (nf, bnf, ...) for TO.

GEN nfmaxord_to_nf (nfmaxord_t *S, GEN ro, long prec) convert an nfmaxord_t to an nf
structure at precision prec, where ro is NULL. The argument ro may also be set to a vector with
r1 4+ ro components containing the roots of S->T suitably ordered, i.e. first r; t_REAL roots, then
ro t_COMPLEX representing the conguate pairs, but this is strongly discouraged: the format is error-
prone, and it is hard to compute the roots to the right accuracy in order to achieve prec accuracy
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for the nf. This function uses the integer basis S->basis as is, without performing LLL-reduction.
Unless the basis is already known to be reduced, use rather the following higher-level function:

GEN nfinit_complete(nfmaxord_t *S, long flag, long prec) convert an nfmaxord_t to an
nf structure at precision prec. The flag has the same meaning as in nfinit0. If S->basis is
known to be reduced, it will be faster to use nfmaxord_to_nf.

GEN indexpartial(GEN T, GEN dT) 7' a monic separable ZX, dT is either NULL (no information)
or a multiple of the discriminant of 7. Let K = Q[X]/(T) and Zk its maximal order. Returns a
multiple of the exponent of the quotient group Zg /(Z[X]/(T')). In other word, a denominator d
such that dx € Z[X]/(T) for all x € Zx.

GEN FpX_gcd_check(GEN x, GEN y, GEN D) let x and y be two coprime polynomials with integer
coefficients and let D be a factor of the resultant of x and y; try to factor D by running the
Euclidean algorithm on z and y modulo D. This returns NULL or a non trivial factor of D. This is
the low-level function underlying poldiscfactors (applied to x, ZX_deriv(z) and the discriminant
of x). It succeeds when D has at least two prime divisors p and ¢ such that one sub-resultant of
and y is divisible by p but not by gq.

13.1.23 Computing in the class group.

We compute with arbitrary ideal representatives (in any of the various formats seen above),
and call

GEN bnfisprincipalO(GEN bnf, GEN x, long flag). The bnf structure already contains infor-
mation about the class group in the form &} ,(Z/d;Z)g; for canonical integers d; (with d,, | ... | ds
all > 1) and essentially random generators g;, which are ideals in HNF. We normally do not need
the value of the g;, only that they are fixed once and for all and that any (nonzero) fractional ideal
x can be expressed uniquely as x = (¢) [[;—, g5*, where 0 < e; < d;, and (¢) is some principal ideal.
Computing e is straightforward, but ¢ may be very expensive to obtain explicitly. The routine
returns (possibly partial) information about the pair [e,t], depending on flag, which is an or-ed
combination of the following symbolic flags:

e nf_GEN tries to compute t. Returns [e, t], with ¢ an empty vector if the computation failed.
This flag is normally useless in nontrivial situations since the next two serve analogous purposes in
more efficient ways.

e nf_GENMAT tries to compute ¢ in factored form, which is much more efficient than nf GEN if
the class group is moderately large; imagine a small ideal z = (¢)g'°°%?: the norm of ¢ has 10000 as
many digits as the norm of ¢g; do we want to see it as a vector of huge meaningless integers? The
idea is to compute e first, which is easy, then compute (t) as z [[ g; “* using successive idealmulred,
where the ideal reduction extracts small principal ideals along the way, eventually raised to large
powers because of the binary exponentiation technique; the point is to keep this principal part in
factored unezpanded form. Returns [e,t], with ¢ an empty vector if the computation failed; this
should be exceedingly rare, unless the initial accuracy to which bnf was computed was ridiculously
low (and then bnfinit should not have succeeded either). Setting/unsetting nf_GEN has no effect
when this flag is set.

e nf_GEN_IF_PRINCIPAL tries to compute ¢ only if the ideal is principal (e = 0). Returns
gen_0 if the ideal is not principal. Setting/unsetting nf_GEN has no effect when this flag is set, but
setting/unsetting nf _GENMAT is possible.

e nf_FORCE in the above, insist on computing ¢, even if it requires recomputing a bnf from
scratch. This is a last resort, and normally the accuracy of a bnf can be increased without trouble,
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but it may be that some algebraic information simply cannot be recovered from what we have: see
bnfnewprec. It should be very rare, though.

In simple cases where you do not care about ¢, you may use
GEN isprincipal(GEN bnf, GEN x), which is a shortcut for bnfisprincipalO(bnf, x, 0).
The following low-level functions are often more useful:

GEN isprincipalfact(GEN bnf, GEN C, GEN L, GEN f, long flag) is about the same as
bnfisprincipal0 applied to C [] L[i]l¥, where the L[i] are ideals, the f[i] integers and C' is either
an ideal or NULL (omitted). Make sure to include nf _GENMAT in flag!

GEN isprincipalfact_or_fail(GEN bnf, GEN C, GEN L, GEN f) is for delicate cases, where we
must be more clever than nf FORCE (it is used when trying to increase the accuracy of a bnf, for
instance). If performs

isprincipalfact(bnf,C, L, f, nf_GENMAT);

but if it fails to compute ¢, it just returns a t_INT, which is the estimated precision (in words, as
usual) that would have been sufficient to complete the computation. The point is that nf FORCE
does exactly this internally, but goes on increasing the accuracy of the bnf, then discarding it,
which is a major inefficiency if you intend to compute lots of discrete logs and have selected a
precision which is just too low. (It is sometimes not so bad since most of the really expensive data
is cached in bnf anyway, if all goes well.) With this function, the caller may decide to increase the
accuracy using bnfnewprec (and keep the resulting bnf!), or avoid the computation altogether. In
any case the decision can be taken at the place where it is most likely to be correct.

void bnftestprimes(GEN bnf, GEN B) is an ingredient to certify unconditionnally a bnf com-
puted assuming GRH, cf. bnfcertify. Running this function successfully proves that the classes of
all prime ideals of norm < B belong to the subgroup of the class group generated by the factorbase
used to compute the bnf (equal to the class group under GRH). If the condition is not true, then
(GRH is false and) the function will run forever.

If it is known that primes of norm less than B generate the class group (through variants of
Minkowski’s convex body or Zimmert’s twin classes theorems), then the true class group is proven
to be a quotient of bnf.clgp.

13.1.24 Floating point embeddings, the 75 quadratic form.

We assume the nf is a true nf structure, attached to a number field K of degree n and signature
(r1,72). We saw that

GEN nf_get_M(GEN nf) returns the (r; +r2) X n matrix M giving the embeddings of K, so that if
v is an n-th dimensional t_COL representing the element Y " ; v[iJw; of K, then RgM_RgC_mul (M, v)
represents the embeddings of v. Its first 71 components are real numbers (t_INT, t_FRAC or t_REAL,
usually the latter), and the last 79 are complex numbers (usually of t_COMPLEX, but not necessarily
for embeddings of rational numbers).

GEN embed_T2(GEN x, long rl1) assuming z is the vector of floating point embeddings of some
algebraic number v, i.e.

x = RgM_RgC_mul (nf_get_M(nf), algtobasis(nf,v));

returns T5(v). If the floating point embeddings themselves are not needed, but only the values of
T5, it is more efficient to restrict to real arithmetic and use
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gnorml2( RgM_RgC_mul (nf_get_G(nf), algtobasis(nf,v)));

GEN embednorm_T2(GEN x, long r1l) analogous to embed_T2, applied to the gnorm of the floating
point embeddings. Assuming that

x = gnorm( RgM_RgC_mul (nf_get_M(nf), algtobasis(nf,v)) );
returns T5(v).

GEN embed_roots(GEN z, long rl) given a vector z of r1 +ry complex embeddings of the algebraic
number v, return the r; + 2ry roots of its characteristic polynomial. Shallow function.

GEN embed_disc(GEN z, long rl, long prec) given a vector z of ry + ro complex embed-
dings of the algebraic number v, return a floating point approximation of the discriminant of its
characteristic polynomial as a t_REAL of precision prec.

GEN embed_norm(GEN x, long rl) given a vector z of r; + 7y complex embeddings of the algebraic
number v, return (a floating point approximation of) the norm of v.

13.1.25 Ideal reduction, low level.
In the following routines nf is a true nf, attached to a number field K of degree n:

GEN nf_get_Gtwist(GEN nf, GEN v) assuming v is a t_VECSMALL with 71 + ro entries, let

r1+72

eIy = > 2"eiloi(@)?,

i=1

where as usual the o; are the (real and) complex embeddings and ; = 1, resp. 2, for a real,
resp. complex place. This is a twisted variant of the T, quadratic form, the standard FEuclidean
form on K ® R. In applications, only the relative size of the v; will matter.

Let G, € M,(R) be a square matrix such that if z € K is represented by the column vector
X in terms of the fixed Z-basis of Zx in nf, then

lzll; = "(GuX) - G X.

(This is a kind of Cholesky decomposition.) This function returns a rescaled copy of G,, rounded
to nearest integers, specifically RM_round_maxrank(G,). Suitable for gerepileupto, but does not
collect garbage. For convenience, also allow v =NULL (nf_get_roundG) and v a t_MAT as output
from the function itself: in both these cases, shallow function.

GEN nf_get_Gtwist1(GEN nf, long i). Simple special case. Returns the twisted G matrix
attached to the vector v whose entries are all 0 except the i-th one, which is equal to 10.

GEN idealpseudomin(GEN x, GEN G). Let x, G be two ZMs, such that the product Gz is well-
defined. This returns a “small” integral linear combinations of the columns of z, given by the
LLL-algorithm applied to the lattice Gz. Suitable for gerepileupto, but does not collect garbage.

In applications, = is an integral ideal, G approximates a Cholesky form for the T quadratic
form as returned by nf_get_Gtwist, and we return a small element a in the lattice (x,7%). This
is used to implement idealred.

GEN idealpseudomin_nonscalar(GEN x, GEN G). As idealpseudomin, but we insist of returning
a nonscalar a (ZV_isscalar is false), if the dimension of = is > 1.
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In the interpretation where x defines an integral ideal on a fixed Z basis whose first element
is 1, this means that a is not rational.

GEN idealpseudominvec(GEN x, GEN G). As idealpseudomin_nonscalar, but we return about
n?/2 nonscalar elements in z with small Ty-norm, where the dimension of z is n.

GEN idealpseudored(GEN x, GEN G). As idealpseudomin but we return the full reduced Z-basis
of x as a t_MAT instead of a single vector.

GEN idealred_elt(GEN nf, GEN x) shortcut for

idealpseudomin(x, nf_get_roundG(nf))

13.1.26 Ideal reduction, high level.

Given an ideal x this means finding a “simpler” ideal in the same ideal class. The public GP
function is of course available

GEN idealredO(GEN nf, GEN x, GEN v) finds an a € K* such that (a)z is integral of small norm
and returns it, as an ideal in HNF. What “small” means depends on the parameter v, see the
GP description. More precisely, a is returned by idealpseudomin((xz)z( — 1), G) divided by xz,
where 7 = (x N Z) and where G is nf_get_Gtwist(nf,v) for v # NULL and nf_get_roundG(nf)
otherwise.

Usually one sets v = NULL to obtain an element of small 75 norm in z:
GEN idealred(GEN nf, GEN x) is a shortcut for idealredO (nf,x,NULL).

The function idealred remains complicated to use: in order not to lose information x must
be an extended ideal, otherwise the value of a is lost. There is a subtlety here: the principal ideal
(a) is easy to recover, but a itself is an instance of the principal ideal problem which is very difficult
given only an nf (once a bnf structure is available, bnfisprincipal0 will recover it).

GEN idealmoddivisor (GEN bnr, GEN x) A proof-of-concept implementation, useless in practice.
If bor is attached to some modulus f, returns a “small” ideal in the same class as x in the ray class
group modulo f. The reason why this is useless is that using extended ideals with principal part in
a computation, there is a simple way to reduce them: simply reduce the generator of the principal

part in (Zg/f)*.

GEN famat_to_nf_moddivisor (GEN nf, GEN g, GEN e, GEN bid) given a true nf attached to
a number field K, a bid structure attached to a modulus f, and an algebraic number in factored
form [] g[i]°l"), such that (g[i], f) = 1 for all i, returns a small element in Zx congruent to it mod
f. Note that if f contains places at infinity, this includes sign conditions at the specified places.

A simpler case when the conductor has no place at infinity:

GEN famat_to_nf_modideal_coprime(GEN nf, GEN g, GEN e, GEN f, GEN expo) as above
except that the ideal f is now integral in HNF (no need for a full bid), and we pass the exponent
of the group (Zk/f)* as expo; any multiple will also do, at the expense of efficiency. Of course if a
bid for f is available, if is easy to extract f and the exact value of expo from it (the latter is the first
elementary divisor in the group structure). A useful trick: if you set expo to any positive integer,
the result is correct up to expo-th powers, hence exact if expo is a multiple of the exponent; this
is useful when trying to decide whether an element is a square in a residue field for instance! (take
expo= 2).

GEN nf_to_Fp_coprime(GEN nf, GEN x, GEN modpr) this low-level function is variant of
famat_to_nf_modideal_coprime: nf is a true nf structure, modpr is from zkmodprinit attached
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to a prime of degree 1 above the prime number p, and x is either a number field element or a famat
factorization matrix. We finally assume that no component of x has a denominator p.

What to do when the g[i] are not coprime to f, but only [] g[i]¢/" is? Then the situation is
more complicated, and we advise to solve it one prime divisor of f at a time. Let v be the valuation
attached to a maximal ideal pr:

GEN famat_makecoprime(GEN nf, GEN g, GEN e, GEN pr, GEN prk, GEN expo) returns an
element in (Zg /pr¥)* congruent to the product ] g[i]¢!", assumed to be globally coprime to pr.
As above, expo is any positive multiple of the exponent of (Zx /pr*)*, for instance (Nv — 1)p*~1,
if p is the underlying rational prime. You may use other values of expo (see the useful trick in
famat_to_nf_modideal_coprime).

GEN sunits_makecoprime(GEN g, GEN pr, GEN prk) is a specialized variant that allows to
precondition a vector of g[i] assumed to be integral primes or algebraic integers so that it becomes
suitable for famat_to_nf modideal_coprime modulo pr. This is in particular useful for the output
of bnf_get_sunits.

GEN Idealstarprk(GEN nf, GEN pr, long k, long flag) same as Idealstar for I = pr*. The
nf argument is a true nf structure.

13.1.27 Class field theory.

Under GP, a class-field theoretic description of a number field is given by a triple A, B, C, where
the defining set [A4, B, C| can have any of the following forms: [bnr|, [bnr, subgroup]|, [bnf, modulus],
[bnf, modulus, subgroup]. You can still use directly all of (1ibpari’s routines implementing) GP’s
functions as described in Chapter 3, but they are often awkward in the context of 1ibpari pro-
gramming. In particular, it does not make much sense to always input a triple A, B, C because of
the fringe [bnf, modulus, subgroup]. The first routine to call, is thus

GEN Buchray(GEN bnf, GEN mod, long flag) initializes a bnr structure from bnf and modulus
mod. flag is an or-ed combination of nf GEN (include generators) and nf INIT (if omitted, do not
return a bnr, only the ray class group as an abelian group). In fact, the single most useful value
of flag is nf_INIT to initialize a proper bnr: omitting nf GEN saves a lot of time and will not
adversely affect any class field theoretic function; adding nf_GEN makes debugging easier. The flag
0 allows to compute only the ray class group structure but will gain little time; if we only need the
order of the ray class group, then bnrclassno is fastest.

Now we have a proper bnr encoding a bnf and a modulus, we no longer need the [bnf, modulus]
and [bnf, modulus, subgroup] forms, which would internally call Buchray anyway. Recall that a
subgroup H is given by a matrix in HNF, whose column express generators of H on the fixed
generators of the ray class group that stored in our bnr. You may also code the trivial subgroup
by NULL. It is also allowed to replace H by a character x of the ray class group modulo mod: it
represents the subgroup Kery.

GEN bnr_subgroup_check(GEN bnr, GEN H, GEN *pdeg) given a bnr attached to a modulus
mod, check whether H represents a congruence subgroup (of the ray class group modulo mod) and
returns a normalized representation: NULL for the trivial subgroup, or in HNF, reduced modulo the
elementary divisors of the ray class group. In particular, if H is a character of the ray class group,
the returned value is the character kernel. If pdeg is not NULL, *pdeg is set to the degree of the
attached class field: the index of H in the ray class group.

void bnr_subgroup_sanitize(GEN *pbnr, GEN *pH) given a bnr and a congruence subgroup,
make sanity checks and compute the subgroup conductor. Then replace the pair to match the
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conductor: the bnr has the right conductor as modulus, and the subgroup is normalized. Instead of
a bnr, this function also accepts a bnf (gets replaced by the bnr with trivial conductor). Instead of
a subgroup, the function also accepts an integer N (replaced by Cly(K)™) or a character (replaced
by its kernel).

void bnr_char_sanitize(GEN *pbnr, GEN *pchi) same idea as bnr_subgroup_sanitize: we are
given a bnr and a ray class character, make sanity checks and update the data to use the conductor
as modulus.

GEN bnrconductor (GEN bnr, GEN H, long flag) see the documentation of the GP function.

GEN bnrconductor_factored(GEN bnr, GEN H) return a pair [F, fa] where F' is the conductor
and fa is the factorization of the finite part of the conductor. Shallow function.

GEN bnrconductor_raw(GEN bnr, GEN H) return the conductor of H. Shallow function.

long bnrisconductor (GEN bnr, GEN H) returns 1 is the class field defined by the subgroup H
(of the ray class group mod f coded in bnr) has conductor f. Returns 0 otherwise.

GEN ideallog_units(GEN bnf, GEN bid) return the images of the units generators bnf.tu and
bnf . tu in the finite abelian group (Zx/f)* attached to bid.

GEN ideallog_unitsO(GEN bnf, GEN bid, GEN N) let G = (Zg/f)* be the finite abelian group
attached to bid. Return the images of the units generators bnf.tu and bnf.tu in G/GV. If N is
NULL, same as ideallog_units.

GEN bnrchar_primitive(GEN banr, GEN chi, GEN bnrc) Given a normalized character chi =
[d,c] on bar.clgp (see char_normalize) of conductor bnrc.mod, compute the primitive character
chic on bnrc.clgp equivalent to chi, given as a normalized character [D,C] : chic(bnrc.gen[i])

is Cgm, where D is minimal. It is easier to use bnrconductor_i(bnr,chi,2), but the latter
recomputes bnrc for each new character.

GEN bnrchar_primitive_raw(GEN bnr, GEN chi, GEN bnrc) as bnrchar_primitive, with chi
a regular (unnormalized) character on bar.clgp of conductor bnrc.mod. Return a regular (unnor-
malized) primitive character on bnrc.

GEN bnrdisc(GEN bnr, GEN H, long flag) returns the discriminant and signature of the class
field defined by bnr and H. See the description of the GP function for details. flag is an or-ed
combination of the flags rnf _REL (output relative data) and rnf _COND (return 0 unless the modulus
is the conductor).

GEN ABC_to_bnr(GEN A, GEN B, GEN C, GEN *H, int addgen) This is a quick conversion
function designed to go from the too general (inefficient) A, B, C form to the preferred bnr, H
form for class fields. Given A, B, C as explained above (omitted entries coded by NULL), return
the attached bnr, and set H to the attached subgroup. If addgen is 1, make sure that if the bnr
needed to be computed, then it contains generators.
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13.1.28 Abelian maps. A map f : A — B between two abelian groups of finite type is given
by a triple: [M, cyc,, cycg], where cyc, = [a1,...,a,] and cycg = [by,...,b,| are the elementary
divisors for A and B (see ZM_snf) so that A = @<, (Z/a;Z)g; and B =~ ®j<,(Z/b;Z)G;. The
matrix M gives the image of the generators g; in terms of the G;: (f(¢:))i<m = (Gj)j<n - M. The
function bnrmap returns such a structure.

GEN bnrsurjection(GEN BNR, GEN bnr) BNR and bar defined over the same field K, for moduli
F and f with f | F, returns the canonical surjection Clg (F) — Clg(f) as an abelian map. ILe.,
a triple [M, cycp, cyc f]. M gives the image of the fixed ray class group generators of BNR in terms
of the ones in bnr, cycp and cycy are the cyclic structures of BNR and bnr respectively (as per
bnr_get_cyc). Shallow function.

GEN abmap_kernel (GEN S) returns the kernel of the abelian map S, ans a matrix H in HNF: the
subgroup is (g;) - H.

GEN abmap_subgroup_image(GEN S, GEN H) given a subgroup H of A (its generators are the
(gi)H); for efficiency, H should be given in canonical form, i.e., as an HNF left divisor of
diag(ay,...,an). Returns the subgroup f(H) of B, as an HNF left divisor of diag(by,...,by,).

13.1.29 Grunwald—Wang theorem.

GEN nfgwkummer (GEN nf, GEN Lpr, GEN Ld, GEN pl, long var) low-level version of nfgrun-
waldwang, assuming that nf contains suitable roots of unity, and directly using Kummer theory to
construct the extension.

GEN bnfgwgeneric(GEN bnf, GEN Lpr, GEN Ld, GEN pl, 1long var) low-level version of
nfgrunwaldwang, assuming that bnf is a bnfinit structure, and calling rnfkummer to construct
the extension.

13.1.30 Relative equations, Galois conjugates.

GEN nfissquarefree(GEN nf, GEN P) given P a polynomial with coefficients in nf, return 1 is
P is squarefree, and 0 otherwise. If is allowed (though less efficient) to replace nf by a monic ZX
defining the field.

GEN rnfequationall(GEN A, GEN B, long *pk, GEN *pLPRS) A is either an nf type (corre-
sponding to a number field K) or an irreducible ZX defining a number field K. B is an irreducible
polynomial in K[X]. Returns an absolute equation C' (over Q) for the number field K[X]/(B). C
is the characteristic polynomial of b+ ka for some roots a of A and b of B, and k is a small rational
integer. Set *pk to k.

If pLPRS is not NULL set it to [ho, k1], h; € Q[X], where hg + h1Y is the last nonconstant
polynomial in the pseudo-Euclidean remainder sequence attached to A(Y) and B(X —kY), leading
to C' = Resy (A(Y), B(X —kY)). In particular a := —hg/hy is a root of A in Q[X]/(C), and X —ka
is a root of B.

GEN nf_rnfeq(GEN A, GEN B) wrapper around rnfequationall to allow mapping K — L (eltup)
and converting elements of L between absolute and relative form (reltoabs, abstorel), without
computing a full rnf structure, which is useful if the relative integral basis is not required. In fact,
since A may be a t_POL or an nf, the integral basis of the base field is not needed either. The
return value is the same as rnf_get_map. Shallow function.

GEN nf_rnfeqsimple(GEN A, GEN B) as nf_rnfeq except some fields are omitted, so that only
the abstorel operation is supported. Shallow function.
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GEN eltabstorel(GEN rnfeq, GEN x) rnfeq is as given by rnf_get_map (but in this case rn-
feltabstorel is more robust), nf_rnfeq or nf_rnfeqsimple, return x as an element of L/K, i.e.
as a t_POLMOD with t_POLMOD coefficients. Shallow function.

GEN eltabstorel_1ift(GEN rnfeq, GEN x) same as eltabstorel, except that x is returned in
partially lifted form, i.e. as a t_POL with t_POLMOD coefficients.

GEN eltreltoabs(GEN rnfeq, GEN x) rnfeq is as given by rnf_get_map (but in this case rn-
feltreltoabs is more robust) or nf_rnfeq, return x in absolute form.

GEN nf_nfzk(GEN nf, GEN rnfeq) rnfeq as given by nf_rnfeq, nf a true nf structure, return a
a suitable representation of nf.zk allowing quick computation of the map K — L by the function
nfeltup, without computing a full rnf structure, which is useful if the relative integral basis is not
required. The computed value is the same as in rnf_get_nfzk. Shallow function.

GEN nfeltup(GEN nf, GEN x, GEN zknf) zknf and is initialized by nf_nfzk or rnf_get_nfzk
(but in this case rnfeltup is more robust); nf is a true nf structure for K, returns z € K as a
(lifted) element of L, in absolute form.

GEN rnfdisc_factored(GEN nf, GEN pol, GEN #*pd) variant of rnfdisc returning the relative
discriminant ideal factorization, and setting *pd to the discriminant as an element in K*/(K*)2.
Shallow function. The argument nf is a true nf structure.

GEN Rg_nffix(const char *f, GEN T, GEN c, int 1lift) given a ZX T and a “coefficient” ¢
supposedly belonging to Qly]/(T"), check whether this is a the case and return a cleaned up version
of ¢. The string f is the calling function name, used to report errors.

This means that ¢ must be one of t_INT, t_FRAC, t_POL in the variable y with rational coeffi-
cients, or t_POLMOD modulo T" which lift to a rational t_POL as above. The cleanup consists in the
following improvements:

e t_POL coefficients are reduced modulo T'.
e t_POL and t_POLMOD belonging to Q are converted to rationals, t_INT or t_FRAC.

e if 1ift is nonzero, convert t_POLMOD to t_POL, and otherwise convert t_POL to t_POLMODs
modulo T

GEN RgX_nffix(const char *f, GEN T, GEN P, int 1lift) check whether P is a polynomials
with coefficients in the number field defined by the absolute equation T'(y) = 0, where T is a ZX
and returns a cleaned up version of P. This checks whether P is indeed a t_POL with variable
compatible with coefficients in Q[y]/(T), i.e.

varncmp (varn(P), varn(T)) < O
and applies Rg_nffix to each coefficient.

GEN RgV_nffix(const char *f, GEN T, GEN P, int 1ift) as RgX_nffix for a vector of
coefficients.

GEN polmod_nffix(const char *f, GEN rnf, GEN x, int 1lift) given a t_POLMOD x supposedly
defining an element of rnf, check this and perform Rg_nffix cleanups.

GEN polmod_nffix2(const char *f, GEN T, GEN P, GEN x, int 1lift) as in polmod_nffix,
where the relative extension is explicitly defined as L = (Q[y]/(T))[x]/(P), instead of by an rnf
structure.
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long numberofconjugates(GEN T, long pinit) returns a quick multiple for the number of Q-
automorphism of the (integral, monic) t_POL 7, from modular factorizations, starting from prime
pinit (you can set it to 2). This upper bounds often coincides with the actual number of conjugates.
Of course, you should use nfgaloisconj to be sure.

GEN nfroots_if_split(GEN *pt, GEN T) let *pt point either to a number field structure or an
irreducible ZX, defining a number field K. Given T" a monic squarefree polynomial with coefficients
in Z, return the list of roots of pol in K if the polynomial splits completely, and NULL otherwise.
In other words, this checks whether K[X]/(T) is normal over K (hence Galois since T is separable
by assumption).

In the case where *pT is a ZX, the function has to compute internally a conditional nf attached
to K , whose nf .zk may not define the maximal order Zy (see nfroots); *pT is then replaced by
the conditional nf to avoid losing that information.

GEN rnfabelianconjgen(GEN nf, GEN P) nf being a number field structure attached to K and
P being an irreducible polynomial in K[X]. This function returns gen_0 if L = K[X]/(P) is not
abelian over K, else it returns a pair (g, 0) where g is a vector of K-automorphisms of L generating
the abelian group G = Gal(L/K) and o is a t_VECSMALL of the same length giving the relative
orders of the g;: o[1] is the order of g; and for i > 2, o[i] is the order of g; in G/(g1,...,9i—1). The
length need not be minimal: the o[i] need not be the elementary divisors of G.

13.1.31 Units.

GEN nfrootsof1(GEN nf) returns a two-component vector [w, z] where w is the number of roots
of unity in the number field nf, and z is a primitive w-th root of unity.

GEN nfcyclotomicunits(GEN nf, GEN zu) where zu is as output by nfrootsof1(nf), return the
vector of the cyclotomic units in nf expressed over the integral basis. If { = (,, belongs to the base
field (n maximal), this function returns

e (when n is not a prime power) the ¢(* — 1, for all 1 < a < n/2 such that n/(a,n) is not a
prime power and a is a strict divisor of n.

. e (all n) for p prime, v,(n) =k > 0, the (2* —1)/(z — 1), where z = /P for all 1 < a <
(" =1)/2, (p,a) = 1.

These are independent modulo torsion if n is a prime power, but not necessarily so otherwise.

GEN sunits_mod_units(GEN bnf, GEN S) return independent generators for Ug(K)/U(K).

13.1.32 Obsolete routines.

Still provided for backward compatibility, but should not be used in new programs. They will
eventually disappear.

GEN zidealstar(GEN nf, GEN x) short for Idealstar(nf,x,nf_GEN)
GEN zidealstarinit(GEN nf, GEN x) short for Idealstar(nf,x,nf_INIT)
GEN zidealstarinitgen(GEN nf, GEN x) short for Idealstar (nf,x,nf GEN|nf INIT)

GEN idealstarO(GEN nf, GEN x, 1long flag) short for idealstarmod(nf, ideal, flag,
NULL). Use Idealstarmod or Idealstar.

GEN bnrinitO(GEN bnf, GEN ideal, long flag) short for bnrinitmod (bnf,ideal,flag,NULL).
Use Buchray or Buchraymod.
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GEN buchimag(GEN D, GEN c1, GEN c2, GEN gCO) short for
Buchquad (D, gtodouble(cl) ,gtodouble(c2), /*ignored*/0)
GEN buchreal(GEN D, GEN gsens, GEN cl, GEN c2, GEN RELSUP, long prec) short for
Buchquad (D, gtodouble(cl) ,gtodouble(c2), prec)

The following use a naming scheme which is error-prone and not easily extensible; besides,
they compute generators as per nf _GEN and not nf _GENMAT. Don’t use them:

GEN isprincipalforce(GEN bnf, GEN x)

GEN isprincipalgen(GEN bnf, GEN x)

GEN isprincipalgenforce(GEN bnf, GEN x)

GEN isprincipalraygen(GEN bnr, GEN x), use bnrisprincipal.
Variants on polred: use polredbest.

GEN factoredpolred(GEN x, GEN fa)

GEN factoredpolred2(GEN x, GEN fa)

GEN smallpolred(GEN x)

GEN smallpolred2(GEN x), use Polred.

GEN polredO(GEN x, long flag, GEN p)

GEN polredabs(GEN x)

GEN polredabs2(GEN x)

GEN polredabsall(GEN x, long flun)
Superseded by bnrdisclistO

GEN discrayabslist(GEN bnf, GEN L)

GEN discrayabslistarch(GEN bnf, GEN arch, long bound)
Superseded by idealappr (flagis ignored)

GEN idealapprO(GEN nf, GEN x, long flag)

Superseded by bnrconductor_raw or bnrconductormod:

GEN bnrconductor_i(GEN bnr, GEN H, long flag) shallow variant of bnrconductor.

GEN bnrconductorofchar (GEN bnr, GEN chi)
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13.2 Galois extensions of Q.

This section describes the data structure output by the function galoisinit. This will be
called a gal structure in the following.
13.2.1 Extracting info from a gal structure.

The functions below expect a gal structure and are shallow. See the documentation of ga-
loisinit for the meaning of the member functions.

GEN gal_get_pol(GEN gal) returns gal.pol

GEN gal_get_p(GEN gal) returns gal.p

GEN gal_get_e(GEN gal) returns the integer e such that gal.mod==gal.p”e.
GEN gal_get_mod(GEN gal) returns gal.mod.

GEN gal_get_roots(GEN gal) returns gal.roots.

GEN gal_get_invvdm(GEN gal) gall[4].

GEN gal_get_den(GEN gal) return gall[5].

GEN gal_get_group(GEN gal) returns gal.group.

GEN gal_get_gen(GEN gal) returns gal.gen.

GEN gal_get_orders(GEN gal) returns gal.orders.

13.2.2 Miscellaneous functions.

GEN nfgaloispermtobasis(GEN nf, GEN gal) return the images of the field generator by the
automorphisms gal.orders expressed on the integral basis nf .zk.

GEN nfgaloismatrix(GEN nf, GEN s) returns the ZM attached to the automorphism s, seen as a
linear operator expressend on the number field integer basis. This allows to use

M = nfgaloismatrix(nf, s);
sx = ZM_ZC_mul(M, x); /* or RgM_RgC_mul(M, x) if x is not integral */

instead of
sx = nfgaloisapply(nf, s, x);
for an algebraic integer x.

GEN nfgaloismatrixapply(GEN nf, GEN M, GEN x) given an automorphism M in nfgaloisma-
trix form, return the image of x under the automorphism. Variant of galoisapply.
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13.3 Quadratic number fields and quadratic forms.

13.3.1 Checks.

void check_quaddisc(GEN x, long *s, long *mod4, const char *f) checks whether the
GEN z is a quadratic discriminant (t_INT, not a square, congruent to 0,1 modulo 4), and raise an
exception otherwise. Set *s to the sign of  and *mod4 to x modulo 4 (0 or 1), unless mod4 is NULL.

void check_quaddisc_real (GEN x, long #*mod4, const char *f) as check_quaddisc; check
that signe(x) is positive.

void check_quaddisc_imag(GEN x, long *mod4, const char *f) as check_quaddisc; check
that signe(x) is negative.

13.3.2 Class number.

Given a D congruent to 0 or 1 modulo 4, let h(D) denote the class number of the order of
discriminant D. The function quadclassunit uses index calculus and computes h(D) in subexpo-
nential time in log |D| but it assumes the truth of the GRH. For imaginary quadratic orders, it is
also comparatively slow for small values, say |D| < 10'®. Here are some alternatives:

GEN classno(GEN D) corresponds to gfbclassno(D,0) and is only useful for D < 0, uses a baby-
step giant-step technique and runs in time O(D1/4). The result is guaranteed correct for |D| <
21019 and fastest in that range. For larger values of |D|, the algorithm is no longer rigorous and
may give incorrect results (we know no concrete example); it also becomes relatively less interesting
compared to quadclassunit.

GEN classno2(GEN D) corresponds to gfbclassno(D,1) and runs in time O(D'/?); the function
is provided for testing purposes only since it is never competitive.

GEN quadclassnoF(GEN D, GEN *pd) returns h(D)/h(d) where d is the fundamental discriminant
attached to D. If pd is not NULL, set *pd to d.

GEN quadclassno(GEN D) returns h(D) using Buchmann’s algorithm on the order of discriminant
D. If D is not fundamental, it will usually be faster to call coredisc2_fact and quadclassnoF _fact
to reduce to this case first.

long quadclassnos(long D) returns h(D) using Buchmann’s algorithm on the order of discrimi-
nant D.

ulong unegquadclassnoF (ulong x, long *pd) returns h(—z)/h(d). Set *pd to d.
ulong uposquadclassnoF (ulong x, long *pd) returns h(z)/h(d). Set *pd to d.

GEN quadclassnoF fact(GEN D, GEN P, GEN E) let D be a fundamental discriminant, and
f =1L Pli]®! be a positive conductor for the order of discriminant Df? (P is a ZV and E is a ZV
or zv). Returns

[0F : O] - (D f)/1(d) = F ] (1 = (D/p)p™).
plf

ulong uquadclassnoF_fact(ulong d, long s, GEN P, GEN E) let s = 1 or —1 be a sign,
D = sd be a fundamental discriminant, and f = [[, P[i]”[!) be a positive conductor for the order
of discriminant Df? (P and E are t_VECSMALL). Returns

[OX. Df?}' (Df2 /h fH 1_ D/p 71)
plf
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GEN hclassno(GEN d) returns the Hurwitz-Kronecker class number H(d). These play a central
role in trace fomulas and are usually needed for many consecutive values of d. Thus, the function
uses a cache so that later calls for small consecutive values of d are instantaneous, see getcache.
Large values of d (d > 500000) call quadclassunit individually and are not memoized.

GEN hclassnoF_fact(GEN P, GEN E, GEN D) return H(Df?)/H (D) assuming D is a negative
fundamental discriminant, where the conductor f is given in factored form: P (ZV) is the list of
prime divisors of f and £ (t_VECSMALL) their multiplicities.

long uhclassnoF_fact (GEN faf, long D) return H(Df?)/H (D) assuming D is a negative fun-
damental discriminant and d = Df? is an ulong and faf is factoru(d).

GEN hclassno6(GEN d) assuming d > 0, returns the integer 6 H(d). This is a low-level function
behind hclassno.

ulong hclassno6u(ulong d) assuming d > 0, returns the integer 6H(d). Using this function
creates (or extends) caches of Hurwitz class numbers and Corediscs of negative integers to speed
up consecutive or repeated calls (see getcache). If this is a problem, use:

ulong hclassno6u_no_cache(ulong d) as hclassno6u without creating caches. Existing caches
will be used.
13.3.3 t_QFB.

The functions in this section operate on binary quadratic forms of type t_QFB. When specified,
a t_QFB argument ¢ attached to an indefinite form can be replaced by the pair [g,d] where the
t_REAL d is Shanks’s distance.

GEN gfb_1(GEN q) given a t_QFB ¢, return the unit form ¢°.

int qfb_equall(GEN q) returns 1 if the t_QFB ¢ is the unit form.

13.3.3.1 Reduction.

GEN gfbred(GEN x) reduction of a t_QFB z. Also allow extended indefinite forms.
GEN gfbred_i(GEN x) internal version of qfbred: assume z is a t_QFB.

13.3.3.2 Composition.

GEN gfbcomp(GEN x, GEN y) compose the two t_QFB x and y (with same discriminant), then
reduce the result. This is the same as gmul (x,y). Also allow extended indefinite forms.

GEN gfbcomp_i(GEN x, GEN y) internal version of qfbcomp: assume z and y are t_QFB of the
same discriminant.

GEN qfbsqr(GEN x) as qfbcomp(x,x).
GEN qfbsqr_i(GEN x) as qfbcomp_i(x,y).
Same as above, without reducing the result:

GEN gfbcompraw(GEN x, GEN y) compose two t_QFBs, without reducing the result. Also allow
extended indefinite forms.

GEN gfbcompraw_i(GEN x, GEN y) internal version of qfbcompraw: assume x and y are t_QFB of
the same discriminant.
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13.3.3.3 Powering.

GEN qfbpow(GEN x, GEN n) computes z" and reduce the result. Also allow extended indefinite
forms.

GEN gfbpows(GEN x, long n) computes 2" and reduce the result. Also allow extended indefinite
forms.

GEN gfbpow_i(GEN x, GEN n) internal version of gfbcomp. Assume z is a QFB.

GEN gfbpowraw(GEN x, long n) compute z" (pure composition, no reduction), for a t_QFB .
Also allow indefinite forms.

13.3.3.4 Order, discrete log.

GEN qgfi_order(GEN q, GEN o) assuming that the imaginary t_QFB ¢ has order dividing o, compute
its order in the class group. The order can be given in all formats allowed by generic discrete log
functions, the preferred format being [ord, fal (t_INT and its factorization).

GEN gfi_log(GEN a, GEN g, GEN o) given an imaginary t_QFB a and assuming that the t_QFB
g has order o, compute an integer k such that a* = g. Return cgetg(1, t_VEC) if there are no
solutions. Uses a generic Pollig-Hellman algorithm, then either Shanks (small o) or Pollard rho
(large 0) method. The order can be given in all formats allowed by generic discrete log functions,
the preferred format being [ord, fal (t_INT and its factorization).

GEN gfi_Shanks(GEN a, GEN g, long n) given an imaginary t_QFB ¢ and assuming that the
t_QFB g has (small) order n, compute an integer k such that a* = g. Return cgetg(1, t_VEC) if
there are no solutions. Directly uses Shanks algorithm, which is inefficient when n is composite.

13.3.3.5 Solve, Cornacchia.
The following functions underly qfbsolve; p denotes a prime number.

GEN gfisolvep(GEN Q, GEN p) solves Q(z,y) = p over the integers, for an imaginary t_QFB Q.
Return gen_0 if there are no solutions.

GEN gfrsolvep(GEN Q, GEN p) solves Q(x,y) = p over the integers, for a real t_QFB (). Return
gen_0 if there are no solutions.

long cornacchia(GEN d, GEN p, GEN *px, GEN *py) solves 2 + dy? = p over the integers,
where d > 0 is congruent to 0 or 3 modulo 4. Return 1 if there is a solution (and store it in *x and
*y), 0 otherwise.

long cornacchia2(GEN d, GEN p, GEN *px, GEN *py) as cornacchia, for the equation 22 +dy? =
4p.

long cornacchia2_sqrt(GEN d, GEN p, GEN b, GEN #*px, GEN *py) as cornacchia2, where
p > 2 and b is the smallest squareroot of d modulo p.

13.3.3.6 Prime forms.

GEN primeform_u(GEN D, ulong p) t_QFB of discriminant D whose first coefficient is the prime
p, assuming (D/p) > 0.

GEN primeform(GEN D, GEN p)
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13.3.4 Efficient real quadratic forms. Unfortunately, real t_QFBs are very inefficient, and are
only provided for backward compatibility.

e they do not contain needed quantities, which are thus constantly recomputed (the discrimi-
nant square root /D and its integer part),

e the distance component is stored in logarithmic form, which involves computing one extra
logarithm per operation. It is much more efficient to store its exponential, computed from ordinary
multiplications and divisions (taking exponent overflow into account), and compute its logarithm
at the very end.

Internally, we have two representations for real quadratic forms:

e qfr3, a container [a, b, c] with at least 3 entries: the three coefficients; the idea is to ignore
the distance component.

e gfr5, a container with at least 5 entries [a, b, ¢, e,d]: the three coefficients a t_REAL d and a
t_INT e coding the distance component 2¥¢d, in exponential form, for some large fixed N.

It is a feature that qfr3 and qfr5 have no specified length or type. It implies that a qfr5 or
t_QFB will do whenever a qfr3 is expected. Routines using these objects require a global context,
provided by a struct gqfr_data *:

struct qfr_data {

GEN D; /* discriminant, t_INT */
GEN sqrtD; /* sqrt(D), t_REAL */
GEN isqrtD; /* floor(sqrt(D)), t_INT */

};

void qfr_data_init(GEN D, long prec, struct gqfr_data *S) given a discriminant D > 0,
initialize S for computations at precision prec (v D is computed to that initial accuracy).

All functions below are shallow, and not stack clean.

GEN qfr3_comp(GEN x, GEN y, struct qfr_data *S) compose two qfr3, reducing the result.
GEN qfr3_compraw(GEN x, GEN y) as qfr3_comp, without reducing the result.

GEN qfr3_pow(GEN x, GEN n, struct gfr_data *S) compute x", reducing along the way.
GEN qfr3_red(GEN x, struct qfr_data *S) reduce z.

GEN qfr3_rho(GEN x, struct gqfr_data *S) perform one reduction step; qfr3_red just performs
reduction steps until we hit a reduced form.

GEN qfr3_to_qfr(GEN x, GEN d) recover an ordinary t_QFB from the qfr3 z, adding disriminant
component d.

Before we explain qfrb, recall that it corresponds to an ideal, that reduction corresponds to
multiplying by a principal ideal, and that the distance component is a clever way to keep track
of these principal ideals. More precisely, reduction consists in a number of reduction steps, going
from the form (a,b,c) to p(a,b,c) = (¢, —bmod 2¢, *); the distance component is multiplied by (a
floating point approximation to) (b ++/D)/(b — /D).

GEN qfr5_comp(GEN x, GEN y, struct gfr_data *S) compose two qfr5, reducing the result,
and updating the distance component.

GEN qfr5_compraw(GEN x, GEN y) as qfr5_comp, without reducing the result.
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GEN qfr5_pow(GEN x, GEN n, struct gfr_data *S) compute 2", reducing along the way.
GEN qfr5_red(GEN x, struct qfr_data *S) reduce zx.
GEN qfr5_rho(GEN x, struct qfr_data *S) perform one reduction step.

GEN qfr5_dist(GEN e, GEN d, long prec) decode the distance component from exponential
(afrb-specific) to logarithmic form (true Shanks’s distance).

GEN gfr_to_qfr5(GEN x, long prec) convert a real t_QFB to a qfr5 with initial trivial distance
component (= 1).

GEN qfr5_to_qfr(GEN x, GEN d), assume x is a qfr5 and d is NULL or the original distance
component of some real t_QFB. Convert = to a t_QFB, with the correct (logarithmic) distance
component if d is not NULL.

13.4 Linear algebra over Z.

13.4.1 Hermite and Smith Normal Forms.

GEN ZM_hnf (GEN x) returns the upper triangular Hermite Normal Form of the ZM z (removing 0
columns), using the ZM_hnfall algorithm. If you want the true HNF, use ZM_hnfall(x, NULL,
0).

GEN ZM_hnfmod(GEN x, GEN d) returns the HNF of the ZM x (removing 0 columns), assuming the
t_INT d is a multiple of the determinant of x. This is usually faster than ZM_hnf (and uses less
memory) if the dimension is large, > 50 say.

GEN ZM_hnfmodid(GEN x, GEN d) returns the HNF of the ZM x concatenated with the diagonal
matrix with diagonal d, where d is a vector of integers of compatible dimension. Variant: if d is a
t_INT, then concatenate dId.

GEN ZM_hnfmodprime(GEN x, GEN p) returns the HNF of the matrix (z | pId) (removing 0
columns), for a ZM = and a prime number p. The algorithm involves only F,-linear algebra and is
is faster than ZM_hnfmodid (which will call it when d is prime).

GEN ZM_hnfmodall(GEN x, GEN d, long flag) low-level function underlying the ZM_hnfmod
variants. If flag is 0, calls ZM_hnfmod(x,d); flag is an or-ed combination of:

e hnf_MODID call ZM_hnfmodid instead of ZM_hnfmod,

e hnf_ PART return as soon as we obtain an upper triangular matrix, saving time. The pivots
are nonnegative and give the diagonal of the true HNF, but the entries to the right of the pivots
need not be reduced, i.e. they may be large or negative.

e hnf CENTER returns the centered HNF, where the entries to the right of a pivot p are centered
residues in [—p/2, p/2[, hence smallest possible in absolute value, but possibly negative.

GEN ZM_hnfmodall_i(GEN x, GEN d, long flag) as ZM_hnfmodall without final garbage collec-
tion. Not gerepile-safe.

GEN ZM_hnfall(GEN x, GEN *U, long remove) returns the upper triangular HNF H of the ZM
x; if U is not NULL, set if to the matrix U such that zU = H. If remove = 0, H is the true HNF,
including 0 columns; if remove = 1, delete the 0 columns from H but do not update U accordingly
(so that the integer kernel may still be recovered): we no longer have xU = H; if remove = 2,
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remove 0 columns from H and update U so that xU = H. The matrix U is square and invertible
unless remove = 2.

This routine uses a naive algorithm which is potentially exponential in the dimension (due
to coefficient explosion) but is fast in practice, although it may require lots of memory. The base
change matrix U may be very large, when the kernel is large.

GEN ZM_hnfall_i(GEN x, GEN *U, long remove) as ZM_hnfall without final garbage collection.
Not gerepile-safe.

GEN ZM_hnfperm(GEN A, GEN *ptU, GEN *ptperm) returns the hnf H = PAU of the matrix PA,
where P is a suitable permutation matrix, and U € Gl,(Z). P is chosen so as to (heuristically)
minimize the size of U; in this respect it is less efficient than ZM_hnf111 but usually faster. Set *ptU
to U and *pterm to a t_VECSMALL representing the row permutation attached to P = (J; pern[i]- If
ptU is set to NULL, U is not computed, saving some time; although useless, setting ptperm to NULL
is also allowed.

GEN ZM_hnf_knapsack(GEN x) given a ZM x, compute its HNF A. Return h if it has the knapsack
property: every column contains only zeroes and ones and each row contains a single 1; return NULL
otherwise. Not suitable for gerepile.

GEN ZM_hnfl11(GEN x, GEN *U, int remove) returns the HNF H of the ZM z; if U is not NULL,
set if to the matrix U such that xU = H. The meaning of remove is the same as in ZM_hnfall.

This routine uses the LLL variant of Havas, Majewski and Mathews, which is polynomial time,
but rather slow in practice because it uses an exact LLL over the integers instead of a floating point
variant; it uses polynomial space but lots of memory is needed for large dimensions, say larger than
300. On the other hand, the base change matrix U is essentially optimally small with respect to
the Loy norm.

GEN ZM_hnfcenter (GEN M). Given a ZM in HNF M, update it in place so that nondiagonal entries
belong to a system of centered residues. Not suitable for gerepile.

Some direct applications: the following routines apply to upper triangular integral matrices;
in practice, these come from HNF algorithms.

GEN hnf_divscale(GEN A, GEN B, GEN t) A an upper triangular ZM, B a ZM, ¢ an integer, such
that C' :=tA~!B is integral. Return C.

GEN hnf_invscale(GEN A, GEN t) A an upper triangular ZM, ¢ an integer such that C' :=tA~! is
integral. Return C'. Special case of hnf_divscale when B is the identity matrix.

GEN hnf_solve(GEN A, GEN B) A a ZM in upper HNF (not necessarily square), B a ZM or ZC.
Return A~!B if it is integral, and NULL if it is not.

GEN hnf_invimage(GEN A, GEN b) A a ZM in upper HNF (not necessarily square), b a ZC. Return
A~1B if it is integral, and NULL if it is not.

int hnfdivide(GEN A, GEN B) A and B are two upper triangular ZM. Return 1 if A~!B is integral,
and 0 otherwise.
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Smith Normal Form.
GEN ZM_snf (GEN x) returns the Smith Normal Form (vector of elementary divisors) of the ZM .

GEN ZM_snfall(GEN x, GEN *U, GEN *V) returns ZM_snf (x) and sets U and V to unimodular
matrices such that Uz V = D (diagonal matrix of elementary divisors). Either (or both) U or V'
may be NULL in which case the corresponding matrix is not computed.

GEN ZV_snfall(GEN d, GEN *U, GEN #V) here d is a ZV; same as ZM_snfall applied to diago-
nal(d), but faster.

GEN ZM_snfall_i(GEN x, GEN *U, GEN *V, long flag) low level version of ZM_snfall:

o if the first bit of flag is 0, return a diagonal matrix (as in ZM_snfall), else a vector of
elementary divisors (as in ZM_snf).

e if the second bit of flag is 1, assume that z is invertible and allow U and V' to have determinant
congruent to 1 modulo d, where d is the largest elementary divisor of z. Rationale: the finite group
G = 7" /3x has exponent d and we are only interested in the action of U, V' as they act on G not
in genuine unimodular matries. (See ZM_snf_group.)

void ZM_snfclean(GEN d, GEN U, GEN V) assuming d, U, V come from d = ZM_snfall(x, &U,
&V), where U or V may be NULL, cleans up the output in place. This means that elementary divisors
equal to 1 are deleted and U, V are updated. This also works when d is a t_VEC of elementary
divisors. The output is not suitable for gerepileupto.

void ZV_snfclean(GEN d) assuming d is a t_VEC of elementary divisors, return a shortened version
where divisors equal to 1 are deleted. The output is not suitable for gerepileupto; we return d
itself if no divisor is 1.

void ZV_snf_trunc(GEN D) given a vector D of elementary divisors (i.e. a ZV such that d; | d;1+1),
truncate it in place to leave out the trivial divisors (equal to 1).

GEN ZM_snf_group(GEN H, GEN *U, GEN *Uinv) this function computes data to go back and forth
between an abelian group (of finite type) given by generators and relations, and its canonical SNF
form. Given an abstract abelian group with generators g = (g1, ..., 9,) and a vector X = (x;) € Z",
we write gX for the group element ), x;g;; analogously if M is an n x r integer matrix gM is a
vector containing r group elements. The group neutral element is 0; by abuse of notation, we still
write 0 for a vector of group elements all equal to the neutral element. The input is a full relation
matrix H among the generators, i.e. a ZM (not necessarily square) such that gX = 0 for some
X € Z" if and only if X is in the integer image of H, so that the abelian group is isomorphic to
Z" /ImH. The routine assumes that H is in HNF; replace it by its HNF if it is not the case. (Of
course this defines the same group.)

Let G a minimal system of generators in SNF for our abstract group: if the d; are the elementary
divisors (... | da | d1), each G; has either infinite order (d; = 0) or order d; > 1. Let D the matrix
with diagonal (d;), then

GD =0, G=gUyn, ¢g=GU,

for some integer matrices U and Uj,,. Note that these are not even square in general; even if square,
there is no guarantee that these are unimodular: they are chosen to have minimal entries given the
known relations in the group and only satisfy D | (UUi,y — Id) and H | (Uin,U — 1d).

The function returns the vector of elementary divisors (d;); if U is not NULL, it is set to U; if
Uinv is not NULL it is set to Uj,y. The function is not memory clean.
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GEN ZV_snf_group(GEN d, GEN *newU, GEN #*newUi), here d is a ZV; same as ZM_snf_group
applied to diagonal(d), but faster.

GEN ZV_snf_gcd(GEN v, GEN N) given a vector v of integers and a positive integer N, return the
vector whose entries are the geds (v[i], N). Use case: if v gives the cyclic components for some
abelian group G of finite type, then this returns the structure of the finite groupe G/G".

The following functions compute the p”-rank of abelian groups given a vector of elementary
divisors and underly snfrank:

long ZV_snf_rank(GEN D, GEN p) assume D is a ZV and p is a t_INT.
long ZV_snf_rank_u(GEN D, ulong p) assume D is a ZV.
long zv_snf_rank(GEN D, ulong p) assume D is a zv.

The following routines underly the various matrixqz variants. In all case the m x n t_MAT x
is assumed to have rational (t_INT and t_FRAC) coefficients

GEN QM_ImQ(GEN x) returns a basis for Imgqx N Z".
GEN QM_ImZ(GEN x) returns a basis for Imgzx N Z"™.
GEN QM_ImQ_hnf (GEN x) returns an HNF basis for Imqx N Z".
GEN QM_ImZ_hnf (GEN x) returns an HNF basis for Imgzxz N Z".

GEN QM_ImQ_hnfall(GEN A, GEN #*pB, long remove) as QM_ImQ_hnf, further returning the trans-
formation matrix as in ZM_hnfall.

GEN QM_ImZ_hnfall(GEN A, GEN #*pB, long remove) as QM_ImZ_hnf, further returning the trans-
formation matrix as in ZM_hnfall.

GEN QM_ImQ_all(GEN A, GEN *pB, long remove, long hnf) as QM_ImQ, further returning the
transformation matrix as in ZM_hnfall, and returning an HNF basis if hnf is nonzero.

GEN QM_ImZ_all(GEN A, GEN *pB, long remove, long hnf) as QM_ImZ, further returning the
transformation matrix as in ZM_hnfall, and returning an HNF basis if hnf is nonzero.

GEN QM_minors_coprime(GEN x, GEN D), assumes m > n, and returns a matrix in M, ,,(Z) with
the same Q-image as x, such that the GCD of all n x n minors is coprime to D; if D is NULL, we
want the GCD to be 1.

The following routines are simple wrappers around the above ones and are normally useless in
library mode:
GEN hnf (GEN x) checks whether x is a ZM, then calls ZM_hnf. Normally useless in library mode.

GEN hnfmod(GEN x, GEN d) checks whether x is a ZM, then calls ZM_hnfmod. Normally useless in
library mode.

GEN hnfmodid(GEN x, GEN d) checks whether x is a ZM, then calls ZM_hnfmodid. Normally useless
in library mode.

GEN hnfall(GEN x) calls ZM_hnfall(x, &U, 1) and returns [H,U]. Normally useless in library
mode.

GEN hnfl11(GEN x) calls ZM_hnf111(x, &U, 1) and returns [H,U]. Normally useless in library
mode.
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GEN hnfperm(GEN x) calls ZM hnfperm(x, &U, &P) and returns [H,U, P]. Normally useless in
library mode.

GEN smith(GEN x) checks whether x is a ZM, then calls ZM_snf. Normally useless in library mode.

GEN smithall (GEN x) checks whether x is a ZM, then calls ZM_snfall(x, &U, &V) and returns
[U,V, D]. Normally useless in library mode.

Some related functions over K[X], K a field:
GEN gsmith(GEN A) the input matrix must be square, returns the elementary divisors.

GEN gsmithall(GEN A) the input matrix must be square, returns the [U, V, D], D diagonal, such
that UAV = D.

GEN RgM_hnfall(GEN A, GEN #*pB, long remove) analogous to ZM_hnfall.

GEN smithclean(GEN z) cleanup the output of smithall or gsmithall (delete elementary divisors
equal to 1, updating base change matrices).

13.4.2 The LLL algorithm.

The basic GP functions and their immediate variants are normally not very useful in library
mode. We briefly list them here for completeness, see the documentation of qf111 and qflllgram
for details:

e GEN qf1110(GEN x, long flag)
GEN 111(GEN x) flag= 0
GEN 11lint(GEN x) flag= 1
GEN 11lkerim(GEN x) flag= 4
GEN 1llkerimgen(GEN x) flag= 5
GEN 111gen(GEN x) flag= 8

e GEN qflllgramO(GEN x, long flag)
GEN 11lgram(GEN x) flag= 0
GEN 1llgramint(GEN x) flag= 1
GEN 1llgramkerim(GEN x) flag= 4
GEN 1llgramkerimgen(GEN x) flag= 5

GEN 1llgramgen(GEN x) flag= 8

The basic workhorse underlying all integral and floating point LLLs is

GEN ZM_111(GEN x, double D, long flag), where = is a ZM; D €]1/4,1] is the Lovdsz constant
determining the frequency of swaps during the algorithm: a larger values means better guarantees
for the basis (in principle smaller basis vectors) but longer running times (suggested value: D =
0.99).
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Important. This function does not collect garbage and its output is not suitable for either
gerepile or gerepileupto. We expect the caller to do something simple with the output (e.g.
matrix multiplication), then collect garbage immediately.

flag is an or-ed combination of the following flags:
e LLL_GRAM. If set, the input matrix z is the Gram matrix ‘vv of some lattice vectors v.

e LLL_INPLACE. Incompatible with LLL_GRAM. If unset, we return the base change matrix U,
otherwise the transformed matrix zU. Implies LLL_IM (see below).

e LLL_KEEP_FIRST. The first vector in the output basis is the same one as was originally input.
Provided this is a shortest nonzero vector of the lattice, the output basis is still LLL-reduced. This
is used to reduce maximal orders of number fields with respect to the T, quadratic form, to ensure
that the first vector in the output basis corresponds to 1 (which is a shortest vector).

e LLL_COMPATIBLE. DEPRECATED. This is now a no-op.

The last three flags are mutually exclusive, either 0 or a single one must be set:

e LLL_KER If set, only return a kernel basis K (not LLL-reduced).

e LLL_IM If set, only return an LLL-reduced lattice basis T". (This is implied by LLL_INPLACE).
e LLL_ALL If set, returns a 2-component vector [K,T] corresponding to both kernel and image.

GEN 111fp(GEN x, double D, long flag) is a variant for matrices with inexact entries: z is a
matrix with real coefficients (types t_INT, t_FRAC and t_REAL), D and flag are as in ZM_111. The
matrix is rescaled, rounded to nearest integers, then fed to ZM_111. The flag LLL_INPLACE is still
accepted but less useful (it returns an LLL-reduced basis attached to rounded input, instead of an
exact base change matrix).

GEN ZM_111_norms(GEN x, double D, long flag, GEN *ptB) slightly more general version of
ZM_111, setting *ptB to a vector containing the squared norms of the Gram-Schmidt vectors (b})

attached to the output basis (b;), b} = b; + Zj<i i, b7

GEN 1llintpartial_inplace(GEN x) given a ZM zx of maximal rank, returns a partially reduced
basis (b;) for the space spanned by the columns of z: |b; £ b;| > |b;| for any two distinct basis
vectors b;, b;. This is faster than the LLL algorithm, but produces much larger bases.

GEN 1llintpartial(GEN x) as lllintpartial_inplace, but returns the base change matrix U
from the canonical basis to the b;, i.e. zU is the output of 111intpartial inplace.

GEN RM_round_maxrank(GEN G) given a matrix G with real floating point entries and independent
columns, let G be the rescaled matrix 2°G rounded to nearest integers, for e > 0. Finds a small
e such that the rank of G. is equal to the rank of G (its number of columns) and return G.. This
is useful as a preconditioning step to speed up LLL reductions, see nf_get_Gtwist. Suitable for
gerepileupto, but does not collect garbage.

GEN Hermite_bound(long n, long prec) return a majoration of v, where v, is the Hermite
constant for lattices of dimension n. The bound is sharp in dimension n < 8 and n = 24.
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13.4.3 Linear dependencies.
The following functions underly the 1indep GP function:

GEN lindep(GEN v) real/complex entries, guess that about only the 80% leading bits of the input
are correct.

GEN lindep_bit(GEN v, long b) real/complex entries, explicit form of the above: multiply the
input by 2° and round to nearest integer before looking for a linear dependency. Truncating dubious
bits allows to find better relations.

GEN lindepfull_bit(GEN v, long b) as lindep_bit but return a matrix M with n = #v columns
and 7 rows, with 7 = n + 1 (if v is real) or n 4+ 2 (general case) which is an LLL-reduced basis of
the lattice formed by concatenating vertically an identity matrix and the floor of 2°real(v) and
2bimag(v) if r = n+2. The first n rows of M potentially correspond to relations: whenever the last
r —n entries of a column are small. The function 1indep_bit essentially returns the first column
of M truncated to n components.

GEN lindep_padic(GEN v) p-adic entries.

GEN lindep_Xadic(GEN v) polynomial entries.

GEN deplin(GEN v) returns a nonzero kernel vector for a t_MAT input.
Deprecated routine:

GEN 1indep2(GEN x, long dig) analogous to lindep_bit, with dig counting decimal digits.

13.4.4 Reduction modulo matrices.

GEN ZC_hnfremdiv(GEN x, GEN y, GEN *Q) assuming y is an invertible ZM in HNF and z is a
ZC, returns the ZC R equal to x mod y (whose i-th entry belongs to [—v;../2,yii/2[). Stack clean
unless x is already reduced (in which case, returns x itself, not a copy). If @ is not NULL, set it to
the ZC such that z = y@Q + R.

GEN ZM_hnfdivrem(GEN x, GEN y, GEN *Q) reduce each column of the ZM x using ZC_hnfremdiv.
If @ is not NULL, set it to the ZM such that z = y@Q + R.

GEN ZC_hnfrem(GEN x, GEN y) alias for ZC_hnfremdiv(x,y,NULL).
GEN ZM_hnfrem(GEN x, GEN y) alias for ZM_hnfremdiv(x,y,NULL).

GEN ZC_reducemodmatrix(GEN v, GEN y) Let y be a ZM, not necessarily square, which is assumed
to be LLL-reduced (otherwise, very poor reduction is expected). Size-reduces the ZC v modulo the
Z-module Y spanned by y : if the columns of y are denoted by (y1,...,Yn—1), we return y, = v
modulo Y, such that the Gram-Schmidt coefficients j,, ; are less than 1/2 in absolute value for all
j < n. In short, v, is almost orthogonal to Y.

GEN ZM_reducemodmatrix(GEN v, GEN y) Let y be as in ZC_reducemodmatrix, and v be a ZM.
This returns a matrix v which is congruent to v modulo the Z-module spanned by y, whose columns
are size-reduced. This is faster than repeatedly calling ZC_reducemodmatrix on the columns since
most of the Gram-Schmidt coefficients can be reused.

GEN ZC_reducemodll1l(GEN v, GEN y) Let y be an arbitrary ZM, LLL-reduce it then call
ZC_reducemodmatrix.

GEN ZM_reducemodl11(GEN v, GEN y) Let y be an arbitrary ZM, LLL-reduce it then call
ZM_reducemodmatrix.
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Besides the above functions, which were specific to integral input, we also have:

GEN reducemodinvertible(GEN x, GEN y) y is an invertible matrix and x a t_COL or t_MAT of
compatible dimension. Returns x — y|y~'2], which has small entries and differs from z by an
integral linear combination of the columns of y. Suitable for gerepileupto, but does not collect
garbage.

GEN closemodinvertible(GEN x, GEN y) returns r—reducemodinvertible(z,y), i.e. an integral
linear combination of the columns of y, which is close to x.

GEN reducemodlll(GEN x, GEN y) LLL-reduce the nonsingular ZM y and call reducemodinvert-
ible to find a small representative of x mod yZ™. Suitable for gerepileupto, but does not collect
garbage.

13.5 Finite abelian groups and characters.

13.5.1 Abstract groups.

A finite abelian group G in GP format is given by its Smith Normal Form as a pair [h, d] or
triple [h,d, g]. Here h is the cardinality of G, (d;) is the vector of elementary divisors, and (g;) is a
vector of generators. In short, G = ®;<,(Z/d;Z)g;, with d,, | ... | d2 | dy and [[d; = h.

Let e(z) := exp(2imz). For ease of exposition, we restrict to complex-valued characters, but
everything applies to more general fields K where e denotes a morphism (Q,+) — (K™, x) such
that e(a/b) denotes a b-th root of unity.

A character on the abelian group ®(Z/d;Z)g; is given by a row vector x = [a1,...,a,]| such
that x([1g;7) = e(3_ ajn;/d;).

GEN cyc_normalize(GEN d) shallow function. Given a vector (d;);<, of elementary divisors
for a finite group (no d; vanish), returns the vector D = [1] if n = 0 (trivial group)
and [dy,dy/da,...,d1/d,] otherwise. This will allow to define characters as x(]] gfj ) =
e(>_jzja;D;/D1), see char_normalize.

GEN char_normalize(GEN chi, GEN ncyc) shallow function. Given a character chi = (a; )
and ncyc from cyc_normalize above, returns the normalized representation [d, (n;)], such that

x(I1 g;cj) = (dzj njxj, where (4 = e(1/d) and d is minimal. In particular, d is the order of chi.
Shallow function.

GEN char_simplify(GEN D, GEN N) given a quasi-normalized character [D,(N;)] such that

>

xX(I1 g;-ﬁ’) = (p ’ " but where we only assume that D is a multiple of the character order,
return a normalized character [d, (n;)] with d minimal. Shallow function.

GEN char_denormalize(GEN cyc, GEN d, GEN n) given a normalized representation [d, n| (where
d need not be minimal) of a character on the abelian group with abelian divisors cyc, return the
attached character (where the image of each generator g; is given in terms of roots of unity of
different orders cycli]).

GEN charconj(GEN cyc, GEN chi) return the complex conjugate of chi.
GEN charmul (GEN cyc, GEN a, GEN b) return the product character a x b.
GEN chardiv(GEN cyc, GEN a, GEN b) returns the character a/b=a x b.
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int char_check(GEN cyc, GEN chi) return 1 if chi is a character compatible with cyclic factors
cyc, and 0 otherwise.

GEN cyc2elts(GEN d) given a t_VEC d = (ds,...,d,) of nonnegative integers, return the vector of
all t_VECSMALLs of length n whose i-th entry lies in [0, d;[. Assumes that the product of the d; fits
in a long.

long zv_cyc_minimize(GEN d, GEN c, GEN coprime) given d = (dy,...,d,), dn | ... | d; #0 a
list of elementary divisors for a finite abelian group as a t_VECSMALL, given ¢ = [g1,...,gn] repre-
senting an element in the group, and given a mask coprime (as from coprimes_zv(0)) representing
a list of forbidden congruence classes modulo o, return an integer k such that coprime[k%o] is
nonzero and k - ¢ is lexicographically minimal. For instance, if ¢ is attached to a Dirichlet character
x of order o via the usual identification x(g;) = Cgiy then x* is a “canonical” representative in the
Galois orbit of x.

long zv_cyc_minimal(GEN d, GEN c, GEN coprime) return 1 if zv_cyc_minimize would return
k =1, i.e. cis already the canonical representative for the attached character orbit.
13.5.2 Dirichlet characters.

The functions in this section are specific to characters on (Z/NZ)*. The argument G is a
special bid structure as returned by znstar0(N, nf _INIT). In this case, there are additional ways
to input character via Conrey’s representation. The character chi is either a t_INT (Conrey label),
a t_COL (a Conrey logarithm) or a t_VEC (generic character on bid.gen as explained in the previous
subsection). The following low-level functions are called by GP’s generic character functions.

int zncharcheck(GEN G, GEN chi) return 1 if chi is a valid character and 0 otherwise.
GEN zncharconj(GEN G, GEN chi) as charconj.

GEN znchardiv(GEN G, GEN a, GEN b) as chardiv.

GEN zncharker(GEN G, GEN chi) as charker.

GEN znchareval(GEN G, GEN chi, GEN n, GEN z) as chareval.

GEN zncharmul (GEN G, GEN a, GEN b) as charmul.

GEN zncharpow(GEN G, GEN a, GEN n) as charpow.

GEN zncharorder(GEN G, GEN chi) as charorder.

The following functions handle characters in Conrey notation (attached to Conrey generators,
not G.gen):

int znconrey_check(GEN cyc, GEN chi) return 1 if chi is a valid Conrey logarithm and 0
otherwise.

GEN znconrey_normalized(GEN G, GEN chi) return normalized character attached to chi, as in
char normalize but on Conrey generators.

GEN znconreyfromchar (GEN G, GEN chi) return Conrey logarithm attached to the generic (t_VEC,
on G.gen)

GEN znconreyfromchar_normalized(GEN G, GEN chi) return normalized Conrey character at-
tached to the generic (t_VEC, on G.gen) character chi.

GEN znconreylog_normalize(GEN G, GEN m) given a Conrey logarithm m (t_COL), return the
attached normalized Conrey character, as in char normalize but on Conrey generators.
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GEN znchar_quad(GEN G, GEN D) given a nonzero t_INT D congruent to 0,1 mod 4, return (D/.)
as a character modulo N, given by a Conrey logarithm (t_COL). Assume that |D| divides N.

GEN Zideallog(GEN G, GEN x) return the znconreylog of x expressed on G.gen, i.e. the ordinary
discrete logarithm from ideallog.

GEN ncharvecexpo(GEN G, GEN nchi) given nchi = [d,n] a quasi-normalized character (d may
be a multiple of the character order), i.e. x(g;) = e(n[i]/d) for all Conrey or SNF generators g;
(as usual, we use SNF generators if n is a t_VEC and the Conrey generators otherwise). Return a
t_VECSMALL v such that v[i] = —1if (¢, N) > 1 else x(i) = e(v[i]/d), 1 <i < N.

13.6 Hecke characters.

The functions in this section are specific to Hecke characters. The argument gc is a gchar
structure as returned by gcharinit(bnf, mod), and the character chi is a t_COL of components
on the SNF generators of gc.

GEN eulerf_gchar(GEN an, GEN p, long prec) an being the first component of a Hecke L-
function Ldata (as output by 1fungchar) and p a prime number, return the Euler factor at p.

GEN gchari_1fun(GEN gc, GEN chi, GEN w) chi being a t_VEC describing a Hecke character
encoded on the internal basis gc[1], return the Ldata structure corresponding to the Hecke L-
function associated to chi.

int is_gchar_group(GEN gc) return 1 if gc is a valid gchar structure and 0 otherwise.

GEN 1fungchar(GEN gc, GEN chi) return the Ldata structure corresponding to the Hecke L-
function associated to chi.

GEN vecan_gchar(GEN an, long n, long prec) an being the first component of a Hecke L-
function Ldata (as output by 1fungchar), return a t_VEC of length n containing the first n Dirichlet
coefficients of this L-function, computed to absolute precision prec.

13.7 Central simple algebras.

13.7.1 Initialization.

Low-level routines underlying alginit; argument rnf (resp. nf) must be true rnf (resp. nf)
structure.

GEN alg_csa_table(GEN nf, GEN mt, long v, long maxord) algebra defined by a multiplication
table.

GEN alg_cyclic(GEN rnf, GEN aut, GEN b, long maxord) cyclic algebra (L/K,o,b).

GEN alg_hasse(GEN nf, long d, GEN hi, GEN hf, long v, long maxord) algebra defined by
local Hasse invariants.

GEN alg hilbert(GEN nf, GEN a, GEN b, long v, long maxord) quaternion algebra.
GEN alg matrix(GEN nf, long n, long v, GEN L, long maxord) matrix algebra.

GEN alg_complete(GEN rnf, GEN aut, GEN hf, GEN hi, long maxord) cyclic algebra (L/K, o,b)
with b computed from the Hasse invariants.

GEN alg_changeorder(GEN alg, GEN ord) return the algebra with the integral basis replaced
by ord (a t_MAT expressing the basis of the new order in terms of the integral basis of alg). No
checks are performed.
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13.7.2 Type checks.
void checkalg(GEN a) raise an exception if a was not initialized by alginit.

void checklat(GEN al, GEN lat) raise an exception if lat is not a valid full lattice in the
algebra al.

void checkhasse(GEN nf, GEN hi, GEN hf, long n) raise an exception if (hi,hf) do not
describe valid Hasse invariants of a central simple algebra of degree n over nf.

long alg_type(GEN al) internal function called by algtype: assume al was created by alginit
(thereby saving a call to checkalg). Return values are symbolic rather than numeric:

e al NULL: not a valid algebra.
e al TABLE: table algebra output by algtableinit.

e al _CSA: central simple algebra output by alginit and represented by a multiplication table
over its center.

e al CYCLIC: central simple algebra output by alginit and represented by a cyclic algebra.

long alg_model(GEN al, GEN x) given an element x in algebra al, check for inconsistencies (raise
a type error) and return the representation model used for x:

e al ALGEBRAIC: basistoalg form, algebraic representation.

e al BASIS: algtobasis form, column vector on the integral basis.

e al MATRIX: matrix with coefficients in an algebra.

e al TRIVIAL: trivial algebra of degree 1; can be understood as both basis or algebraic form
(since e; = 1).
13.7.3 Shallow accessors.

All these routines assume their argument was initialized by alginit and provide minor
speedups compared to the GP equivalent. The routines returning a GEN are shallow.

long alg_get_absdim(GEN al) low-level version of algabsdim.
long alg_get_dim(GEN al) low-level version of algdim.

long alg_get_degree(GEN al) low-level version of algdegree.
GEN alg_get_aut(GEN al) low-level version of algaut.

GEN alg_get_auts(GEN al), given a cyclic algebra al = (L/K,0,b) of degree n, returns the vector
of o', 1 <i<n.

GEN alg_get_b(GEN al) low-level version of algb.

GEN alg_get_basis(GEN al) low-level version of algbasis.
GEN alg_get_center (GEN al) low-level version of algcenter.
GEN alg_get_char(GEN al) low-level version of algchar.

GEN alg_get_hasse_f (GEN al) low-level version of alghassef.

GEN alg_get_hasse_i(GEN al) low-level version of alghassei.
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GEN alg_get_invbasis(GEN al) low-level version of alginvbasis.

GEN alg_get_multable(GEN al) low-level version of algmultable.

GEN alg_get_relmultable(GEN al) low-level version of algrelmultable.

GEN alg get_splittingfield(GEN al) low-level version of algsplittingfield.

GEN alg_get_abssplitting(GEN al) returns the absolute nf structure attached to the rnf re-
turned by algsplittingfield.

GEN alg_get_splitpol(GEN al) returns the relative polynomial defining the rnf returned by al-
gsplittingfield.

GEN alg_get_splittingdata(GEN al) low-level version of algsplittingdata.

GEN alg_get_splittingbasis(GEN al) the matrix Lbas from algsplittingdata

GEN alg_get_splittingbasisinv(GEN al) the matrix Lbasinv from algsplittingdata.

GEN alg_get_tracebasis(GEN al) returns the traces of the basis elements; used by algtrace.

GEN alglat_get_primbasis(GEN lat) from the description of lat as AL with L C Op and A € Q,
returns a basis of L.

GEN alglat_get_scalar(GEN lat) from the description of lat as AL with L C Op and A € Q,
returns .
13.7.4 Other low-level functions.

GEN conjclasses_algcenter(GEN cc, GEN p) low-level function underlying alggroupcenter,
where cc is the output of groupelts_to_conjclasses, and p is either NULL or a prime number.
Not stack clean.

GEN algsimpledec_ss(GEN al, long maps) assuming that al is semisimple, returns the second
component of algsimpledec(al,maps).
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Chapter 14:
Elliptic curves and arithmetic geometry

This chapter is quite short, but is added as a placeholder, since we expect the library to expand
in that direction.

14.1 Elliptic curves.
Elliptic curves are represented in the Weierstrass model

(B) : y?2 + arxyz + asyz = 23 + asx’z + ayx2® + ag2®,

by the 5-tuple [a1, as, as, a4, ag]. Points in the projective plane are represented as follows: the point
at infinity (0 :1:0) is coded as [0], a finite point (z : y : 1) outside the projective line at infinity
z = 0 is coded as [z,y]. Note that other points at infinity than (0 : 1 : 0) cannot be represented;
this is harmless, since they do not belong to any of the elliptic curves E above.

Points on the curve are just projective points as described above, they are not tied to a curve
in any way: the same point may be used in conjunction with different curves, provided it satisfies
their equations (if it does not, the result is usually undefined). In particular, the point at infinity
belongs to all elliptic curves.

As with factor for polynomial factorization, the 5-tuple [ay, as, as, as, ag] implicitly defines a
base ring over which the curve is defined. Point coordinates must be operation-compatible with
this base ring (gadd, gmul, gdiv involving them should not give errors).

14.1.1 Types of elliptic curves.

We call a 5-tuble as above an el15; most functions require an ell structure, as returned by
ellinit, which contains additional data (usually dynamically computed as needed), depending on
the base field.

GEN ellinit(GEN E, GEN D, long prec), returns an ell structure, attached to the elliptic curve

E : either an €115, a pair [a4, ag] or a t_STR in Cremona’s notation, e.g. "11al". The optional D

(NULL to omit) describes the domain over which the curve is defined.

14.1.2 Type checking.

void checkell(GEN e) raise an error unless e is an ell.

int checkell_i(GEN e) return 1 if e is an ell and 0 otherwise.

void checkell5(GEN e) raise an error unless e is an ell or an ell5.

void checkellpt(GEN z) raise an error unless z is a point (either finite or at infinity).

long ell_get_type(GEN e) returns the domain type over which the curve is defined, one of
t_ELL_Q the field of rational numbers;

t_ELL_NF a number field;
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t_ELL_Qp the field of p-adic numbers, for some prime p;

t_ELL_Fp a prime finite field, base field elements are represented as Fp, i.e. a t_INT reduced
modulo p;

t_ELL_Fq a nonprime finite field (a prime finite field can also be represented by this subtype,
but this is inefficient), base field elements are represented as t_FFELT;

t_ELL_Rg none of the above.

void checkell Fq(GEN e) checks whether e is an ell, defined over a finite field (either prime or
nonprime). Otherwise the function raises a pari_err_TYPE exception.

void checkell_Q(GEN e) checks whether e is an ell, defined over Q. Otherwise the function
raises a pari_err_TYPE exception.

void checkell Qp(GEN e) checks whether e is an ell, defined over some Q,. Otherwise the
function raises a pari_err_TYPE exception.

void checkellisog(GEN v) raise an error unless v is an isogeny, from ellisogeny.

14.1.3 Extracting info from an ell structure.

These functions expect an ell argument. If the required data is not part of the structure, it
is computed then inserted, and the new value is returned.

14.1.3.1 All domains.
GEN ell_get_al(GEN e)
GEN ell_get_a2(GEN e)
GEN ell_get_a3(GEN e)
GEN ell_get_a4(GEN e)
GEN ell_get_a6(GEN e)
GEN ell_get_b2(GEN e)
GEN ell_get_b4(GEN e)
GEN ell_get_b6(GEN e)
GEN ell_get_b8(GEN e)
GEN ell_get_c4(GEN e)
GEN ell_get_c6(GEN e)
GEN ell_get_disc(GEN e)

GEN ell_get_j(GEN e)
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14.1.3.2 Curves over Q.
GEN ellQ_get_N(GEN e) returns the curve conductor

void ellQ_get_Nfa(GEN e, GEN *N, GEN =*faN) sets N to the conductor and faN to its factor-
ization

int ell_is_integral(GEN e) return 1 if e is given by an integral model, and 0 otherwise.

long ellQ_get_CM(GEN e) if e has CM by a principal imaginary quadratic order, return its dis-
criminant. Else return 0.

long ellap_CM_fast(GEN e, ulong p, long CM) assuming that p does not divide the discriminant
of E (in particular, E has good reduction at p), and that CM is as given by el11Q_get_CM, return
the trace of Frobenius for E/F,. This is meant to quickly compute lots of a,, esp. when e has CM
by a principal quadratic order.

long ellrootno_global (GEN e) returns the global root number ¢ € {—1,1}.
GEN ellheightoo(GEN E, GEN P, long prec) given P = [z,y] an affine point on E, return

1 1
Aoo(P) + T log |discE| = ireal(zn(z)) —loglo(E,2)| € R,

where Ao (P) is the canonical local height at infinity and z is ellpointtoz(F, P). This is computed
using Mestre’s (quadratically convergent) AGM algorithm.

long ellorder_Q(GEN E, GEN P) return the order of P € E(Q), using the impossible value 0 for
a point of infinite order. Ultimately called by the generic ellorder function.

GEN point_to_a4a6(GEN E, GEN P, GEN p, GEN *a4) given E/Q, p # 2,3 not dividing the
discriminant of F and P € E(Q) outside the kernel of reduction, return the image of P on the
short Weierstrass model y? = 2 + a4z + ag isomorphic to the reduction E, of E at p. Also set a4
to the a4 coefficient in the above model. This function allows quick computations modulo varying
primes p, avoiding the overhead of ellinit(FE, p), followed by a change of coordinates. It produces
data suitable for FpE routines.

GEN point_to_a4a6_F1(GEN E, GEN P, ulong p, ulong *pa4) as point_to_a4a6, returning a
Fle.

GEN elldatagenerators(GEN E) returns generators for E(Q) extracted from Cremona’s table.

GEN ellanal_globalred(GEN e, GEN *v) takes an ell over Q and returns a global minimal model
E (in ellinit form, over Q) for e suitable for analytic computations related to the curve L series:
it contains ellglobalred data, as well as global and local root numbers. If v is not NULL, set *v
to the needed change of variable: NULL if e was already the standard minimal model, such that
E = ellchangecurve(e,v) otherwise. Compared to the direct use of ellchangecurve followed by
ellrootno, this function avoids converting unneeded dynamic data and avoids potential memory
leaks (the changed curve would have had to be deleted using obj_free). The original curve e is
updated as well with the same information.

GEN ellanal_globalred_all(GEN e, GEN *v, GEN #N, GEN *tam) as ellanal_globalred,
further set *N to the curve conductor and *tam to the product of the local Tamagawa numbers,
including the factor at infinity (multiply by the number of connected components of e(R.)).

GEN ellintegralmodel (GEN e, GEN *pv) return an integral model for e (in ellinit form, over
Q). Set v = NULL (already integral, we returned e itself), else to the variable change [u,0,0,0]
making e integral. We have u = 1/t, t > 1.
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GEN ellintegralmodel_i(GEN e, GEN *pv) shallow version of ellintegralmodel.

GEN ellQtwist_bsdperiod(GEN E, long s) let E be a rational elliptic curve given by a minimal
model, Ap its period lattice, and s € {—1,1}. Let QE be the canonical periods in /+1R™T
generating Ap N vEIR. Return Qf if s =1 and QF if s = —1.

GEN elltors_psylow(GEN e, wulong p) as elltors, but return the p-Sylow subgroup of the
torsion group.

GEN elleulerf(GEN E, GEN p) returns the Euler factor at p of the L-function associated to the
curve E defined over a number field.

Deprecated routines.
GEN elltorsO(GEN e, long flag) this function is deprecated; use elltors
14.1.3.3 Curves over a number field nf.
Let K be the number field over which F is defined, given by a nf or bnf structure.
GEN ellnf_get_nf (GEN E) returns the underlying nf.

GEN ellnf_get_bnf (GEN x) returns NULL if K does not contain a bnf structure, else return the
bnf.

GEN ellnf_vecarea(GEN E) returns the vector of the period lattices areas of all the complex
embeddings of E in the same order as E.nf.roots.

GEN ellnf_veceta(GEN E) returns the vector of the quasi-periods of all the complex embeddings
of E in the same order as E.nf .roots.

GEN ellnf_vecomega(GEN E) returns the vector of the periods of all the complex embeddings of
E in the same order as E.nf .roots.

14.1.3.4 Curves over Q.
GEN ellQp_get_p(GEN E) returns p

long ellQp_get_prec(GEN E) returns the default p-adic accuracy to which we must compute
approximate results attached to FE.

GEN ellQp_get_zero(GEN x) returns O(p"™), where n is the default p-adic accuracy as above.
The following functions are only defined when E has multiplicative reduction (Tate curves):

GEN ellQp_Tate_uniformization(GEN E, long prec) returns a t_VEC containing u?, u,q, [a, b],
at p-adic precision prec.

GEN ellQp_u(GEN E, long prec) returns u.

GEN el11Qp_u2(GEN E, long prec) returns u?.

GEN el1Qp_q(GEN E, long prec) returns the Tate period gq.
GEN ellQp_ab(GEN E, long prec) returns [a,b).

GEN el11Qp_AGM(GEN E, long prec) returns [a,b, R,v], where v is an integer, a,b, R are vectors
describing the sequence of 2-isogenous curves F; : y? = x(x + A;)(z + A; — B;), i > 1 converging
to the singular curve E., : y*> = 2%(z + M). We have a[i] = A[i]p?, bli] = Bli]p®, R[i] = A; — B;.
These are used in ellpointtoz and ellztopoint.

GEN ellQp_L(GEN E, long prec) returns the L-invariant L.

GEN el1Qp_root(GEN E, long prec) returns ej.
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14.1.3.5 Curves over a finite field F,.
GEN ellff_get_p(GEN E) returns the characteristic

GEN ellff_get_field(GEN E) returns p if F, is a prime field, and a t_FFELT belonging to F,
otherwise.

GEN ellff_get_card(GEN E) returns #E(F,)
GEN ellff_get_gens(GEN E) returns a minimal set of generators for E(F,).
GEN ellff_get_group(GEN E) returns ellgroup(E).

GEN ellff_get_m(GEN E) returns the t_INT m as needed by the gen_ellgroup function (the order
of the pairing required to verify a generating set).

GEN ellff_get_o(GEN E) returns [d,factord], where d is the exponent of E(F,).

GEN ellff_get_D(GEN E) returns the elementary divisors for E(F,) in a form suitable for
gen_ellgens: either [dq] or [dy, ds], where d; is in elff_get_o format.

[d, factord], where d is the exponent of E(F,).

GEN ellff_get_a4a6(GEN E) returns a canonical “short model” for F, and the corresponding
change of variable [u,r,s,t]. For p # 2,3, this is [Ay4, A¢, [u,, s,]], corresponding to y? = 2% +
Ayx + Ag, where Ay = —27¢y, Ag = —b4cs, [u,r, s,t] = [6,3b2, 3a1,108as].

e If p = 3 and the curve is ordinary (be # 0), this is [[be], A6, [1, v, —a1, —ag]], corresponding to
y? = 2% + bex® + Ag,

where v = by /by, Ag = bg — v(bg + v?).

e If p = 3 and the curve is supersingular (bo = 0), this is [—by, bg, [1, 0, —ay, —as]], corresponding
to
y? = 23 + 2bsx + b.

e If p = 2 and the curve is ordinary (a; # 0), return [Ay, Ag, [a; ', da;?,0, (as + d?)a;]],
corresponding to
y? + 2y = 2° + Asx® + A,

where d = az/ay, a3 Az = (az + d) and
alAg = d® + asd® + asd + ag + (ai + d*)ay >
e If p = 2 and the curve is supersingular (a; = 0, asz # 0), return [[as, A4, 1/as], 46, [1, a2, 0, 0]],

corresponding to
y2 + asy = 1’3 + A4x + AG,

where Ay = a3 + a4, Ag = asay + ag. The value 1/a3 is included in the vector since it is frequently
needed in computations.
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14.1.3.6 Curves over C. (This includes curves over Q!)

long ellR_get_prec(GEN E) return the default accuracy to which we must compute approximate
results attached to E.

GEN ellR_ab(GEN E, long prec) return [a,b]

GEN ellR_omega(GEN x, long prec) return periods [wy,ws].
GEN ellR_eta(GEN E, long prec) return quasi-periods [ny,n2].
GEN ellR_area(GEN x, long prec) return the area (S(w1w3)).

GEN ellR_roots(GEN E, long prec) return [ej,eq, e3]. If E is defined over R, then e; is real. If
furthermore discE > 0, then e; > ey > e3.

long ellR_get_sign(GEN E) if F is defined over R returns the signe of its discriminant, otherwise
return 0.

14.1.4 Points.

int ell_is_inf(GEN z) tests whether the point z is the point at infinity.

GEN ellinf () returns the point at infinity [0].

14.1.5 Change of variables.

GEN ellchangeinvert(GEN w) given a change of variables w = [u, r, s, ], returns the inverse change
of variables w’, such that if £’ = ellchangecurve(E,w), then F = ellchangecurve(E,w’).
14.1.6 Generic helper functions.

The naming scheme assumes an affine equation F(z,y) = f(z) — (y*> + h(x)y) = 0 in standard
Weierstrass form: f = 23 + agx? + a4z + ag, h = a1 + az. Unless mentionned otherwise, these
routine assume that all arguments are compatible with generic functions of gadd or gmul type. In
particular they do not handle elements in number field in nfalgtobasis format.

GEN ellbasechar (GEN E) returns the characteristic of the base ring over which E is defined.
GEN ec_bmodel(GEN E) returns the polynomial 423 + byx? + 2bsz + bg.

GEN ec_phi2(GEN E) returns the polynomial 2% — byz? — 2bg * X — bg.

GEN ec_f_evalx(GEN E, GEN x) returns f(z).

GEN ec_h_evalx(GEN E, GEN x) returns h(z).

GEN ec_dFdx_evalQ(GEN E, GEN Q) returns 3z2 + 2asx + a4 — a1y, where Q = [z, ).

GEN ec_dFdy_evalQ(GEN E, GEN Q) returns —(2y + a1z + a3), where Q = [z, y].

GEN ec_dmFdy_evalQ(GEN e, GEN Q) returns 2y + a;x + as, where Q = [z, y].

GEN ec_2divpol_evalx(GEN E, GEN x) returns 4x> + box? + 2bsx + bg. This function supports
inputs in nfalgtobasis format.

GEN ec_half_deriv_2divpol_evalx(GEN E, GEN x) returns 6x2 + box + by.
GEN ec_3divpol_evalx(GEN E, GEN x) returns 3z* + boz? 4 3bs2? + 3bgx + bg.
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14.1.7 Functions to handle elliptic curves over finite fields.
14.1.7.1 Tolerant routines.

GEN ellap(GEN E, GEN p) given a prime number p and an elliptic curve defined over Q or Q,
(assumed integral and minimal at p), computes the trace of Frobenius a, =p+1—#E(F,). f E
is defined over a nonprime finite field F, ignore p and return ¢ + 1 — #E(F,). When p is implied
(E defined over Q,, or a finite field), p can be omitted (set to NULL).

14.1.7.2 Curves defined a nonprime finite field. In this subsection, we assume that
ell_get_type(F) is t_ELL_Fq. (As noted above, a curve defined over Z/pZ can be represented as
a t_ELL_Fq.)

GEN FF_elltwist(GEN E) returns the coefficients [a1, az, a3, a4, ag] of the quadratic twist of E.

GEN FF_ellmul(GEN E, GEN P, GEN n) returns [n|P where n is an integer and P is a point on
the curve E.

GEN FF_ellrandom(GEN E) returns a random point in E(F,). This function never returns the
point at infinity, unless this is the only point on the curve.

GEN FF_ellorder(GEN E, GEN P, GEN o) returns the order of the point P, where o is a multiple
of the order of P, or its factorization.

GEN FF_ellcard(GEN E) returns #E(F,).

GEN FF_ellcard_SEA(GEN E, 1long s) This function returns #E(F,), using the Schoof-Elkies-
Atkin algorithm. Assume p # 2,3. The parameter s has the same meaning as in Fp_ellcard SEA.

GEN FF_ellgens(GEN E) returns the generators of the group E(F).

GEN FF_elllog(GEN E, GEN P, GEN G, GEN o) Let G be a point of order o, return e such that
[e] P = G. If e does not exists, the result is undefined.

GEN FF_ellgroup(GEN E, GEN *pm) returns the structure of the Abelian group E(F,) and set *pm
to m (see gen_ellgens).

GEN FF_ellweilpairing(GEN E, GEN P, GEN Q, GEN m) returns the Weil pairing of the points
of m-torsion P and ().

GEN FF_elltatepairing(GEN E, GEN P, GEN Q, GEN m) returns the Tate pairing of P and @,
where [m]P = 0.

14.2 Arithmetic on elliptic curve over a finite field in simple form.

The functions in this section no longer operate on elliptic curve structures, as seen up to now.
They are used to implement those higher-level functions without using cached information and thus
require suitable explicitly enumerated data.

14.2.1 Helper functions.

GEN elltrace_extension(GEN t, long n, GEN q) Let E some elliptic curve over F, such that
the trace of the Frobenius is ¢, returns the trace of the Frobenius over Fy.
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14.2.2 Elliptic curves over F,, p > 3.

Let p a prime number and E the elliptic curve given by the equation E : y? = 23 + asx + ag,
with a4 and ag in F,,. A FpE is a point of E(F,). Since an affine point and a4 determine an unique
a6, most functions do not take ag as an argument. A FpE is either the point at infinity (ellinf ())
or a F'pV whith two components. The parameters a4 and ag are given as t_INTs when required.

GEN Fp_ellj(GEN a4, GEN a6, GEN p) returns the j-invariant of the curve E.

int Fp_elljissupersingular(GEN j, GEN p) returns 1 if j is the j-invariant of a supersingular
curve over F,,, 0 otherwise.

GEN Fp_ellcard(GEN a4, GEN a6, GEN p) returns the cardinality of the group E(F,).

GEN Fp_ellcard_SEA(GEN a4, GEN a6, GEN p, long s) This function returns #FE(F,), using
the Schoof-Elkies-Atkin algorithm. If the seadata package is installed, the function will be faster.

The extra flag s, if set to a nonzero value, causes the computation to return gen 0 (an impos-
sible cardinality) if one of the small primes ¢ divides the curve order but does not divide s. For
cryptographic applications, where one is usually interested in curves of prime order, setting s = 1
efficiently weeds out most uninteresting curves; if curves of order a power of 2 times a prime are
acceptable, set s = 2. If moreover s is negative, similar checks are performed for the twist of the
curve.

GEN Fp_ffellcard(GEN a4, GEN a6, GEN q, long n, GEN p) returns the cardinality of the

(0

group E(F,) where ¢ = p™.

GEN Fp_ellgroup(GEN a4, GEN a6, GEN N, GEN p, GEN *pm) returns the group structure D of
the group E(F,), which is assumed to be of order N and set *pm to m.

GEN Fp_ellgens(GEN a4, GEN a6, GEN ch, GEN D, GEN m, GEN p) returns generators of the
group E(F,) with the base change ch (see FpE_changepoint), where D and m are as returned by
Fp_ellgroup.

GEN Fp_elldivpol(GEN a4, GEN a6, long n, GEN p) returns the n-division polynomial of the
elliptic curve E.

void Fp_elltwist(GEN a4, GEN a6, GEN p, GEN xpA4, GEN *pA6) sets *pA4 and *pA6 to the
corresponding parameters for the quadratic twist of E.
14.2.3 FpE.

GEN FpE_add(GEN P, GEN Q, GEN a4, GEN p) returns the sum P+ @ in the group E(F),), where
E is defined by E : y? = 2% 4+ a4z + ag, for any value of ag compatible with the points given.

GEN FpE_sub(GEN P, GEN Q, GEN a4, GEN p) returns P — Q.
GEN FpE_dbl(GEN P, GEN a4, GEN p) returns 2.P.

GEN FpE_neg(GEN P, GEN p) returns —P.

GEN FpE_mul (GEN P, GEN n, GEN a4, GEN p) return n.P.

GEN FpE_changepoint(GEN P, GEN m, GEN a4, GEN p) returns the image () of the point P on
the curve E : y?> = 23 + a4z + ag by the coordinate change m (which is a FpV).

GEN FpE_changepointinv(GEN P, GEN m, GEN a4, GEN p) returns the image ) on the curve
E : y? = 23 4 a4z + ag of the point P by the inverse of the coordinate change m (which is a FpV).
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GEN random_FpE(GEN a4, GEN a6, GEN p) returns a random point on E(F,), where E is defined
by E : y? = 2% 4+ asx + ag.

GEN FpE_order(GEN P, GEN o, GEN a4, GEN p) returns the order of P in the group E(F,),
where o is a multiple of the order of P, or its factorization.

GEN FpE_log(GEN P, GEN G, GEN o, GEN a4, GEN p) Let G be a point of order o, return e such
that e.P = G. If e does not exists, the result is currently undefined.

GEN FpE_tatepairing(GEN P, GEN Q, GEN m, GEN a4, GEN p) returns the Tate pairing of the
point of m-torsion P and the point Q.

GEN FpE_weilpairing(GEN P, GEN Q, GEN m, GEN a4, GEN p) returns the Weil pairing of the
points of m-torsion P and Q.

GEN FpE_to_mod(GEN P, GEN p) returns P as a vector of t_INTMODs.
GEN RgE_to_FpE(GEN P, GEN p) returns the FpE obtained by applying Rg_to_Fp coeflicientwise.
14.2.4 Fle. Let p be a prime ulong, and E the elliptic curve given by the equation E : y? =

23 + ayx + ag, where a4 and ag are ulong. A Fle is either the point at infinity (e1linf()), or a
Flv with two components [z, y].

long F1l_elltrace(ulong a4, ulong a6, ulong p) returns the trace t of the Frobenius of E(F,).
The cardinality of E(F,) is thus p + 1 — ¢, which might not fit in an ulong.

long Fl_elltrace_CM(long CM, ulong a4, ulong a6, ulong p) as Fl_elltrace. If CM is 0,
use the standard algorithm; otherwise assume the curve has CM by a principal imaginary quadratic
order of discriminant CM and use a faster algorithm. Useful when the curve is the reduction of £/Q,
which has CM by a principal order, and we need the trace of Frobenius for many distinct p, see
ellQ_get _CM.

ulong F1l_elldisc(ulong a4, ulong a6, ulong p) returns the discriminant of the curve E.

ulong Fl_elldisc_pre(ulong a4, ulong a6, ulong p, ulong pi) returns the discriminant of
the curve F, assuming pi is the pseudoinverse of p.

ulong Fl_ellj(ulong a4, ulong a6, ulong p) returns the j-invariant of the curve E.

ulong F1l_ellj_pre(ulong a4, ulong a6, ulong p, ulong pi) returns the j-invariant of the
curve F, assuming pi is the pseudoinverse of p.

void Fl_ellj_to_ad4a6(ulong j, ulong p, ulong *pa4, ulong *pa6) sets *pad to a4 and
*pab to ag where a4 and ag define a fixed elliptic curve with j-invariant j.

void Fl_elltwist(ulong a4, ulong a6, ulong p, ulong *pA4, ulong *pA6) set *pAd to Ay
and *pA6 to Ag where A4 and Ag define the twist of E.

void Fl_elltwist_disc(ulong a4, ulong a6, ulong D, ulong p, ulong *pA4, ulong *pA6)
sets *pA4 to Ay and *pA6 to Ag where A4 and Ag define the twist of E by the discriminant D.

GEN Fl_ellptors(ulong 1, ulong N, ulong a4, ulong a6, ulong p) return a basis of the
I-torsion subgroup of E.

GEN Fle_add(GEN P, GEN Q, ulong a4, ulong p)
GEN Fle_dbl(GEN P, ulong a4, ulong p)
GEN Fle_sub(GEN P, GEN Q, ulong a4, ulong p)
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GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

Fle_mul(GEN P, GEN n, ulong a4, ulong p)

Fle_mulu(GEN P, ulong n, ulong a4, ulong p)

Fle_order(GEN P, GEN o, ulong a4, ulong p)

Fle_log(GEN P, GEN G, GEN o, ulong a4, ulong p)

Fle_tatepairing(GEN P, GEN Q, ulong m, ulong a4, ulong p)

Fle_weilpairing(GEN P, GEN Q, ulong m, ulong a4, ulong p)

random_Fle(ulong a4, ulong a6, ulong p)

random_Fle_pre(ulong a4, ulong a6, ulong p, ulong pi)

Fle_changepoint (GEN x, GEN ch, ulong p), ch is assumed to give the change of coordinates

[u,r,s,t] as a t_VECSMALL.

GEN

Fle_changepointinv(GEN x, GEN ch, ulong p), as Fle_changepoint

14.2.5 FpJ.

Let p > 3 be a prime t_INT, and E the elliptic curve given by the equation E : y? = 23 4 a4 x

x + ag, where a4 and ag are t_INT. A FpJ is a FpV with three components [z, y, z], representing the
affine point [2/22%,y/23] in Jacobian coordinates, the point at infinity being represented by [1,1,0].
The following must holds: y? = 2% + a4z2* + agz®. For all nonzero u, the points [u?x, u3y, uz] and
[x,y, z] are representing the same affine point.

GEN
GEN
GEN
GEN
GEN
GEN

FpJ_add(GEN P, GEN Q, GEN a4, GEN p)

FpJ_dbl(GEN P, GEN a4, GEN p)

FpJ_mul (GEN P, GEN n, GEN a4, GEN p);

FpJ_neg(GEN P, GEN p) return —P.

FpJ_to_FpE(GEN P, GEN p) return the corresponding FpE.
FpE_to_FpJ(GEN P) return the corresponding FpJ

14.2.6 F1j.

GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN
GEN

Let p > 3 be a prime. Below, pi is assumed to be the pseudoinverse of p (see get_F1l_red).

Fle_to_F1j(GEN P) convert a Fle to an equivalent F1j.

Flj_to_Fle(GEN P, ulong p) convert a F1j to the equivalent Fle.

Flj_to_Fle_pre(GEN P, ulong p, ulong pi) convert a F1j to the equivalent Fle.
Flj_add_pre(GEN P, GEN Q, ulong a4, ulong p, ulong pi)

F1j_dbl_pre(GEN P, ulong a4, ulong p, ulong pi)

Fl1j_neg(GEN P, ulong p) return —P.

Flj_mulu_pre(GEN P, ulong n, ulong a4, ulong p, ulong pi)

random_F1j_pre(ulong a4, ulong a6, ulong p, ulong pi)
Flj_changepointinv_pre(GEN P, GEN ch, ulong p, ulong pi) where ch is the Flv

[u,r,s,t].

GEN

F1jV_factorback_pre(GEN P, GEN L, ulong p, ulong pi)
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14.2.7 Elliptic curves over Fsn. Let T be an irreducible F2x and E the elliptic curve given by
either the equation E : y? + x x y = 23 + agz? + a6, where ag,ag are F2x in Fo[X]/(T) (ordinary
case) or E : y* + a3z xy = 23 + asx + ag, where as, as, ag are F2x in Fy[X]/(T) (supersingular case).

A F2xqE is a point of E(F3[X]/(T)). In the supersingular case, the parameter a2 is actually
the t_VEC [as3, a4, a3 '].

GEN F2xq_ellcard(GEN a2, GEN a6, GEN T) Return the order of the group E(Fq[X]/(T)).

GEN F2xq_ellgroup(GEN a2, GEN a6, GEN N, GEN T, GEN *pm) Return the group structure D
of the group E(F3[X]/(T)), which is assumed to be of order N and set *pm to m.

GEN F2xq_ellgens(GEN a2, GEN a6, GEN ch, GEN D, GEN m, GEN T) Returns generators of
the group E(F3[X]/(T)) with the base change ch (see F2xqE_changepoint), where D and m are
as returned by F2xq_ellgroup.

void F2xq_elltwist(GEN a4, GEN a6, GEN T, GEN *ad4t, GEN #*a6t) sets *a4t and *abt to
the parameters of the quadratic twist of F.
14.2.8 F2xqE.

GEN F2xqE_changepoint (GEN P, GEN m, GEN a2, GEN T) returns the image @) of the point P on
the curve E : 4% + z * y = 23 + asx? + ag by the coordinate change m (which is a F2xqV).

GEN F2xqE_changepointinv(GEN P, GEN m, GEN a2, GEN T) returns the image () on the curve
E : y?> = 23+ a4z + a6 of the point P by the inverse of the coordinate change m (which is a F2xqV).

GEN F2xqE_add(GEN P, GEN Q, GEN a2, GEN T)
GEN F2xqE_sub(GEN P, GEN Q, GEN a2, GEN T)
GEN F2xqE_dbl(GEN P, GEN a2, GEN T)

GEN F2xqE_neg(GEN P, GEN a2, GEN T)

GEN F2xqE_mul (GEN P, GEN n, GEN a2, GEN T)
GEN random_F2xqE(GEN a2, GEN a6, GEN T)

GEN F2xqE_order(GEN P, GEN o, GEN a2, GEN T) returns the order of P in the group
E(F3[X]/(T)), where o is a multiple of the order of P, or its factorization.

GEN F2xqE_log(GEN P, GEN G, GEN o, GEN a2, GEN T) Let G be a point of order o, return e
such that e.P = G. If e does not exists, the result is currently undefined.

GEN F2xqE_tatepairing(GEN P, GEN Q, GEN m, GEN a2, GEN T) returns the Tate pairing of
the point of m-torsion P and the point Q.

GEN F2xqE_weilpairing(GEN Q, GEN Q, GEN m, GEN a2, GEN T) returns the Weil pairing of
the points of m-torsion P and Q.

GEN RgE_to_F2xqE(GEN P, GEN T) returns the F2xqE obtained by applying Rg_to_F2xq coefficien-
twise.
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14.2.9 Elliptic curves over F,, small characteristic p > 2 . Let p > 2 be a prime ulong, T
an irreducible F1x mod p, and E the elliptic curve given by the equation E : y? = 23 + a4z + ag,
where a4 and ag are Flx in F,,[X]/(T). A FlxgE is a point of E(F,[X]/(T)).

In the special case p = 3, ordinary elliptic curves (j(F) # 0) cannot be represented as above,
but admit a model E : y* = x® + a2 + ag with az and ag being F1x in F3[X]/(T). In that case,
the parameter a2 is actually stored as a t_VEC, [ag], to avoid ambiguities.

GEN Flxq_ellj(GEN a4, GEN a6, GEN T, ulong p) returns the j-invariant of the curve E.

void Flxq_ellj_to_a4a6(GEN j, GEN T, ulong p, GEN *pa4, GEN *pa6) sets *pad to a4 and
*xpab to ag where ay and ag define a fixed elliptic curve with j-invariant j.

GEN Flxq_ellcard(GEN a4, GEN a6, GEN T, ulong p) returns the order of E(F,[X]/(T)).

GEN Flxq_ellgroup(GEN a4, GEN a6, GEN N, GEN T, ulong p, GEN *pm) returns the group
structure D of the group E(F,[X]/(T)), which is assumed to be of order N and sets *pm to m.

GEN Flxq_ellgens(GEN a4, GEN a6, GEN ch, GEN D, GEN m, GEN T, ulong p) returns
generators of the group E(F,[X]/(T)) with the base change ch (see F1xqE_changepoint), where
D and m are as returned by Flxq_ellgroup.

void Flxq_elltwist(GEN a4, GEN a6, GEN T, ulong p, GEN *pA4, GEN x*pA6) sets *pA4 and
*pA6 to the corresponding parameters for the quadratic twist of E.
14.2.10 F1xqE.

Let p > 2 be a prime number.

GEN FlxqE_changepoint(GEN P, GEN m, GEN a4, GEN T, ulong p) returns the image () of the
point P on the curve E : y?> = 23 4+ a4z + ag by the coordinate change m (which is a F1xqV).

GEN FlxqE_changepointinv(GEN P, GEN m, GEN a4, GEN T, ulong p) returns the image () on
the curve F : y? = 23 + a4z + ag of the point P by the inverse of the coordinate change m (which
is a F1xqV).

GEN FlxqE_add(GEN P, GEN Q, GEN a4, GEN T, ulong p)
GEN FlxqE_sub(GEN P, GEN Q, GEN a4, GEN T, ulong p)
GEN FlxqE_dbl(GEN P, GEN a4, GEN T, ulong p)

GEN FlxqE_neg(GEN P, GEN T, ulong p)

GEN FlxqE_mul(GEN P, GEN n, GEN a4, GEN T, ulong p)
GEN random_FlxqE(GEN a4, GEN a6, GEN T, ulong p)

GEN FlxqE_order(GEN P, GEN o, GEN a4, GEN T, ulong p) returns the order of P in the group
E(F,[X]/(T)), where o is a multiple of the order of P, or its factorization.

GEN FlxqE_log(GEN P, GEN G, GEN o, GEN a4, GEN T, ulong p) Let G be a point of order o,
return e such that e.P = G. If e does not exists, the result is currently undefined.

GEN FlxqE_tatepairing(GEN P, GEN Q, GEN m, GEN a4, GEN T, ulong p) returns the Tate
pairing of the point of m-torsion P and the point Q.

GEN FlxqE_weilpairing(GEN P, GEN Q, GEN m, GEN a4, GEN T, ulong p) returns the Weil
pairing of the points of m-torsion P and Q.
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GEN FlxqE_weilpairing pre(GEN P, GEN Q, GEN m, GEN a4, GEN T, ulong p, ulong pi)
, where pi is a pseudoinverse of p, or 0 in which case we assume SMALL_ULONG(p).

GEN RgE_to_F1xqE(GEN P, GEN T, ulong p) returns the F1xqE obtained by applying Rg_to_Flxq
coefficientwise.

14.2.11 Elliptic curves over F,, large characteristic .

Let p > 3 be a prime number, T" an irreducible polynomial mod p, and E the elliptic curve
given by the equation F : y? = 23 + a4z + ag with a4 and ag in F,[X]/(T). A FpXQE is a point of
E(F,[X]/(T)).

GEN FpXQ_ellj(GEN a4, GEN a6, GEN T, GEN p) returns the j-invariant of the curve FE.

int FpXQ_elljissupersingular(GEN j, GEN T, GEN p) returns 1 if j is the j-invariant of a
supersingular curve over F,[X]/(T), 0 otherwise.

GEN FpXQ_ellcard(GEN a4, GEN a6, GEN T, GEN p) returns the order of E(F,[X]/(T)).

GEN Fq_ellcard_SEA(GEN a4, GEN a6, GEN q, GEN T, GEN p, long s) This function returns
#E(F,[X]/(T)), using the Schoof-Elkies-Atkin algorithm. Assume p # 2,3, and ¢ is the cardinality
of F,,[X]/(T'). The parameter s has the same meaning as in Fp_ellcard_SEA. If the seadata package
is installed, the function will be faster.

GEN FpXQ_ellgroup(GEN a4, GEN a6, GEN N, GEN T, GEN p, GEN *pm) Return the group
structure D of the group E(F,[X]/(T)), which is assumed to be of order N and set *pm to m.

GEN FpXQ_ellgens(GEN a4, GEN a6, GEN ch, GEN D, GEN m, GEN T, GEN p) Returns generators
of the group E(F,[X]/(T)) with the base change ch (see FpXQE_changepoint), where D and m are
as returned by FpXQ_ellgroup.

GEN FpXQ_elldivpol(GEN a4, GEN a6, long n, GEN T, GEN p) returns the n-division polynomial
of the elliptic curve E.

GEN Fq_elldivpolmod(GEN a4, GEN a6, long n, GEN h, GEN T, GEN p) returns the n-division
polynomial of the elliptic curve E modulo the polynomial h.

void FpXQ_elltwist(GEN a4, GEN a6, GEN T, GEN p, GEN *pA4, GEN *pA6) sets *pA4 and
*pA6 to the corresponding parameters for the quadratic twist of E.
14.2.12 FpXQE.

GEN FpXQE_changepoint(GEN P, GEN m, GEN a4, GEN T, GEN p) returns the image @ of the
point P on the curve E : y? = 2% + a4z + ag by the coordinate change m (which is a FpXQV).

GEN FpXQE_changepointinv(GEN P, GEN m, GEN a4, GEN T, GEN p) returns the image () on
the curve E : 4% = 23 + a4z + ag of the point P by the inverse of the coordinate change m (which
is a FpXQV).

GEN FpXQE_add(GEN P, GEN Q, GEN a4, GEN T, GEN p)
GEN FpXQE_sub(GEN P, GEN Q, GEN a4, GEN T, GEN p)
GEN FpXQE_dbl(GEN P, GEN a4, GEN T, GEN p)

GEN FpXQE_neg(GEN P, GEN T, GEN p)

GEN FpXQE_mul(GEN P, GEN n, GEN a4, GEN T, GEN p)

351



GEN random_FpXQE(GEN a4, GEN a6, GEN T, GEN p)

GEN FpXQE_log(GEN P, GEN G, GEN o, GEN a4, GEN T, GEN p) Let G be a point of order o,
return e such that e.P = G. If e does not exists, the result is currently undefined.

GEN FpXQE_order (GEN P, GEN o, GEN a4, GEN T, GEN p) returns the order of P in the group
E(F,[X]/(T)), where o is a multiple of the order of P, or its factorization.

GEN FpXQE_tatepairing(GEN P, GEN Q, GEN m, GEN a4, GEN T, GEN p) returns the Tate
pairing of the point of m-torsion P and the point Q.

GEN FpXQE_weilpairing(GEN P, GEN Q, GEN m, GEN a4, GEN T, GEN p) returns the Weil
pairing of the points of m-torsion P and Q.

GEN RgE_to_FpXQE(GEN P, GEN T, GEN p) returns the FpXQE obtained by applying Rg-to_FpXQ
coefficientwise.

14.3 Functions related to modular polynomials.

Variants of polmodular, returning the modular polynomial of prime level L for the invariant
coded by inv (0: j, 1: Weber-f, see polclass for the full list).

GEN polmodular_ZXX(long L, long inv, long vx, long vy) returns a bivariate polynomial in
variables vx and vy.

GEN polmodular_ZM(long L, long inv) returns a matrix of (integral) coefficients.

GEN Fp_polmodular_evalx(long L, long inv, GEN J, GEN p, long v, int derivs) returns
the modular polynomial evaluated at J modulo the prime p in the variable v (if derivs is nonzero,
returns a vector containing the modular polynomial and its first and second derivatives, all evaluated
at J modulo p).

14.3.1 Functions related to modular invariants.

void check_modinv(long inv) report an error if inv is not a valid code for a mdular invariant.

int modinv_good_disc(long inv, long D) test whether the invariant inv is defined for the
discriminant D.

int modinv_good_prime(long inv, long D) test whether the invariant inv is defined for the
prime p.

long modinv_height_factor(long inv) return the height factor of the modular invariant inv
with respect to the j-invariant. This is an integer n such that the j-invariant is asymptotically of
the order of the n-th power of the invariant inv.

long modinv_is_Weber (long inv) test whether the invariant inv is a power of Weber f.
long modinv_is_double_eta(long inv) test whether the invariant inv is a double 1 quotient.

long disc_best_modinv(long D) the integer D being a negative discriminant, return the modular
invariant compatible with D with the highest height factor.

GEN Fp_modinv_to_j(GEN x, long inv, GEN p) Let ® the modular equation between j and the
modular invariant inv, return y such that ®(y,z) =0 (mod p).
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14.4 Other curves.

The following functions deal with hyperelliptic curves in weighted projective space P(q 41),
with coordinates (x,v, 2) and a model of the form y? = T(z, z), where T is homogeneous of degree
2d, and squarefree. Thus the curve is nonsingular of genus d — 1.

long hyperell_locally_soluble(GEN T, GEN p) assumes that 7' € Z[X] is integral. Returns 1
if the curve is locally soluble over Q,, 0 otherwise.

long nf_hyperell_locally_soluble(GEN nf, GEN T, GEN pr) let K be a number field, attached
to nf, pr a prid attached to some maximal ideal p; assumes that T' € Zi[X] is integral. Returns
1 if the curve is locally soluble over Kp. The argument nf is a true nf structure.
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Chapter 15:
L-functions

15.1 Accessors.

long is_linit(GEN data)

GEN ldata_get_an(GEN ldata)

GEN ldata_get_dual(GEN ldata)
long ldata_isreal (GEN ldata)

GEN ldata_get_gammavec(GEN ldata)
long ldata_get_degree(GEN ldata)
GEN ldata_get_k(GEN ldata)

GEN ldata_get_k1(GEN ldata)

GEN ldata_get_conductor (GEN ldata)
GEN ldata_get_rootno(GEN ldata)
GEN ldata_get_residue(GEN ldata)
long ldata_get_type(GEN ldata)
long linit_get_type(GEN linit)
GEN linit_get_ldata(GEN linit)
GEN linit_get_tech(GEN linit)

GEN 1lfun_get_domain(GEN tech)

GEN 1fun_get_dom(GEN tech)

long 1lfun_get_bitprec(GEN tech)
GEN 1fun_get_factgammavec(GEN tech)
GEN 1lfun_get_step(GEN tech)

GEN 1fun_get_pol(GEN tech)

GEN 1fun_get_Residue(GEN tech)
GEN lfun_get_k2(GEN tech)

GEN 1fun_get_w2(GEN tech)

GEN 1lfun_get_expot(GEN tech)

long 1fun_get_bitprec(GEN tech)
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GEN 1lfunprod_get_fact(GEN tech)
GEN theta_get_an(GEN tdata)

GEN theta_get_K(GEN tdata)

GEN theta_get_R(GEN tdata)

long theta_get_bitprec(GEN tdata)
long theta_get_m(GEN tdata)

GEN theta_get_tdom(GEN tdata)

GEN theta_get_isqrtN(GEN tdata)

15.2 Conversions and constructors.

GEN 1lfunmisc_to_ldata(GEN obj) converts obj to Ldata format. Exception if obj cannot be
converted.

GEN 1funmisc_to_ldata_shallow(GEN obj) as 1funmisc_to_ldata, shallow result. Exception if
obj cannot be converted.

GEN 1funmisc_to_ldata_shallow_i(GEN obj) as 1funmisc_to_ldata_shallow, returning NULL
on failure.

GEN lfunrtopoles(GEN r)
int sdomain_isincl(double k, GEN dom, GEN domO)

GEN ldata_vecan(GEN ldata, long N, long prec) return the vector of coefficients of indices 1
to N to precision prec. The output is allowed to be a t_VECSMALL when the coefficients are known
to be all integral and fit into a long; for instance the Dirichlet L function of a real character or the
L-function of a rational elliptic curve.

GEN ldata_newprec(GEN ldata, long prec) return a shallow copy of 1data with fields accurate
to precision prec.

long etaquotype(GEN *peta, GEN *pN, GEN *pk, GEN #*pCHI, long *pv, long *psd,
long *pcusp) Let eta be the integer matrix factorization supposedly attached to an n-quotient
f(z) =11, n(n;2)®. Assuming *peta is initially set to eta, this function returns 0 if there is a type
error or this does not define a function on some Xy(N). Else it returns 1 and sets

e *peta to a normalized factorization (as would be returned by factor),

e *xpN to the level N of f,

e *pk to the modular weight k of f,

e *pCHI to the Nebentypus of f (quadratic character) as an integer,

e xpv to the valuation at infinity v, (f),

e *psd to 1 if and only if f is self-dual,

e xpcusp to 1 if f is cuspidal, else to 0 if f holomorphic at all cusps, else to —1.

The last three arguments pCHI, pv and pcusp can be set to NULL, in which case the relevant
information is not computed, which saves time.
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15.3 Variants of GP functions.

GEN 1fun(GEN ldata, GEN s, long bitprec)

GEN 1funinit(GEN ldata, GEN dom, long der, long bitprec)

GEN 1lfuninit_make(long t, GEN ldata, GEN tech, GEN domain)

GEN 1funlambda(GEN ldata, GEN s, long bitprec)

GEN lfunquadneg(long D, long k) for L(xp,k), D fundamental discriminant and k& > 0.

long lfunthetacost(GEN ldata, GEN tdom, long m, long bitprec): lfunthetacostO when
the first argument is known to be an Ldata.

GEN lfunthetacheckinit(GEN data, GEN tinf, long m, long bitprec)
GEN 1lfunrootno(GEN data, long bitprec)

GEN 1funzetakinit(GEN nf, GEN dom, long der, long bitprec) where nf is a true nf
structure.

GEN 1funellmfpeters(GEN E, long bitprec)
GEN ellanalyticrank(GEN E, long prec) DEPRECATED.
GEN ellL1(GEN E, long prec) DEPRECATED.

15.4 Inverse Mellin transforms of Gamma products.

GEN gammamellininv(GEN Vga, GEN s, long m, long bitprec)
GEN gammamellininvinit(GEN Vga, long m, long bitprec)

GEN gammamellininvrt(GEN K, GEN s, long bitprec) no GC-clean, but suitable for gerepile-
upto.

int Vgaeasytheta(GEN Vga) return 1 if the inverse Mellin transform is an exponential and 0
otherwise.

double dbllemma526(double a, double b, double c, long B)
double dblcoro526(double a, double c, long B)
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Chapter 16:
Modular symbols

void checkms(GEN W) raise an exception if W is not an ms structure from msinit.
void checkmspadic(GEN W) raise an exception if W is not an mspadic structure from mspadicinit.

GEN mseval2_ooQ(GEN W, GEN phi, GEN c) let W be a msinit structure for £k = 2, ¢ be a
modular symbol with integral values and ¢ be a rational number. Return the integer ¢(p), where
p is the path {oo, c}.

void mspadic_parse_chi(GEN s, GEN =*s1, GEN *s2) see mspadicL; let x be the cyclotomic
character from Gal(Q,(muy~)/Q,) to Z% and 7 be the Teichmiiller character for p > 2 and the
character of order 2 on (Z/4Z)* if p = 2. Let s encode the p-adic characther x*® := (x)*'7%2; set
*s1 and *s2 to the integers s; and ss.

GEN mspadic_unit_eigenvalue(GEN ap, long k, GEN p, long n) let p be a prime not dividing
the trace of Frobenius ap, return the unit root of 22 — ap * x + plk — 1) to p-adic accuracy p™.

Variants of mfnumcusps :
ulong mfnumcuspsu(ulong n)
GEN mfnumcusps_fact(GEN fa) where fa is factor(n).

ulong mfnumcuspsu_fact(GEN fa) where fa is factoru(n).
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Chapter 17:
Modular forms

17.1 Implementation of public data structures.

void checkMF(GEN mf) raise an exception if the argument is not a modular form space.

GEN checkMF_i(GEN mf) return the underlying modular form space if mf is either directly a mod-
ular form space from mfinit or a symbol from mfsymbol. Return NULL otherwise.

int checkmf_i(GEN mf) return 1 if the argument is a modular form and 0 otherwise.

int checkfarey_i(GEN F) return 1 if the argument is a Farey symbol (from mspolygon or ms-
farey) and 0 otherwise.

17.1.1 Accessors for modular form spaces.

Shallow functions; assume that their argument is a modular form space is created by mfinit
and checked using checkMF.

GEN MF_get_gN(GEN mf) return the level N as a t_INT.

long MF_get_N(GEN mf) return the level N as a long.

GEN MF_get_gk(GEN mf) return the level k as a t_INT.

long MF_get_k(GEN mf) return the level k as a long.

long MF_get_r(GEN mf) assuming the level is a half-integer, return the integer r = k — (1/2).

GEN MF_get_CHI(GEN mf) return the nebentypus y, which is a special form of character structure
attached to Dirichlet characters (see next section). Its values are given as algebraic numbers: either
+1 or t_POLMOD in ¢.

long MF_get_space(GEN mf) returns the space type, corresponding to mfinit’s space flag. The
current list is

mf_NEW, mf_CUSP, mf_OLD, mf_EISEN, mf_ FULL

GEN MF_get_basis(GEN mf) return the Q-basis of the space, concatenation of MF_get_E and
MF_get_S, in this order; the forms have coefficients in Q(x). Low-level version of mfbasis.

long MF_get_dim(GEN mf) returns the dimension d of the space. It is the cardinality of
MF_get_basis.

GEN MF_get_E(GEN mf) returns a Q-basis for the subspace spanned by Kisenstein series in the
space; the forms have coefficients in Q(x).

GEN MF_get_S(GEN mf) returns a Q-basis for the cuspidal subspace in the space; the forms have
coefficients in Q(x).
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GEN MF_get_fields(GEN mf) returns the vector of polynomials defining each Galois orbit of new-
forms over Q(x). Uses memoization: a first call splits the space and may be costly; subsequent
calls return the cached result.

GEN MF_get_newforms (GEN mf) returns a vector vF containing the coordinates of the eigenforms on
MF_get_basis (mftobasis form). Low-level version of mfeigenbasis, whose elements are recovered
as mflinear (mf, gel(vF,i)). Uses memoization, sharing the same data as MF_get_fields. Note
that it is much more efficient to use mfcoefs(mf,) then multiply by this vector than to compute
the coefficients of eigenforms from mfeigenbasis individually.

The following accessors are technical,

GEN MF_get_M(GEN mf) the (1 4+ m) x d matrix whose j-th column contain the coefficients of the
j-th entry in MF_get_basis, m is the optimal “Sturm bound” for the space: the maximum of the
Voo (f) over nonzero forms. It has entries in Q(x).

GEN MF_get_Mindex(GEN mf) is a t_VECSMALL containing d row indices, the corresponding rows of
M form an invertible matrix M.

GEN MF_get_Minv(GEN mf) the inverse of My in a form suitable for fast multiplication.

GEN MFcusp_get_vMjd(GEN mf) valid only for a full cuspidal space. Then the functions in
MF_get_S are of the form B,T;Tr}f". This returns the vector of triples (t_VECSMALL) [M, j,d], in
the same order.

GEN MFnew_get_vj(GEN mf) valid only for a new space. Then the functions in MF_get_S are of
the form T; T3, This returns a t_VECSMALL of the Hecke indices j, in the same order.

17.1.2 Accessors for individual modular forms.

GEN mf_get_gN(GEN F) return the level of F', which may be a multiple of the conductor, as a t_INT
long mf_get_N(GEN F) return the level as a long.

GEN mf_get_gk(GEN F) return the weight of F' as a t_INT or a t_FRAC with denominator 2 (half-
integral weight).

long mf_get_k(GEN F) return the weight as a long; if the weight is not integral, this raises an
exception.

long mf_get_r(GEN F) assuming F'is a modular form of half-integral weight k = (2r+1)/2, return
r=k—(1/2).

GEN mf_get_CHI(GEN F) return the nebentypus, which is a special form of character structure
attached to Dirichlet characters (see next section). Its values are given as algebraic numbers:
either £1 or t_POLMOD in .

GEN mf_get_field(GEN F) return the polynomial (in variable y) defining Q(f) over Q(x).

GEN mf_get_NK(GEN F) return the tag attached to F: a vector containing gN, gk, CHI, field.
Never use its component directly, use individual accessors as above.

long mf_get_type(GEN F) returns a symbolic name for the constructur used to create the form,
e.g. t MF_EISEN for a general Eisenstein series. A form has a recursive structure represented by a
tree: its definition may involve other forms, e.g. the tree attached to T;, f contains f as a subtree.
Such trees have leaves, forms which do not contain a strict subtree, e.g. t_MF_DELTA is a leaf,
attached to Ramanujan’s A.
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Here is the current list of types; since the names are liable to change, they are not documented
at this point. Use mfdescribe to visualize their mathematical structure.

/*leaves*x/
t_MF_CONST, t_MF_EISEN, t_MF_Ek, t_MF_DELTA, t_MF_ETAQUO, t_MF_ELL,
t_MF_DIHEDRAL, t_MF_THETA, t_MF_TRACE, t_MF_NEWTRACE,

/*recursivex*/
t_MF_MUL, t_MF_POW, t_MF_DIV, t_MF_BRACKET, t_MF_LINEAR, t_MF_LINEAR_BHN,
t_MF_SHIFT, t_MF_DERIV, t_MF_DERIVE2, t_MF_TWIST, t_MF_HECKE,
t_MF_BD,

17.1.3 Nebentypus. The characters stored in modular forms and modular form spaces have
a special structure. One can recover the parameters of an ordinary Dirichlet character by G =
gel(CHI,1) (the underlying znstar) and chi = gel(CHI,2) (the underlying character in zncon-
reylog form).

long mfcharmodulus(GEN CHI) the modulus of y.

long mfcharorder (GEN CHI) the order of y.

GEN mfcharpol (GEN CHI) the cyclotomic polynomial ®,, defining Q(x), always normalized so that
n is not 2 mod 4.

17.1.4 Miscellaneous functions.

long mfnewdim(long N, long k, GEN CHI) dimension of the new part of the cuspidal space.
long mfcuspdim(long N, long k, GEN CHI) dimension of the cuspidal space.

long mfolddim(long N, long k, GEN CHI) dimension of the old part of the cuspidal space.
long mfeisensteindim(long N, long k, GEN CHI) dimension of the Eisenstein subspace.
long mffulldim(long N, long k, GEN CHI) dimension of the full space.

GEN mfeisensteinspaceinit(GEN NK)

GEN mfdiv_val(GEN F, GEN G, long vG)

GEN mfembed(GEN E, GEN v)

GEN mfmatembed(GEN E, GEN v)

GEN mfvecembed(GEN E, GEN v)

long mfsturmNgk(long N, GEN k)

long mfsturmNk(long N, long k)

long mfsturm_mf (GEN mf)

long mfiscuspidal (GEN mf, GEN F)

GEN mftobasisES(GEN mf, GEN F)

GEN mftocol(GEN F, long lim, long d)

GEN mfvectomat(GEN vF, long lim, long d)
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Chapter 18:
Plots

A PARI_plot canvas is a record of dimensions, with the following fields:

long
long
long
long
long
long
void

The draw method performs the actual drawing of a t_VECSMALL w (rectwindow indices); = and y
are t_VECSMALLs of the same length and rectwindow wli] is drawn with its upper left corner at
No plot engine is available in libpari by default, since thie would introduce a
dependency on extra graphical libraries. See the files src/graph/plot* for basic implementations

offset (x[i], y[i]).

width; /*
height; /%
hunit; /*
vunit; /*
fwidth; /x*
fheight; /*

window width */

window height */

length of horizontal ’ticks’ */
length of vertical ’ticks’ */
font width */

font height */

(*draw) (PARI_plot *T, GEN w, GEN x, GEN y);

of various plot engines: plotsvg is particularly simple (draw is a 1-liner).

void pari_set_plot_engine(void (*T) (PARI_plot *)) installs the graphical engine 7" and ini-
tializes the graphical subsystem. No routine in this chapter will work without this initialization.

void pari_kill_plot_engine(void) closes the graphical subsystem and frees the ressources it

occupies.

18.1 Highlevel functions.

Those functions plot f(E,x) for x € [a,b], using n regularly spaced points (by default).

GEN ploth(void *E, GEN(*f) (void*, GEN), GEN a, GEN b, long flags, long n, long prec)

draw physically.

GEN plotrecth(void *E, GEN(*f) (void*, GEN), long w, GEN a, GEN b, ulong flags, long

n, long prec) draw in rectwindow w.
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18.2 Function.

void plotbox(long ne, GEN gx2, GEN gy2)

void plotclip(long rect)

void plotcolor(long ne, long color)

void plotcopy(long source, long dest, GEN xoff, GEN yoff, long flag)
GEN plotcursor(long ne)

void plotdraw(GEN list, long flag)

GEN plothraw(GEN listx, GEN listy, long flag)

GEN plothsizes(long flag)

void plotinit(long ne, GEN x, GEN y, long flag)

void plotkill(long ne)

void plotline(long ne, GEN x2, GEN y2)

void plotlines(long ne, GEN listx, GEN listy, long flag)
void plotlinetype(long ne, long t)

void plotmove(long ne, GEN x, GEN y)

void plotpoints(long ne, GEN listx, GEN listy)

void plotpointsize(long ne, GEN size)

void plotpointtype(long ne, long t)

void plotrbox(long ne, GEN x2, GEN y2)

GEN plotrecthraw(long ne, GEN data, long flags)

void plotrline(long ne, GEN x2, GEN y2)

void plotrmove(long ne, GEN x, GEN y)

void plotrpoint(long ne, GEN x, GEN y)

void plotscale(long ne, GEN x1, GEN x2, GEN yl1, GEN y2)
void plotstring(long ne, char *x, long dir)

18.2.1 Obsolete functions. These draw directly to a PostScript file specified by a global variable
and should no longer be used. Use plotexport and friends instead.
void psdraw(GEN list, long flag)

GEN psplothraw(GEN listx, GEN listy, long flag)

GEN psploth(void *E, GEN(*f)(void*, GEN), GEN a, GEN b, long flags, long n, long
prec) draw to a PostScript file.
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18.3 Dump rectwindows to a PostScript or SVG file.

w, T,y are three t_VECSMALLs indicating the rectwindows to dump, at which offsets. If T is
NULL, rescale with respect to the installed graphic engine dimensions; else with respect to T

char* rect2ps(GEN w, GEN x, GEN y, PARI_plot *T)

char* rect2ps_i(GEN w, GEN x, GEN y, PARI_plot *T, int plotps) if plotps is 0, as above;
else private version used to implement the plotps graphic engine (do not rescale, rotate to portrait
orientation).

char* rect2svg(GEN w, GEN x, GEN y, PARI_plot *T)

18.4 Technical functions exported for convenience.

void pari_plot_by_file(const char *env, const char *suf, const char *img) backend
used by the plotps and plotsvg graphic engines.

void colorname_to_rgb(const char *s, int *r, int *g, int *Db) convert an X11 colorname
to RGB values.

void color_to_rgb(GEN c, int *r, int *g, int *Db) convert a pari color (t_VECSMALL RGB
triple or t_STR name) to RGB values.

void long_to_rgb(long c, int *r, int *g, int *b) split a standard hexadecimal color value
0xfdfbe6 to its rgb components (0xfd, 0xf5, 0xe6).
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Appendix A:
A Sample program and Makefile

We assume that you have installed the PARI library and include files as explained in Appendix
A or in the installation guide. If you chose differently any of the directory names, change them
accordingly in the Makefiles.

If the program example that we have given is in the file extged.c, then a sample Makefile
might look as follows. Note that the actual file examples/Makefile is more elaborate and you
should have a look at it if you intend to use install() on custom made functions.

CC = cc

INCDIR = /usr/pkg/include

LIBDIR = /usr/pkg/lib

CFLAGS = -0 -I$(INCDIR) -L$(LIBDIR)

all: extged

extgcd: extgcd.c
$(CC) $(CFLAGS) -o extgcd extgcd.c -lpari -1m

We then give the listing of the program examples/extgcd.c seen in detail in Section 4.10.

#include <pari/pari.h>
/*
GP;install("extgcd", "GG&&", "gcdex", "./libextgcd.so");
*/
/* return d = gcd(a,b), sets u, v such that au + bv = gcd(a,b) */
GEN
extgcd(GEN A, GEN B, GEN U, GEN *V)
{
pari_sp av = avma;
GEN ux = gen_1, vx = gen_0, a = A, b = B;
if (typ(a) !'= t_INT) pari_err_TYPE("extgcd",a);
if (typ(b) !'= t_INT) pari_err_TYPE("extgcd",b);
if (signe(a) < 0) { a = negi(a); ux = negi(ux); }
while (!gequalO(b))

{
GEN r, q = dvmdii(a, b, &r), v = vx;
vx = subii(ux, mulii(q, vx));
ux = v; a =b; b =r;
}
*U = ux;
*V = diviiexact( subii(a, mulii(A,ux)), B );
gerepileall(av, 3, &a, U, V); return a;
}
int

369



main()
{
GEN x, y, d, u, v;
pari_init(1000000,2);
printf("x = "); x = gp_read_stream(stdin);
printf("y = "); y = gp_read_stream(stdin);
d = extgcd(x, y, &u, &v);
pari_printf("gcd = %Ps\nu = %Ps\nv = /Ps\n", d, u, v);
pari_close();
return O;
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Appendix B:
PARI and threads

To use PARI in multi-threaded programs, you must configure it using Configure --enable-
t1ls. Your system must implement the __thread storage class. As a major side effect, this breaks
the libpari ABI: the resulting library is not compatible with the old one, and -tls is appended
to the PARI library soname. On the other hand, this library is now thread-safe.

PARI provides some functions to set up PARI subthreads. In our model, each concurrent
thread needs its own PARI stack. The following scheme is used:

Child thread:

void *child_thread(void *arg)

{
GEN data = pari_thread_start((struct pari_thread*)arg);
GEN result = ...; /* Compute result from data */
pari_thread_close();
return (void*)result;

}
Parent thread:

pthread_t th;
struct pari_thread pth;
GEN data, result;

pari_thread_alloc(&pth, s, data);

pthread_create(&th, NULL, &child_thread, (void*)&pth); /* start child */
. /* do stuff in parent */

pthread_join(th, (void*)&result); /+* wait until child terminates */

result = gcopy(result); /* copy result from thread stack to main stack */

pari_thread_free(&pth); /* ... and clean up */

void pari_thread_valloc(struct pari_thread *pth, size_t s, size_t v, GEN arg) Allo-
cate a PARI stack of size s which can grow to at most v (as with parisize and parisizemax) and
associate it, together with the argument arg, with the PARI thread data pth.

void pari_thread_alloc(struct pari_thread *pth, size_t s, GEN arg) As above but the
stack cannot grow beyond s.

void pari_thread_free(struct pari_thread *pth) Free the PARI stack attached to the PARI
thread data pth. This is called after the child thread terminates, i.e. after pthread_join in the
parent. Any GEN objects returned by the child in the thread stack need to be saved before running
this command.

void pari_thread_init(void) Initialize the thread-local PARI data structures. This function is
called by pari_thread start.
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GEN pari_thread_start(struct pari_thread *t) Initialize the thread-local PARI data struc-
tures and set up the thread stack using the PARI thread data pth. This function returns the
thread argument arg that was given to pari_thread_alloc.

void pari_thread_close(void) Free the thread-local PARI data structures, but keeping the
thread stack, so that a GEN returned by the thread remains valid.

Under this model, some PARI states are reset in new threads. In particular
e the random number generator is reset to the starting seed;

e the system stack exhaustion checking code, meant to catch infinite recursions, is disabled
(use pari_stackcheck init() to reenable it);

e cached real constants (returned by mppi, mpeuler and mplog2) are not shared between
threads and will be recomputed as needed;

The following sample program can be compiled using
cc thread.c -o thread.o -lpari -lpthread
(Add -I/-L paths as necessary.)

#include <pari/pari.h> /* Include PARI headers */
#include <pthread.h> /* Include POSIX threads headers */

void *
mydet (void *arg)
{

GEN F, M;

/* Set up thread stack and get thread parameter */
M = pari_thread_start((struct pari_thread*) arg);
F = QM_det(M);

/* Free memory used by the thread */
pari_thread_close();

return (void*)F;

¥

void *
myfactor(void *arg) /* same principle */
{
GEN F, N;
N = pari_thread_start((struct pari_thread*) arg);
F = factor(N);
pari_thread_close();
return (void*)F;

b
int
main(void)
{
long prec = DEFAULTPREC;
GEN M1,M2, N1,N2, F1,F2, D1,D2;
pthread_t thl, th2, th3, th4; /* POSIX-thread variables */
struct pari_thread pthl, pth2, pth3, pth4; /* pari thread variables */
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/*

Initialise the main PARI stack and global objects (gen_0, etc.) */

pari_init(32000000,500000) ;

/*
N1
N2
M1
M2
/*

Compute in the main PARI stack */

= addis(int2n(256), 1); /* 27266 + 1 */
= subis(int2n(193), 1); /* 27193 - 1 */
mathilbert (149);

mathilbert (150);

Allocate pari thread structures */

pari_thread_alloc(&pth1l,8000000,N1);
pari_thread_alloc(&pth2,8000000,N2) ;
pari_thread_alloc(&pth3,32000000,M1) ;
pari_thread_alloc (&pth4,32000000,M2) ;

/%

*

pthread_create() and pthread_join() are standard POSIX-thread
functions to start and get the result of threads. */

pthread_create(&thl ,NULL, &myfactor, (voidx)&pthl);
pthread_create(&th2,NULL, &myfactor, (void*)&pth2);

pthread_create (&th3,NULL, &mydet, (void=*)&pth3);
pthread_create(&th4,NULL, &mydet, (void*)&pth4); /* Start 4 threads */
pthread_join(thl, (void*)&F1);

pthread_join(th2, (void*)&F2) ;

pthread_join(th3, (void*)&D1);

pthread_join(th4, (void*)&D2); /* Wait for termination, get the results */
pari_printf ("F1=Y,Ps\nF2=},Ps\nlog(D1)=%Ps\nlog(D2)=%Ps\n",

F1,F2, glog(D1,prec),glog(D2,prec));

pari_thread_free(&pthl);
pari_thread_free(&pth2);
pari_thread_free(&pth3);
pari_thread_free(&pth4); /* clean up */
return O;
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SomeWord refers to PARI-GP concepts.
SomeWord is a PARI-GP keyword.
SomeWord is a generic index entry.

ABC_to_bnr
abelian_group
abgrp_get_cyc
abgrp_get_gen
abgrp_get_no
abmap_kernel
abmap_subgroup_image
abscmpii
abscmpiu
abscmprr
abscmpui
absdiviu_rem
absequalii
absequaliu
absequalui
absfrac
absfrac_shallow
absi
absi_shallow
absr
absrnz_equall
absrnz_equal2n
abstorel
absZ_factor
absZ_factor_limit
absZ_factor_limit_strict
addhelp
addii
addii_sign
addir
addir_sign
addis

addmul

addmulii
addmulii_inplace
addmuliu
addmuliu_inplace
addri
addrr
addrr_sign

Index
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addsi_sign . . . .. ... ... ... .. 98
addui . . . .. ..o 97
addui_sign . . . . . ... ... ... ... 98
addumului . . ... ... ... L. 97
adduu . . . ... 97
affc_fixlg . . . ... ... ... ... 253
affectsign . . . . . ... ... ... 64
affectsign_safe . ... ... ... ... 64
affgr . .. ..o oo 89
affii . ..o oo 89
affir . . ..o o000 89
affiz . ... ..o 89
affrr . . ..o 89
affrr_fixlg . ... ... ... .. .. 89, 253
affsi . .. ..o 89
affsr .. ... oo oo 89
affsz . . .. ..o 89
affui ... .00 89
affur .. ... o oo 89
alarm . . . . ... 269
alginit . . . . . ... ..o 337
alglat_get_primbasis . . ... ... .. 338
alglat_get_scalar . .. ... ... ... 338
algsimpledec_ss . . .. ... ... ... 338
algtype . . . . . ... 337
alg_changeorder . ... ... ... ... 336
alg_complete . .. ... ......... 336
alg_csa_table . . . . .. ... ... ... 336
alg_cyclic . . .. ... .. ... ..... 336
alg_get_absdim . . ... ... ... ... 337
alg_get_abssplitting . .. ... .. .. 338
alg_get_aut . ... ... ... ... ... 337
alg_get_auts . .. ... ... ... ... 337
alg_ get b . ... ... ... ... 337
alg_get_basis . . . ... ... ... ... 337
alg_get_center . . ... ... ... ... 337
alg_get_char ... ............ 337
alg_get_degree . . .. ... .. .. ... 337
alg_get_dim . . .. ... ... ... ... 337
alg_get_hasse_f . .. ... ... .. .. 337
alg_get_hasse_i . ... ......... 337
alg_get_invbasis . . . . .. ... .. .. 337
alg_get_multable . . . . . ... ... .. 337
alg_get_relmultable . . . . . .. .. .. 337
alg_get_splitpol . . . . . ... ... .. 338
alg_get_splittingbasis . . . . . . . .. 338
alg_get_splittingbasisinv. .. . . .. 338
alg_get_splittingdata ... ... ... 338
alg_get_splittingfield . . . . . . . .. 337



alg_get_tracebasis . . ... ... ... 338
alg_hasse . . ... ............ 336
alg_hilbert . .. .. ... ........ 336
alg matrix . . . ... ... ... ... .. 336
alg_model . .. ... ... ........ 337
alg_type . . . . ... ... ... 337
assignment . . ... ... ... ... .. 26
atanhui . . . . .. ..o 252
atanhuu . . . . .. ... 252
AVINA .+ . . v e e e e e e e e e 17, 26
B
bb_algebra . . . ... ... ... ... .. 214
bb_field . ... ... ... ... .. 212
bb_group . . ... ... .. ... .. 210
bb_ring . . . . . ..o 215
bernfrac . ... ... .. ... ... 254, 255
Bernoulli . . ... ... ....... 254, 255
bernreal . . ... ... .. ... .. 254, 255
bezout . ... ... ... 48, 102
bfffo . . .. ... 000 83
bid_get_arch . . ... ... ... ... . 294
bid_get_archp . . . . . . ... ... ... 294
bid_get_cyc . . . .. ... ... 294
bid_get_fact . . ... ... ... ... 294
bid_get_fact2 . . ... ... ... .. .. 294
bid_get_gen . . . .. ... ... ... .. 294
bid_get_gen_nocheck . . . . . . . .. .. 294
bid_get_grp . . . . . ... ... ... .. 294
bid_get_ideal . . . . . .. ... ... .. 294
bid_get_mod . . ... ... ... ... .. 294
bid_get_no . . . .. ... ... ... 294
bid_get_sarch . . . . .. ... ... ... 295
bid_get_sprk . ... ... ... ... .. 294
bid_get U . .. ... ... ... ... . 295
BIGDEFAULTPREC . . . . .. ... ... 16, 66
bigomegau . . ... ... ... ... ... 106
BIL . .. .. . 53
binary quadratic form . . . .. .. .. .. 34
binary 2k . .. ... ... ... 92
binary_ 2k nv . . ... ... ... ... 92
binary_zv . . . ... ... ... 92
bincopy_relink . . . ... ... ... .. 70
binomial . . . . .. ... ... ... .. 243
binomialuu . . . . . ... ... ... ... 243
bin_copy . . . . ... ... 69
bitprecisionO . . . . . . . . ... .. .. 219
BITS_IN_HALFULONG . . .. ... ... .. 66
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BITS_IN_LONG . .. ... ... 16, 53, 66, 92
bits_to_int . . . . . . ... .. ... .. 92
bits_to_,u . ... ... 92
bit_accuracy . . ... ... ... .. 16, 61
bit_accuracy_mul . . ... ... ... .. 61
bit_prec . . ... ... ... . 61
bl base . . ... ... .. .. ....... 74
bl next . .. . . . .. ... ... ... 74
bl num . .. ... ............. 74
blprev . . ... ... ... ... ... . 74
bl refc . .. . . . .. ... ... ... 74
bnfgwgeneric . . . ... ... ... ... 318
bnfisprincipal0 . . ... .. 296, 312, 315
bnfisunit . .. ... ... ... ... .. 302
bnfnewprec . . . . . . ... .. 296, 312, 313
bnfnewprec_shallow . .. ... ... .. 296
bnftestprimes . . . . . . ... ... L. 313
bnf_build_cheapfu . ... ... ... .. 295
bnf_build_cycgen . . . . . ... ... .. 295
bnf_build_matalpha . . ... ... ... 295
bnf_build_units . ... ... ... ... 295
bnf_compactfu . . ... . ... ... ... 293
bnf_compactfu_mat . ... ... ... .. 293
bnf_get_clgp . ... ... ... ..... 292
bnf_get_cyc . ... ... ... ... ... 292
bnf_get_fu ... ... ... ... ... .. 292
bnf_get_fu_no